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§ Motivations
§ Multimodality in AI and machine learning applications
§ Adversarial attacks on different fusion architectures and models 
§ Case studies:

• Does fusion depth in a ML model impact robustness, particularly to single-modal 
attacks?

• Can the inclusion of data modalities that are more vulnerable to perturbation  
make a model less robust to adversarial attacks?

• Does the impact of quantization on model robustness differ by data modality?
§ Summary & future work

Outline
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Adversarial Attacks on ML Models

Z. Cheng, et al, “Physical Attack on Monocular Depth Estimation with Optimal Adversarial Patches,” ECCV 2022.
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Adversarial Attacks on ML Models

• Multimodal fusion models can be vulnerable to adversarial attacks. 
• Examples below show that when a patch is present in front, the pedestrians 

crossing the street cannot be detected by a fusion model anymore.

Z. Cheng et al, Fusion Is Not Enough: Single Modal Attacks on Fusion Models for 3D Object Detection, ICLR 2024
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Autonomous Driving
§ LiDAR
§ Video cameras
§ Radar
§ GNSS/GPS
§ Ultrasonic Range Sensors

Multimodal AI Applications

Ref: [1] https://www.robsonforensic.com/articles/autonomous-vehicles-sensors-expert
        [2] https://ecotron.ai/blog/introduction-to-autonomous-driving-sensors/

https://ecotron.ai/blog/introduction-to-autonomous-driving-sensors/
https://ecotron.ai/blog/introduction-to-autonomous-driving-sensors/
https://ecotron.ai/blog/introduction-to-autonomous-driving-sensors/
https://ecotron.ai/blog/introduction-to-autonomous-driving-sensors/
https://ecotron.ai/blog/introduction-to-autonomous-driving-sensors/
https://ecotron.ai/blog/introduction-to-autonomous-driving-sensors/
https://ecotron.ai/blog/introduction-to-autonomous-driving-sensors/
https://ecotron.ai/blog/introduction-to-autonomous-driving-sensors/
https://ecotron.ai/blog/introduction-to-autonomous-driving-sensors/
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Multispectral Image Segmentation

Multimodal AI Applications

Ground Truth Labels

RGB Point Cloud LiDAR Point Cloud
Semantic  Segmentation

Other image inputs: Near Infrared, Red Edge (λ ~ 0.717), 
Edge Map
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Video Summarization
§ A process of taking a video and creating a shorter summary based on significant/interesting parts:

• Video summary, image summary, text summary

Multimodal AI Applications

Pre-Fusion

Post-Fusion
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Major Work:

§ Multimedia through Machine Learning 

§ Fusion architectures (signal, feature, 
and decision fusion)

Background

Our Work:

§ Explore multi-modal fusion through the 
lens of Data Modalities 

§ Trust and robustness of multimedia 
fusion model

+ +
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Fusion Architectures

§ Three types of fusion architectures in Deep Learning
• Early Fusion concatenates original or extracted features at the input level
• Intermediate Fusion joints feature representations from intermediate layers of neural networks
• Late Fusion combines the predictions of multiple models

Early Fusion Mid Fusion Late Fusion

Huang, SC., Pareek, A., Seyyedi, S. et al. Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. npj Digit. Med. 3, 136 (2020). 
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CNN-based Fusion Example 

§ Visual Q&A is a representative task with multi modal features
• Image features are extracted by ResNet
• Question features are extracted by LSTM
• These features are concatenated in the middle of the architecture

Sharma, D., Purushotham, S. & Reddy, C.K. MedFuseNet: An attention-based multimodal deep learning model for visual question answering in the medical domain. Sci Rep 11, 19826 (2021).
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Transformer-based Fusion Example 

§ Integrating multiple features is essential to perform autonomous driving
• Both RGB image and LiDAR data are processed by CNN and Transformer layers
• Transformers in the middle share these features in 4 different levels
• Each ResNet stream is concatenated at the end of the process

A. Prakash, K. Chitta and A. Geiger: Multi-Modal Fusion Transformer for End-to-End Autonomous Driving, IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7073-7083 (2021).
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Adversarial Attack Methods

§ An adversarial example: the original image + perturbation
§ Methods to generate perturbation with known model parameters

• Fast Gradient Sign Method (FGSM)
• Projected Gradient Descent (PGD)

+         x =

Class: “Labrador retriever”

41.82% Confidence

Perturbation

𝑠𝑖𝑔𝑛(∇!𝐽 𝜃, 𝑥, 𝑦 )	𝑥	
Class: “Saluki”

13.08% Confidence
𝑥 + 𝜖	×𝑠𝑖𝑔𝑛(∇!𝐽 𝜃, 𝑥, 𝑦 )	
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Fast Gradient Sign Method (FGSM)

§ The Fast Gradient Sign Method (FGSM) works by using the gradients of the neural 
network to create an adversarial sample.

