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Outline

“Can you tell me what the future holds for me?”
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• Foundation models for Time Series

1. Zero Shot Forecasting with LLMs

2. Specialized Foundation Models
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Forecasting
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Motivation

• Per capita road accident deaths 
exhibit a slow decline over time

• Improved infrastructure, passive 
safety features, ADAS
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Motivation

• Per capita road accident deaths 
exhibit a slow decline over time

• Improved infrastructure, passive 
safety features, ADAS

• Still not zero!

GAP



Preliminaries



Models for Sequences*

LSTM ‘97

GRU ‘14

RNN ‘90

ConvLSTM ‘15

Transformers ‘17Elman, Jeffrey L. "Finding structure in time." Cognitive science 1990
Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation  1997
Cho et al. “Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation”. EMNLP 2014.
Shi, Xingjian, et al. "Convolutional LSTM network: A machine learning approach for precipitation nowcasting." NeurIPS 2015
Vaswani, Ashish, et al. "Attention is all you need." NeuIPS 2017



Sensing

• Standard computer vision tools can be exploited to gather information on:

• moving objects in the scene (e.g.: Mask R-CNN, YOLOv11, DETR, SAM2)

• Panoptic semantic scene understanding (e.g: Mask2Former)

• 3D object location (e.g: LiDAR, stereo depth, DepthAnything, SLAM)

11

Ravi, N., et al. Sam 2: Segment anything in images and videos. ICLR 2025
Cheng, B., et al.. Masked-attention mask transformer for universal image segmentation. CVPR 2022
Yolov11 from Ultralitics - https://github.com/yt7589/yolov11
Yang, Lihe, et al. "Depth anything: Unleashing the power of large-scale unlabeled data." CVPR 2024.
Murai, et al. "MASt3R-SLAM: Real-time dense SLAM with 3D reconstruction priors." CVPR 2025

https://github.com/yt7589/yolov11


Sensing

• Once sensing is performed, we work in a semantic top view map forecasting 2D trajectories so-
called Bird’s Eye View (BEV)

12

2 seconds

4 seconds



Ego Forecasting
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Looking at the road

• Forecasting directly in image or 
feature space reduces the need for 
sensors and infrastructure

• Most general form of robotic 
perception pipeline

• Perform scene understanding in 
image space

• Two GOALs:
• Future object location
• Future agent behavior



Location Forecasting
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Inferring segmentation

• Simple yet effective idea to forecast object location: predict the next frames 
autoregressively

• Unfortunately forecasting RGB frames is extremely challenging (maybe Veo 
can help nowadays!)

• Solution: autoregressively predict segmentation from past segments!

Luc, Pauline, et al. "Predicting deeper into the future of semantic segmentation." ICCV 2017
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Inferring features

• We can extract more information from the frames leveraging strong features instead of propagating segments

• Instead of predicting the segmentation, the model is trained to forecast intermediate representations

• A pre-trained detector is then applied as a head on such features providing future detections

Luc, Pauline, et al. "Predicting future instance segmentation by forecasting convolutional features." ECCV 2018.
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Inferring high level features

What give us a full understanding of a dynamic scene?

• Optical flow instantly tells where objects are headed

• Depth delivers 3D information

• Assuming object locations and classes known at time t can we forecast locations using Depth+Flow?

timet − T t + 1t t + N

FUTURE

CAR

ANTICIPATION

PREDICTION

EXPECTED 
BEHAVIOR

PRESENT

MOTION

CAR
PERSO

N

PERSON
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Inferring high level features

We design an architecture with the idea of feature sharing for the two tasks

concat

Ciamarra A., et al. FLODCAST: Flow and Depth Forecasting via Multimodal Recurrent Architectures. in Pattern Recognition. Elsevier. 2024

MSE Loss
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Learning to warp masks

• To predict future instances, we use MaskNet a Learned binary mask warper that learns to 
warp binary masks into the future given an initial segmentation and the cumulated flow

• A Denoising autoencoder is added downstream to improve the results 

Ciamarra A., et al. FLODCAST: Flow and Depth Forecasting via Multimodal Recurrent Architectures. in Pattern Recognition. Elsevier. 2024

DICE Loss
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Results

Can we infer future location of object more accurately with better future flow?

