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= Motivations
= Multimodality in Al and machine learning applications
= Adversarial attacks on different fusion architectures and models

= Case studies:

« Does fusion depth in a ML model impact robustness, particularly to single-modal
attacks?

« Can the inclusion of data modalities that are more vulnerable to perturbation
make a model less robust to adversarial attacks?

* Does the impact of quantization on model robustness differ by data modality?
» Summary & future work
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Adversarial Attacks on ML Models

Digital-Space Attacks:

Legitimate Sample Adversarial Perturbation Adversarial Sample

:a Stop Sign | T : % Yield Sign

o Mgt 1y

Perturbations

Wrong Traffic Sign Récognition
Physical-World Attacks:

—M—>

Attach a moth-shape patch

Original stop sign Patched stop sign
Model prediction: Model prediction:
“Stop sign” “Speed Limit 80 sign”

Wrong Traffic Sign Recognition

Wrong Distance (Depth) Estimation

Z. Cheng, et al, “Physical Attack on Monocular Depth Estimation with Optimal Adversarial Patches,” ECCV 2022.
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Adversarial Attacks on ML Models

Multimodal fusion models can be vulnerable to adversarial attacks.

Examples below show that when a patch is present in front, the pedestrians
crossing the street cannot be detected by a fusion model anymore.
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(a) Benign Scenario (b) Patch on the Ground (c) Adversarial Scenario

Z. Cheng et al, Fusion Is Not Enough: Single Modal Attacks on Fusion Models for 3D Object Detection, ICLR 2024
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Multimodal Al Applications

Autonomous Driving

= LiDAR
= Video cameras
= Radar
= GNSS/GPS
= Ultrasonic Range Sensors
T —

Detectnoq

I Long-Range Radar g Dep_a !
I LIDAR : Surround View

I Camera i

B Short/Med-Range Radar

I Ultrasound <

Stereo Cameras
Pairs of cameras are used

LIDAR units to capture a 2D picture,

Creates a 360-degree and can detect objects

3D map of the vehicle's o

surroundings using lasers 1K Globa! Navigational
Cameras ‘ l@/]' f Satellite System (GNSS)

Forward facing cameras array Provides GPS positioning
focus near and far to detect
vehicle activity, pedestrians,

and traffic signs/signals

2

RADAR

Uses bursts of sound
to determine distance
between objects

Computer
Additional LIDAR units Built-in computing & storage
Aid in detecting objects close to for live data processing

the vehicle or in blind spots

Ref: [1] https://www.robsonforensic.com/articles/autonomous-vehicles-sensors-expert
[2] https://ecotron.ai/blog/introduction-to-autonomous-driving-sensors/
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Multimodal Al Applications

Multispectral Image Segmentation

Ground Truth Labels

-Trees
-Grass
-Parking lot

Roadway :".-{_';
|:]Walkway "’4 |
-Buildings ﬂ ;

Blcar

RGB Point Cloud LiDAR Point Cloud _ .
Semantic Segmentation

Other image inputs: Near Infrared, Red Edge (A ~ 0.717),
Edge Map
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Multimodal Al Applications

Video Summarization

= A process of taking a video and creating a shorter summary based on significant/interesting parts:
* Video summary, image summary, text summary

Pre-Fusion
Video
”| CNN-Based Output > Classi
-Base utou “| Classifier
Input Video _ > p Video
Audio _ | Summarizer Summary s | output
> HpAE Vigeg Audio Summarizer "] Summary
Audio
Classifier
A== e Post-Fusion
et | | Ll (1| A
224 satel | y —
224 224 — 7_ 2 B *-ﬁ—:—;“'ﬁ;- ',’_i%i‘ﬁ. } — ;T Vid Dense
v , | | % | —&{] e > vid
s _55/ a5 ' _4'“‘ -— 4 "---—r/ ____l = 5 Video I Claae Summ:?izer
64 128 128 512
Input Video PR S(u):]tr?]:tw
: Dense
.| Aud & 3
1 Cla:silger ’Sur'r?rl:ltgﬁzer
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Background