§ For an input image, the method uses the gradients of the loss (∇!) with respect to the 
input image to create a new image that maximizes the loss. This new image is called the 
adversarial image, 𝑎𝑑𝑣!.

§ The noise on the resulting image depends on the epsilon, 𝜖	
• The larger the value, the more noticeable the noise

𝑎𝑑𝑣! = 	𝑥 + 𝜖	×𝑠𝑖𝑔𝑛(∇!𝐽 𝜃, 𝑥, 𝑦 )	

𝑥 = 	𝑥 − 	𝜂	×𝑔𝑟𝑎𝑑𝑠
FGSM in action

Training in action

Graph of loss with respect to model parameters

In FGSM, nudge the pixels of 
the image slightly in the 
direction of the calculated 
gradients that maximize the loss 
calculated.
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§ Projected Gradient Descent (PGD) is an iterative method used in adversarial machine 
learning to create adversarial samples. 

§ PGD is a variant of FGSM applied iteratively with projection.
§ PGD operates by applying small but iteratively adjusted perturbations to the input data, 

aimed at maximizing the model's prediction error.
§ Specifically, the update rule for PGD is defined as

• x’ₜ₊₁ = P(xₜ + α ⋅ sign(∇ₓJ(Θ, xₜ, y))), where, xₜ is the input at iteration t, α is the step size, 
∇ₓJ(Θ, xₜ, y) is the gradient of the loss with respect to the input, and P is the projection 
operator ensuring perturbed input stays within predefined bounds.

§ PGD is generally considered more effective in creating adversarial examples

Projected Gradient Descent (PGD)
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Model-based Adversarial Attacks

§ Adversarial perturbations will be added to both inputs or either one of them
• These perturbations are created based on models in the case of white-box attack

Early Fusion Mid Fusion Late Fusion

Huang, SC., Pareek, A., Seyyedi, S. et al. Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. npj Digit. Med. 3, 136 (2020). 

Adv. 
Perturb  

Adv. 
Perturb  

Adv. 
Perturb  

Adv. 
Perturb  

Adv. 
Perturb  

Adv. 
Perturb  

+ + + + + +
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Research Questions
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§ Question 1: Does fusion depth in a ML model impact robustness, 
particularly to single-modal attacks?

Research Questions
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§ Question 1: Does fusion depth in a ML model impact robustness, 
particularly to single-modal attacks?

§ Question 2: Can the inclusion of data modalities that are more 
vulnerable to perturbation make a model less robust to adversarial 
attacks?

Research Questions
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§ Question 1: Does fusion depth in a ML model impact robustness, 
particularly to single-modal attacks?

§ Question 2: Can the inclusion of data modalities that are more 
vulnerable to perturbation make a model less robust to adversarial 
attacks?

§ Question 3: Does the impact of quantization on model robustness differ 
by data modality?

Research Questions
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§ Question 1: Does fusion depth in a ML model impact robustness, 
particularly to single-modal attacks?

§ Question 2: Can the inclusion of data modalities that are more 
vulnerable to perturbation make a model less robust to adversarial 
attacks?

§ Question 3: Does the impact of quantization on model robustness differ 
by data modality?

Research Questions
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Case Study 1: Overview  

Model: Resnet 8

Modalities: Audio, Image

Attacks:
FGSM and PGD

For each Fusion Type:
§ Apply Adv. to both modality
§ Apply Adv. to image
§ Apply Adv. to audio

Question 1: Does fusion depth in a ML model impact robustness, particularly to single-modal 
attacks?
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Case Study 1: Datasets and Attack Methods 

Adv. 
Perturb  

“One”

Concatenation

Resnet 8

§ Image data: MNIST dataset (70000 digit images)

§ Audio data: From Google Speech Commands (38908 utterances of digit)
• Pre-processing by extracting the Mel Frequency Cepstral Coefficients (MFCC)

§ Adv. Attacks: Fast Gradient Sign Method (FGSM), Projected Gradient Decent (PGD)
• Explore epsilon values from 0.01 to 0.1
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Case Study 1: Results & Analysis

§ Model trained on audio shows large accuracy degradation by FGSM and PGD
§ Model trained on image shows much less degradation (at lower epsilon values)