Ciamarra A., et al. FLODCAST: Flow and Depth Forecasting via Multimodal Recurrent Architectures. in Pattern Recognition. Elsevier. 2024

• Both Depth and Flow forecast get 
SOTA results (not reported here)

• MaskNet with simple flow 
forecasting gets SOTA on short term 
prediction

• We further improve thanks to the 
joint Depth+Flow prediction 
MaskNet results on Mid term



Funding & Collaborators
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• Work done in collaboration with

• Projects partially funded by

Dr. Federico Becattini Dr. Andrea Ciamarra Prof. Alberto Del Bimbo

Ciamarra A., et al. FLODCAST: Flow and Depth Forecasting via Multimodal Recurrent Architectures. in Pattern Recognition. Elsevier. 2024



Behavior Forecasting
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Behavior forecasting: what will they do?

• Usually focused on pedestrian behavior 
forecasting: stop, go or cross

• Stop/Go problems are defined as predicting if a 
person Stopped/Moving until time t will Go or 
Stop in a temporal window [𝑡, 𝑡 + 𝑇𝑓]

• All predictions can be made exploiting all 
observations available in the window [𝑡 − 𝑇𝑝 , 𝑡]

Marchetti, Francesco, et al. "CrossFeat: Semantic Cross-modal Attention for Pedestrian Behavior Forecasting." IEEE Transactions on Intelligent Vehicles (2024).
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Behavior forecasting: what will they do?

Guo, Dongxu, Taylor Mordan, and Alexandre Alahi. "Pedestrian stop and go forecasting with hybrid feature fusion." ICRA 2022

• First attempt: mix LSTM+CNN outputs for dynamic components and MLP for static components

• Late fusion with no self-attention or cross-attention



26

CrossFeat Architecture

• We leverage a transformer to efficiently blend diverse multimodal inputs

Marchetti, Francesco, et al. "CrossFeat: Semantic Cross-modal Attention for Pedestrian Behavior Forecasting." IEEE Transactions on Intelligent Vehicles (2024).

Weigthed BCE Loss
to manage unbalance
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Results

• State-of-the art on the JAAD and TITAN behavior prediction

Marchetti, Francesco, et al. "CrossFeat: Semantic Cross-modal Attention for Pedestrian Behavior Forecasting." IEEE Transactions on Intelligent Vehicles (2024).

Benefit of fusion via transformer cross-attention 

single frame

multi frame

Stop/Go prediction State-of-the-art



Funding & Collaborators
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• Work done in collaboration with

• Projects partially funded by

Dr. Federico Becattini Prof. Alberto Del BimboDr. Francesco Marchetti Dr. Taylor Mordan Prof. Alexandre Alahi

Marchetti, Francesco, et al. "CrossFeat: Semantic Cross-modal Attention for Pedestrian Behavior Forecasting." IEEE Transactions on Intelligent Vehicles (2024).



Trajectory Forecasting



30

• Natural application to automotive: planning, collision avoidance, etc..

Motivation
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Problem definition

Given a set of previously observed locations 𝒙𝒕−𝝉, …𝒙𝒕 in some state space (e.g., ℝ2), and some 
contextual information 𝒄 predict 𝑁 𝐾1, …𝐾𝑁 multiple hypotheses of future locations 
𝒙𝒕+𝟏
𝒊 , … , 𝒙𝒕+𝟏+𝜟

𝒊  

Trajectory Prediction

ො𝐱𝑭
𝐾1

ො𝐱𝑭
𝐾2

ො𝐱𝑭
𝐾3
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Problem definition

Given a set of previously observed locations 𝒙𝒕−𝝉, …𝒙𝒕 in some state space (e.g., ℝ2), for a set of 
agents 𝐴, and some contextual information 𝒄, jointly predict 𝑁 multiple hypotheses of future 
locations 𝒙𝒕+𝟏

𝒊 , … , 𝒙𝒕+𝟏+𝜟
𝒊  for each agent a 

Social Trajectory Prediction

ො𝐱𝑭
𝑎1,𝐾1

ො𝐱𝑭
𝒂𝟏,𝐾2

ො𝐱𝑭
𝑎1,𝐾3

ො𝐱𝑭
𝑎2,𝐾1

ො𝐱𝑭
𝑎2,𝐾2

ො𝐱𝑭
𝑎2,𝐾3
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Example

Where will the cyclist go?Multiple futures are possible



State of the art

• Usage of a C-VAE to sample trajectories from a future distribution (e.g. DESIRE)

• Trajectories directly encoded in map representation combined with fully convolutional 
architectures (e.g. INFER)

• Social pooling modules to model interactions between different agents (e.g. Social-LSTM, Social-
GAN)

• Goal based approaches to estimate trajectory endpoints (e.g. PECNet)