Major Work:
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= Multimedia through Machine Learning

» Fusion architectures (signal, feature,

and decision fusion)
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= Explore multi-modal fusion through the

lens of Data Modalities

= Trust and robustness of multimedia
fusion model
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Fusion Architectures

’

ation |
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Model
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[XaYaX 101 YOO )

] 1 1
N AL . s T o ¢ ’ ¢ ¢
CAESE)ED) () G2) G ) E2 ) () 65)
w S J VY S G U Gy O G G ‘-\ J

Early Fusion Mid Fusion Late Fusion

Model 1 Model 2

* Three types of fusion architectures in Deep Learning
« Early Fusion concatenates original or extracted features at the input level

* Intermediate Fusion joints feature representations from intermediate layers of neural networks
« Late Fusion combines the predictions of multiple models

Huang, SC., Pareek, A., Seyyedi, S. et al. Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. npj Digit. Med. 3, 136 (2020).
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CNN-based Fusion Example

Image Attention
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Question Attention

* Visual Q&A is a representative task with multi modal features

* Image features are extracted by ResNet
* Question features are extracted by LSTM
« These features are concatenated in the middle of the architecture

Sharma, D., Purushotham, S. & Reddy, C.K. MedFuseNet: An attention-based multimodal deep learning model for visual question answering in the medical domain. Sci Rep 11, 19826 (2021).
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Transformer-based Fusion Example

TransFuser Pl - —==--

RGB P i T L.
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* Integrating multiple features is essential to perform autonomous driving
« Both RGB image and LiDAR data are processed by CNN and Transformer layers
» Transformers in the middle share these features in 4 different levels
» Each ResNet stream is concatenated at the end of the process

A. Prakash, K. Chitta and A. Geiger: Multi-Modal Fusion Transformer for End-to-End Autonomous Driving, /EEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7073-7083 (2021).
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Adversarial Attack Methods

Class: “Labrador retriever” Perturbation Class: “Saluki”
x sign(V,J(0,x,y)) x + € Xsign(VyJ(6,x,y))
41.82% Confidence 13.08% Confidence

= An adversarial example: the original image + perturbation

* Methods to generate perturbation with known model parameters
« Fast Gradient Sign Method (FGSM)
» Projected Gradient Descent (PGD)
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Fast Gradient Sign Method (FGSM)

In FGSM, nudge the pixels of
the image slightly in the
direction of the calculated
gradients that maximize the loss
calculated.

'

Graph of loss with respect to model parameters

adv, = x + € xsign(V,J(8,x,7))

FGSM in action
X = x— nXxXgrads
Training in action
>

*» The Fast Gradient Sign Method (FGSM) works by using the gradients of the neural
network to create an adversarial sample.

= For an input image, the method uses the gradients of the loss (V) with respect to the
Input image to create a new image that maximizes the loss. This new image is called the

adversarial image, adv,.

= The noise on the resulting image depends on the epsilon, €
« The larger the value, the more noticeable the noise
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Projected Gradient Descent (PGD)

» Projected Gradient Descent (PGD) is an iterative method used in adversarial machine
learning to create adversarial samples.

» PGD is a variant of FGSM applied iteratively with projection.

= PGD operates by applying small but iteratively adjusted perturbations to the input data,
aimed at maximizing the model's prediction error.

» Specifically, the update rule for PGD is defined as
* X1 =P(x, +a-sign(Vkd(0O, x,, y))), where, X, is the input at iteration ¢, a is the step size,
J(O, x,, y) is the gradient of the loss with respect to the input, and P is the projection
operator ensuring perturbed input stays within predefined bounds.