Baseline (Single-modal model)



|  24

Case Study 1: Results & Analysis
§ Late fusion (Blue):

• Sustain its accuracy for higher epsilon values

§ Early (Green) and Intermediate (Yellow) fusion:

• Accuracy is degraded more than late fusion

Attacks on Image Modality
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Case Study 1: Results & Analysis
§ Late fusion (Blue):

• Sustain its accuracy for higher epsilon values

§ Early (Green) and Intermediate (Yellow) fusion:

• Accuracy is degraded more than late fusion

Observations:
§ Late fusion appears more robust to adversarial attacks
§ Previous research has shown early fusion can enhance accuracy (K. Gadzicki et al.)
§ Consider trade-off between accuracy and robustness based on fusion depth

Attacks on Image Modality
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§ Late fusion (Blue) seems particularly weak 
against PGD attack on audio modality

§ Intermediate fusion (Yellow) appears more 
robust against the PGD attack than the early 
and late fusion models.

§ Fusion architecture may have some impact 
on model robustness to single-modal attack 
strategies.

Case Study 1: Results & Analysis
Attacks on Audio Modality
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§ Late fusion (Blue) seems particularly weak 
against PGD attack on audio modality

§ Intermediate fusion (Yellow) appears more 
robust against the PGD attack than the early 
and late fusion models.

§ Fusion architecture may have some impact 
on model robustness to single-modal attack 
strategies.

This result also connects to the case study 2
• A susceptible modality can degrade 

robustness against adversarial attack

Case Study 1: Results & Analysis
Attacks on Audio Modality
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Case Study 1: Results & Analysis

§ Unsurprising result: multi-modal 
attacks resulted in greater accuracy 
degradation because the multi-
modal attacks could perturb both 
input modalities

§ Fusion still improves the robustness 
of the model when comparing to 
single-modal models (slide 22) at 
lower epsilon values

Attacks on Both Modalities (Multi-modal Attacks) 
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Case Study 1: Transformer-based Evaluations
Evaluations of Transformer-based architectures: early, mid, and late fusion models 

ViT Wav2Vec2

Conf:

0 - 1%
1 - 1%
2 - 2%
…
9 - 90% ❌

Conf:

0 - 1%
1 - 1%
2 - 90% ✅
…
9 - 2.5%

0 - 2%
1 - 2%
2 - 92%
…
9 - 92.5% ❌

Softmax 
Model says it’s a ‘9’ ❌

Reshape FGSM/PGD

Softmax A late fusion example

• Attack on single modality
• Attack on both modalities

Datasets (Hugging Face):
• MNIST (70,000 digit images)
• AudioMNIST (750 wav files)
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Case Study 1: Vision Model
Image: Google ViT

Source : 2010.11929v2.pdf (arxiv.org), Google Research, ICLR 2021.

https://arxiv.org/pdf/2010.11929
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Case Study 1: Audio Model
Audio: Wav2Vec2

A. Baevski, et al, “wav2vec 2.0: A framework for self-supervised learning of speech 
representation, NeurIPS 2020.



|  32

Case Study 1: Results & Analysis

Early Mid Late

Attacks on Image Modality
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Case Study 1: Results & Analysis

Early Mid Late

Attacks on Image Modality

• Similar to the CNN architectures, late fusion is better than early or mid fusion for attack on image modality
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Case Study 1: Results & Analysis

Early Mid Late

Attacks on Audio Modality
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Case Study 1: Results & Analysis

Early Mid Late

Attacks on Audio Modality

• For audio attacks, late fusion is slightly better than early or mid fusion strategies.
• Similar to the CNN experiments, audio modality seems more susceptible to attacks comparing to image 

modality, at least for mid and late fusion architectures.
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Case Study 1: Results & Analysis

Early Mid Late

Attacks on Both Modalities



|  37

Case Study 1: Results & Analysis

Early Mid Late

Attacks on Both Modalities

• For multimodal attacks, late fusion is still better than early or mid fusion, particularly for FGSM attacks.
• Again, multi-modal attacks resulted in greater accuracy degradation because the multi-modal attacks 

could perturb both input modalities.
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Case Study 1: Results & Analysis

Transformer-based models

• In this experiment, late fusion appears more robust to adversarial attacks on 
single modality (image or audio). 

• When compared to image-only or audio-only attack, multi-modal attack seem to 
result in greater accuracy degradation. This is consistent with earlier findings that 
multi-modal attacks perturb both input modalities. 