• Issues getting True multimodality + hard to manage the long tail

34

N. Lee et al. “Desire: Distant future prediction in dynamic scenes with interacting agents”. CVPR 2017
S. Srikanth et al. “Infer: Intermediate representations for future prediction”. IROS 2019
A. Alahi et al. “Social lstm: Human trajectory prediction in crowded spaces”. CVPR 2016
A. Gupta et al. “Social gan: Socially acceptable trajectories with generative adversarial networks”. CVPR 2018
K. Mangalam et al. “It is not the journey but the destination: Endpoint conditioned trajectory prediction”. ECCV 2020



Memory Augmented Neural Networks
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• Classical neural networks can be seen as learnable functions

• Depending on the domain/task we may design such architectures either with feed-forward 
structure or with a recurrent structure



Memory Augmented Neural Networks
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• Classical neural networks can be easily seen as learnable functions

• Here we rely on a stateful or non-episodic memory to augment the neural network

• We call our approach: Memory Augmented Neural TRAjectory predictor: MANTRA

++

Weston, Jason, Sumit Chopra, and Antoine Bordes. "Memory networks." ICLR 2014



MANTRA Overview
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• Memory is a feature store: must define how/when RW operations happen

F. Marchetti, F. Becattini, L. Seidenari, A. Del Bimbo, Mantra: Memory augmented networks for multiple trajectory prediction, CVPR 2020



MANTRA Inference
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At inference time, the reading 
controller exploits the observed past 
and context embeddings to access 
memory and find the TOP-K similar 
scenarios

F. Marchetti, F. Becattini, L. Seidenari, A. Del Bimbo, Mantra: Memory augmented networks for multiple trajectory prediction, CVPR 2020



MANTRA Decoding

Each future read from memory is 
combined with the current past 
and context and is decoded into a 
future prediction

F. Marchetti, F. Becattini, L. Seidenari, A. Del Bimbo, Mantra: Memory augmented networks for multiple trajectory prediction, CVPR 2020



MANTRA Multimodal Prediction

F. Marchetti, F. Becattini, L. Seidenari, A. Del Bimbo, Mantra: Memory augmented networks for multiple trajectory prediction, CVPR 2020



Representation Learning
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• To learn effective feature representations, we train encoding and decoding functions
similarly to an autoencoder

GRU

CNN

F. Marchetti, F. Becattini, L. Seidenari, A. Del Bimbo, Mantra: Memory augmented networks for multiple trajectory prediction, CVPR 2020



Learning the writing controller
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• The writing controller decides whether to insert a new example into memory during training

• Simple rule:

• if prediction error is high with current memory: example should be stored

• if the error is low, the example is not stored: the model is already good

Writing
controller

MANTRAINPUT PREDICTIONS

OUTPUT

E ERROR
(e)

WRITING 
PROBABILITY

P(w)

E
𝟙

INPUT

IF > 0.5

INPUT OUTPUT

Adaptive miss rate error

1 1
11

1 11

0
0

0

0

0

00

00 0

add

Low error

High error



Decoder Analysis: past
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observed
past

slower
past

faster
past

zeroed
past

randomized
pasts



Decoder Analysis: context
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Original different Embedding
zeroed

Multiple 
randomized
embeddings

CONTEXT:



Dataset and metrics

2 seconds

4 seconds

Past
Future

Prediction

Instant  T

Present
Final Displacement Error (FDE)

Average Displacement Error (ADE)

KITTI

Argoverse

• Two datasets: KITTI (10k tracks) and ARGOVERSE (300k tracks)

• Metrics: Average Displacement Error (ADE)
Final Displacement Error (FDE)

Won an Honorable 
Mention at the 

Argoverse Challenge 
hosted during the WAD 
workshop(CVPR2020)



Zero Shot transfer

Oxford RobotCar Cityscapes

• MANTRA zero-shot transfer capability: training on KITTI and evaluation on Cityscapes and Oxford RobotCar



Incremental Setting

• We test MANTRA incremental learning capabilities

• The model observes batches of test samples online, that are used as training data

• MANTRA is evaluated on the remaining portion of the test set. 



Code Available!

https://github.com/Marchetz/MANTRA-CVPR20

References
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F. Marchetti, F. Becattini, L. Seidenari, A. Del Bimbo, Mantra: Memory augmented 
networks for multiple trajectory prediction, CVPR 2020

F. Marchetti, F. Becattini, L. Seidenari, A. Del Bimbo, Multiple Trajectory Prediction of 
Moving Agents with Memory Augmented Networks, PAMI 2021

Federico Becattini, Francesco Marchetti, Lorenzo Seidenari, Alberto Del Bimbo, ABAD 
Frédéric, Kévin Buchicchio, Rémy Bendahan, Publication date, 2023/4/27, App. No. 
17928163



Trajectory Forecasting Example

49



Socially-Aware Forecasting



Social Memory

• MANTRA lacks a social model.

