Computer Vision Systems

Starts on

Ends on

Computer Vision Systems
Lecturer

Nicu Sebe ,

Elisa Ricci,

Content and organization

This course will prepare the students in both the theoretical foundations of computer vision as well as the practical approaches to building real Computer Vision systems. This course investigates current research topics in computer vision with an emphasis on recognition tasks and deep learning. We will examine data sources, features, and learning algorithms useful for understanding and manipulating visual data. The goal of this course is to give students the background and skills necessary to perform research in computer vision and its application domains such as robotics. Students should understand the strengths and weaknesses of current approaches to research problems and identify interesting open questions and future research directions. Topics covered will include object detection and segmentation with deep networks, deep generative models for image generation, image captioning, activity recognition, video generation, deep transfer learning and few-shot learning.

Course Type

ai-phd Course

Host Institution
University of Trento

Other short courses

11. 05. 2022 Go

Geometric learning

05. 04. 2022 Go

Computer Graphics

04. 04. 2022 Go

Bayesian Learning

02. 04. 2022 Go

Computer Graphics

31. 03. 2022 Go

Web of Data

28. 03. 2022 Go

Machine Learning

27. 03. 2022 Go

Machine Learning

21. 03. 2022 Go

Untitled

02. 03. 2022 Go

Player Modeling

28. 02. 2022 Go

Player Modeling

21. 02. 2022 Go

Affective Computing

21. 02. 2022 Go

Machine Listening

21. 02. 2022 Go

Computer Vision

21. 02. 2022 Go

Computer Vision

21. 02. 2022 Go

Self-Driving Cars

21. 02. 2022 Go

Deep Learning

21. 02. 2022 Go

Deep Learning 2

17. 02. 2022 Go