» PGD is generally considered more effective in creating adversarial examples
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Model-based Adversarial Attacks

i Neural Neural
m}i OO Network 1 | | Network 2 il SRt
4
\ | 4 ’ [ :
OO0 1©OO00) &SRO
+ + + + + +
Adv. Adv. @ Adv. @& Adv. @ Adv. @ Adv. @
Perturb Perturb Perturb Perturb Perturb Perturb
Early Fusion Mid Fusion Late Fusion

= Adversarial perturbations will be added to both inputs or either one of them
» These perturbations are created based on models in the case of white-box attack

Huang, SC., Pareek, A., Seyyedi, S. et al. Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. npj Digit. Med. 3, 136 (2020).
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Research Questions
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Research Questions

= Question 1: Does fusion depth in a ML model impact robustness,
particularly to single-modal attacks?
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Research Questions

= Question 1: Does fusion depth in a ML model impact robustness,
particularly to single-modal attacks?

= Question 2: Can the inclusion of data modalities that are more

vulnerable to perturbation make a model less robust to adversarial
attacks?
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= Question 1: Does fusion depth in a ML model impact robustness,
particularly to single-modal attacks?

* Question 2: Can the inclusion of data modalities that are more
vulnerable to perturbation make a model less robust to adversarial

attacks?

= Question 3: Does the impact of quantization on model robustness differ
by data modality?
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Research Questions

= Question 1: Does fusion depth in a ML model impact robustness,
particularly to single-modal attacks?

* Question 2: Can the inclusion of data modalities that are more
vulnerable to perturbation make a model less robust to adversarial
attacks?

= Question 3: Does the impact of quantization on model robustness differ
by data modality?
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Case Study 1: Overview

Question 1: Does fusion depth in a ML model impact robustness, particularly to single-modal
attacks?
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Case Study 1: Datasets and Attack Methods

Vﬂﬁ_w = ',OVS‘- T‘ 3 GIE
‘ 5 SN0 SEEnt
£ e e B TR e o

e SIS ‘ %) "‘:‘,‘3;‘4.' 4:: ae
Perturb ‘ ‘ PR G
‘ AT A s S R A
5 \,;’ i .1 . '- ALY ',!Vq.’ o
Resnet 8 e
QRO e oA SR 2% "]
‘)) ass “7” Perturbation Class “4"
*))) uone" x sign(vxj(ﬂ,x,yj) X+ e-5ign(V, f(9.x,¥))

Concatenation 98.2% confidence 99.3% confidence

* Image data: MNIST dataset (70000 digit images)

» Audio data: From Google Speech Commands (38908 utterances of digit)
* Pre-processing by extracting the Mel Frequency Cepstral Coefficients (MFCC)

» Adv. Attacks: Fast Gradient Sign Method (FGSM), Projected Gradient Decent (PGD)
« Explore epsilon values from 0.01 to 0.1
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Case Study 1: Results & Analysis

100 -

Accuracy (%)
Nt | i
= = =

Mol
=

Baseline (Single-modal model)
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0.02 0.04 0.06 0.08 0.10
Epsilon

Image:
—— Clean

—&~- FGSM
-&=- PGD

Audio:

Clean

FGSM
PGD

» Model trained on audio shows large accuracy degradation by FGSM and PGD
» Model trained on image shows much less degradation (at lower epsilon values)
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Case Study 1: Results & Analysis

= Late fusion (Blue):

« Sustain its accuracy for higher epsilon values

» Early (Green) and Intermediate ( ) fusion:

« Accuracy is degraded more than late fusion

100

80 -

Accuracy (%)
F=Y
L=

20 1

Attacks on Image Modality

(]
=
1

== clean (earhy) »

clean (intermediate) R
FGSM (intermediate) "\
PGD (intermediate)

== clean (late)

== FGSM (late)

== PGD (late)