• SMEMO employs a shared memory to allow awareness in agent future trajectory prediction

51
Marchetti, F., Becattini, F., Seidenari, L. and Del Bimbo, A., 2024. SMEMO: social memory for trajectory forecasting. IEEE TPAMI.



Social Memory

• SMEMO is an end-to-end trainable episodic memory augmented neural network

• At each time step to predict any agent SMEMO can leverage information stored into the memory

• Each agent is responsible for updating (read/write) the memory during an episode.

52Marchetti, F., Becattini, F., Seidenari, L. and Del Bimbo, A., 2024. SMEMO: social memory for trajectory forecasting. IEEE TPAMI.



Social Memory Addressing

53Marchetti, F., Becattini, F., Seidenari, L. and Del Bimbo, A., 2024. SMEMO: social memory for trajectory forecasting. IEEE TPAMI.

• Read and Write steps share an 
addressing step

• Weights 𝜶 identify the relevance of 
memory cells

• The controller outputs at each timestep a 
feature 𝛾𝑡

𝑖  and feed it to R/W heads to 
get key 𝜂

• R/W head also generates a temperature 
β controlling the normalization of 

similarities 𝑠𝑗 =
𝜂𝑚𝑗

𝜂 𝑚𝑗
 in the softmax



Social Memory Writing

54Marchetti, F., Becattini, F., Seidenari, L. and Del Bimbo, A., 2024. SMEMO: social memory for trajectory forecasting. IEEE TPAMI.

• Write head will produce erase and 
add vectors 

• Combining 𝜶 with vectors 𝒆𝒕
𝒊  and 

𝒂𝒕
𝒊  using an outer product, we      

obtain erase and add matrices 
𝐄𝐭, 𝐀𝐭

• Memory is updated every step 

• We update after Social Pooling to 
be invariant to agent writing order



Social Memory Reading

55Marchetti, F., Becattini, F., Seidenari, L. and Del Bimbo, A., 2024. SMEMO: social memory for trajectory forecasting. IEEE TPAMI.

• For each agent i, separate read heads 
perform a memory addressing to 
obtain K social features 𝜎𝑡,𝑘

𝑖

• 𝜎𝑡,𝑘
𝑖  are fed in parallel into the 

decoder to generate a multimodal 
future prediction.

• The social features are then pooled 
together via Future Pooling and fed 
back to the model auto-regressively. 



Results

56Marchetti, F., Becattini, F., Seidenari, L. and Del Bimbo, A., 2024. SMEMO: social memory for trajectory forecasting. IEEE TPAMI.

• Synthetic Social Agents (SSA) a “toy” dataset with 
synthetic agents behaving according to a simple 
social rule

• Who gets to the center first has the right of way. 
Agents have random initial location and speed



Results

57Marchetti, F., Becattini, F., Seidenari, L. and Del Bimbo, A., 2024. SMEMO: social memory for trajectory forecasting. IEEE TPAMI.

• Results on Stanford Drone with different settings

      (K = #futures)



Explainability via Social Memory

• Memory is partitioned in segments

• Each segment is reserved for a single 
agent

• R/W weights are actionable for 
explainability

58Marchetti, F., Becattini, F., Seidenari, L. and Del Bimbo, A., 2024. SMEMO: social memory for trajectory forecasting. IEEE TPAMI.



• Agent 0 and Agent 1 ignore Agent 2

Explainability Results (ETH)

59Marchetti, F., Becattini, F., Seidenari, L. and Del Bimbo, A., 2024. SMEMO: social memory for trajectory forecasting. IEEE TPAMI.



Explainability Results (SSA)
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A0 reads A2 = most 
likely to collide

After A1 and A2 
become equally 
(ir)relevant

A1 reads A2 = most 
likely to collide

After crossing 
attention switches



Code Available!

https://github.com/Marchetz/SMEMO_trajectory_forecasting

61

Marchetti, F., Becattini, F., Seidenari, L. and Del Bimbo, A., 2024. SMEMO: social memory for trajectory forecasting. IEEE TPAMI.



Funding & Collaborators
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• Work done in collaboration with

• Projects partially funded by

Dr. Federico Becattini Prof. Alberto Del BimboDr. Francesco Marchetti



Foundation Models for Time Series



LLM as Zero-Shot Learners 

IDEA: Encode time series as text and prompt 
foundational LLM (GPT-4, LLaMA etc) to 
complete the sequence

Gruver, Nate, et al. "Large language models are zero-shot time series forecasters." Advances in Neural Information Processing Systems 36 (2024).