• Again, need to consider trade-off between accuracy and robustness based on 
fusion depth.
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§ Question 1: Does fusion depth in a ML model impact robustness, 
particularly to single-modal attacks?

§ Question 2: Can the inclusion of data modalities that are more 
vulnerable to perturbation make a model less robust to adversarial 
attacks?

§ Question 3: Does the impact of quantization on model robustness differ 
by data modality?

Research Questions
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Case Study 2: Overview 

Modality: Audio (susceptible),
Image

Attacks: FGSM and PGD

Fusion Types: Early, 
Intermediate, Late Fusion

Evaluation:
Compare single and multi 
modal attack results

Question 2: Can the inclusion of data modalities that are more vulnerable to perturbation make 
a model less robust to adversarial attacks?
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Case Study 2: Results & Analysis

§ Attacking only image modality (Purples):
Accuracy is higher than baseline (Blue) as 
adding audio helps improve robustness

§ Attacking on both modalities
(Red, Green, Yellow):
Accuracy is lower than baseline as audio
is more suspectable to adversarial attacks
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Case Study 2: Results & Analysis

§ Attacking only image modality (Purples):
Accuracy is higher than baseline (Blue) as 
adding audio helps improve robustness

§ Attacking on both modalities
(Red, Green, Yellow):
Accuracy is lower than baseline as audio
is more suspectable to adversarial attacks

Observations:
§ A new susceptible modality can degrade resistance to multi-modal adversarial attacks
§ A counterexample to the conventional view that fusion inherently improves 

robustness
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§ Question 1: Does fusion depth in a ML model impact robustness, 
particularly to single-modal attacks?

§ Question 2: Can the inclusion of data modalities that are more 
vulnerable to perturbation make a model less robust to adversarial 
attacks?

§ Question 3: Does the impact of quantization on model robustness differ 
by data modality?

Research Questions
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Modalities: Audio, Image

Attacks:
FGSM and PGD
(Single-modal attack)

Fusion Type: Early Fusion

Quantization Technique: Quantization with min-max scaling (for each layer)

Evaluation: Compare Adv. Attacks on quantized and un-quantized early fusion models

Case Study 3: Overview  
Question 3: Does the impact of quantization on model robustness differ by data modality?
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§ Attacks on audio modality (Yellow):

§ Attacks on image modality (Green) :

• Quantization reduced adversarial
robustness in the image modality more

Case Study 3: Results & Analysis 
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§ Attacks on audio modality (Yellow):

§ Attacks on image modality (Green) :

• Quantization reduced adversarial
robustness in the image modality more

Observations:
§ Quantization impacts model robustness differently across data modalities
§ Modality-dependent quantization algorithms could benefit multimodal ML 

applications

Case Study 3: Results & Analysis 
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Key Takeaways
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Case study 1: Fusion strategy impacts adversarial robustness to single-modal attacks 
and this result appears to differ by data modality

The available modalities may be relevant when selecting a fusion strategy

Key Takeaways
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Case study 1: Fusion strategy impacts adversarial robustness to single-modal attacks 
and this result appears to differ by data modality

The available modalities may be relevant when selecting a fusion strategy

Case study 2: The robustness of multi-modal models against multi-modal adversarial 
attacks is limited by the more vulnerable to attack modality

A counterexample to the view that fusion inherently improves robustness
 

Key Takeaways
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Case study 1: Fusion strategy impacts adversarial robustness to single-modal attacks 
and this result appears to differ by data modality

The available modalities may be relevant when selecting a fusion strategy

Case study 2: The robustness of multi-modal models against multi-modal adversarial 
attacks is limited by the more vulnerable to attack modality

A counterexample to the view that fusion inherently improves robustness
 

Case study 3: Robustness to adversarial perturbations differs not only by data 
modality, but also by the level of quantization applied to the modality

Quantization in multimodal ML apps should consider quantization by modality

Key Takeaways
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Future Work
§

§

§

§

§

§
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Future Work
§ Robustness of ML/DL architectures against adversarial attacks on a broader 

range of modalities.
§

§

§

§

§
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Future Work
§ Robustness of ML/DL architectures against adversarial attacks on a broader 

range of modalities.
§ Implications of fusion architectures (depth) against different attack strategies 

(single-modal, multi-modal) for advanced ML/DL models and applications.
§ Adversarial robustness of candidate modalities considering the relative difficulty of 

performing adversarial perturbation to a candidate data modality.
§ Modality-dependent quantization algorithms and strategy.
§ Mitigation techniques, e.g., data augmentation, regularization, adversarial training.
§ Digital-space attacks vs. physical-world attacks.
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