™
—&- FGSM {early) ,
—- PGD {early) ™,
\‘ﬁ

0.02 0.04 0.06 0.08 0.10
Epsilon
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100 1
= Late fusion (Blue):
80 -
« Sustain its accuracy for higher epsilon values 2 . .
%‘ == clean (early) » ¢
= —&- FGSM (early) ‘\‘x
= Early (Green) and Intermediate ( ) fusion: ¥ 407 T G ntamesiate h I
FG5M {intermediate) 2
PGD (intermediate) Ty
) 2049 =8 clean (late)
» Accuracy is degraded more than late fusion o re e
° 0.02 0.04 _n_r':aﬁ 0.08 0.10
Observations: Epsilon

= Late fusion appears more robust to adversarial attacks
* Previous research has shown early fusion can enhance accuracy (K. Gadzicki et al.)
= Consider trade-off between accuracy and robustness based on fusion depth
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Case Study 1: Results & Analysis

= |ate fusion (Blue) seems particularly weak Attacks on Audio Modality
against PGD attack on audio modality 1007 g =
: . \:%’-‘a—- ol
= Intermediate fusion ( ) appears more 80 4 S et SN
robust against the PGD attack than the early \ ‘\:\-.,___‘____:‘:..1\
and late fusion models. 2 co N \ %
= LY g .
. . . & ™~ T,
= Fusion architecture may have some impact 5 —o— clean (early) ‘ ~
) U 401 —e- FGSM (early) % &
on model robustness to single-modal attack < ~8- PGD (early) y \ /,-'
. clean (intermediate) 1 '
strategies. rtermediate
9 0] 3 rmmemans N ¥
— :lcfgr?a ((I;:;lti)) --_*_""""---..___
-®- PGD (late) "‘--.,.I
04 . . . . .
0.02 0.04 0.06 0.08 0.10

Epsilen
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Case Study 1: Results & Analysis

= |ate fusion (Blue) seems particularly weak Attacks on Audio Modality
against PGD attack on audio modality 1007 ommrgr—a— =7
. . \%’-‘a R
= Intermediate fusion ( ) appears more 80 4 S et SN
robust against the PGD attack than the early \ ‘\:\-.,___‘____:‘:..1\
and late fusion models. 2 N \ %
= LY " .
: . . & ™~ e
= Fusion architecture may have some impact 5 —a— clean (early) . ~
. U 401 —e- FGSM (early) v &
on model robustness to single-modal attack < —e- PGD (early) y \ /,-'
. clean (intermediate) b .
strategies. intermediate
9 20| % rempt N ¥
-8 clean (late) .--__"—'—-..‘.
. - FGSM (late ——
This result also connects to the case study 2 o D () e
« A susceptible modality can degrade 0.02 0.04 0.06 0.08 0.10
Epsilen

robustness against adversarial attack
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Case Study 1: Results & Analysis

= Unsurprising result: multi-modal Attacks on Both Modalities (Multi-modal Attacks)

attacks resulted in greater accuracy ;!
degradation because the multi-

modal attacks could perturb both 80 |
input modalities

-8 clean (early)

—- FGSM (early)

-&- PGD (early)
clean (intermediate)
FGSM (intermediate)
PGD (intermediate)

-8 clean (late)

£
. - =~ 60/
= Fusion still improves the robustness 3 o o e
. i o ate
of the model when comparing to 3
: . g 40
single-modal models (slide 22) at
lower epsilon values o

0.02 0.04 0.06 0.08 0.10
Epsilon



R I T Rochester Institute of Technology | 29

Case Study 1: Transformer-based Evaluations

Evaluations of Transformer-based architectures: early, mid, and late fusion models

« Attack on single modality

WMM . Attack on both modalities

Datasets (Hugging Face):

FGSM/PGD

Wav2Vec2 L
« MNIST (70,000 digit images)
* AudioMNIST (750 wav files)
Conf:
0-1%
1-1% 1-1%
2-2% 2-90% 4
9-90% X 9-2.5%
A late fusion example o Softmax
2-92%

9-92.5% X
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Case Study 1: Vision Model
Image: Google ViT