Foundation Models



LLM as Zero-Shot Learners 

CAVEAT: Tokenization is key!

Foundation Models

Gruver, Nate, et al. "Large language models are zero-shot time series forecasters." Advances in Neural Information Processing Systems 36 (2024).



LLM as Zero-Shot Learners 

CAVEAT: Tokenization is key!

Scale values down so that the α-percentile of rescaled time series values is 1

Forecasting LLM can be sampled (adjusting T). When forecasting multiple estimates (20) are drawn and the 
median is used as point estimate

Representation Fixed precision is used with spaces to separate digits and commas values to separate values

Bonus missing values can be inserted as NaN (text)

Foundation Models

Gruver, Nate, et al. "Large language models are zero-shot time series forecasters." Advances in Neural Information Processing Systems 36 (2024).



Edge computing is a promising solution for enabling pervasive Internet 
of Everything (IoE) environments, connecting all objects for intelligent, 
distributed systems across hybrid domains.

Predicting communication channel conditions quickly and accurately is crucial for ensuring quality service in 
AI-IoE networks. Current AI solutions require large datasets and frequent retraining, which are costly and 
inefficient.

Edge computing enables data processing near the source, reducing 
latency and bandwidth. AI integration in these networks ensures quick 
adaptation, reliable connectivity, and flexibility in managing diverse 
traffic in hybrid environments.

Case Study: IoE Networks



IDEA: foundation model-based framework that enables the same edge node to interact
with IoE networks deployed in different environments (i.e Aqua, Ground, Air).

Different dynamics and frequency between different environments.

Data: channel state



Chronos[1] (by Amazon) is a pretrained 
probabilistic time series model that 
tokenizes scaled and quantized values, 
generating future values autoregressively 
using a T5-based encoder-decoder 
architecture

TimesFM[2] (by Google) is a decoder-only 
foundation model for time-series forecasting 
that splits data into patches as tokens and 
predicts the next patch in an autoregressive 
manner.

TimesFM

The rise of foundation models in NLP has led to the development of specialized models for time-series data.

[1] Chronos: Learning the Language of Time Series, A. F. Ansari et al., arxiv

[2] A decoder-only foundation model for time-series forecasting, A. Das et al. n Proceedings of the 41st International Conference on Machine Learning, 2024 

Foundation Models for Time Series



Architectural details of the two models

[1] Chronos: Learning the Language of Time Series, A. F. Ansari et al., arxiv

[2] A decoder-only foundation model for time-series forecasting, A. Das et al. n Proceedings of the 41st International Conference on Machine Learning, 2024 

Foundation Models for Time Series



Results

Setting 1
Split data depending on 
receiver distance

ZS >> DL >> ALL

Setting 2
All distances present in 
train/val/test split

DL >> ZS >> ALL



ZS gets competitive results vs Supervised Deep Learning Methods

Cross-Dataset Evaluation



The fine-tuned models attain performance on par with the supervised model on the specific dataset.

Fine-tuning

Fine-tune on GROUND
Test on GROUND



Fine-tuned foundation models maintain performance better on new datasets than models trained 
from scratch.

Fine-tuning

Fine-tune on AQUA
Test on GROUND
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Conclusion

76

• Transformers are great a long-interaction and feature fusion. Still recurrent architectures provide 
lean yet powerful models

• Memory is an easy-to-plug block to allow more complex states, modelling continual learning, 
communication between agents etc…)

• Foundation Models are now available for I, V, L , I+L, V+L, T…

• What about World Foundation Models (JEPA, Genie etc)? Can they help in real-world quantities 
forecasting?
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Questions?

lorenzo.seidenari@unifi.it
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Extra



Qualitative Results
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KITTI

ARGOVERSE



Quantitative Results
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Ablation Studies
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Ablation Studies
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Decoder Analysis: past
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observed
past

slower
past

faster
past

zeroed
past

randomized
pasts



Decoder Analysis: context
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Original different Embedding
zeroed

Multiple 
randomized
embeddings

CONTEXT:



Reading Controller weights
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Memory Inspection
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Ground dataset
The channel impulse responses were detected inside an anechoic chamber with five different
distances between transmitter and receivers (20cm, 30cm, 40cm, 60cm, 80cm).

Aqua Domain Dataset
Measurements of long-range underwater acoustic channel impulse responses:
- Deep environment: 100 km distance, 1800 m water depth
- Shallow environment: 50 km distance, 60 m water depth

Air Domain Dataset
UAV communications in mmWave spectrum. Key metrics: RSSI, received power (pRx), and SNR.

Data: channel state
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