Vision Transformer (ViT) Transformer Encoder
A
X
MLP
Ejad MLP
A
Norm

Transformer Encoder

1y

e - 6 0) 8) D) 8 D) 8
[cli’;tsr:]l?ggggmg Llnear Projection of Flattened Patches A * )
. I | | | | w ﬁ EI Norm
| ‘ Embedded ]
Patches

Source : 2010.11929v2.pdf (arxiv.org), Google Research, ICLR 2021.



https://arxiv.org/pdf/2010.11929
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Case Study 1: Audio Model
Audio: Wav2Vec2

Contrastive loss

L
reprgs?:r:fa)l(ttions C , ﬁ | $ T T

Transformer

Masked

Quantized
representations

Latent speech
representations

A. Baevski, et al, “wav2vec 2.0: A framework for self-supervised learning of speech
representation, NeurlPS 2020.
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Case Study 1: Results & Analysis

Attacks on Image Modality

Accuracy (%)

(Image) Original vs PGD and FGSM (Multimodal, Early-Fusion)
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—8— PGD Accuracy

0.00 0.02 0.04 0.06 0.08 0.10
Epsilon

Early

Original vs PGD and FGSM (Multimodal, Mid-Fusion)

Original vs PGD vs FGSM (Multimodal, Late-Fusion, Strong ViT, Strong AuT)

100 * * - * - > *- ] 100 * L 4 - - - - *
80 80
© * * * ®
R 601 3 601
F T
g g
It 3
& 404 o @ @ @ ° o ° & 40
20 4 20
—&— Original Accuracy —o— Original Accuracy
04 —®— FGSM Accuracy 04 —®— FGSM Accuracy
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0.00 0.(|)2 0.64 0‘66 0.(I)8 o.'10 0.00 0.02 0.04 0.06 0.08 0.10
Epsilon Epsilon

Mid L ate
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Case Study 1: Results & Analysis

Attacks on Image Modality

(Image) Original vs PGD and FGSM (Multimodal, Early-Fusion) Original vs PGD and FGSM (Multimodal, Mid-Fusion)

Original vs PGD vs FGSM (Multimodal, Late-Fusion, Strong ViT, Strong AuT)

100 . 2 . 2 L A A A A A < 100 . 2 . . 2 L 2 . L d \ g L d \ 4 100 o A o o o g g . 4
80 80 1 80 \o——o—o
$ 601 3 60 ° - * * 3 60
z z z
g c
3 3
o o
& 40 A & 40 & 40
20 20 4 204
—8— Original Accurac y —&— Original Accuracy —o— Original Accuracy
04 —®— FGSM Accurac y 04 —®— FGSM Accurac; y 0 —® FGSM Accurac y
—e— PGD Accurac y —e— PGD Accurac y —e— PGD Accuracy
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.(|)2 0.64 0.66 0.I08 O.Ilo 0.00 0.02 0.04 0.06 0.08 0.10
Epsil Epsil

Early

Mid

L ate

« Similar to the CNN architectures, late fusion is better than early or mid fusion for attack on image modality
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Case Study 1: Results & Analysis

Attacks on Audio Modality

(Audio) Original vs PGD and FGSM (Multimodal, Early-Fusion) (Audio) Original vs PGD and FGSM (Multimodal, Mid-Fusion) (Audio) Original vs PGD and FGSM (Multimodal, Late-Fusion, Strong ViT, Strong AuT)
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—e— PGD Accuracy —e— PGD Accuracy —e— PGD Accuracy
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10
Epsilon Epsilon

Epsilon

Early Mid Late



R I T Rochester Institute of Technology | 35

Case Study 1: Results & Analysis

Attacks on Audio Modality

(Audio) Original vs PGD and FGSM (Multimodal, Mid-Fusion) (Audio) Original vs PGD and FGSM (Multimodal, Late-Fusion, Strong ViT, Strong AuT)

(Audio) Original vs PGD and FGSM (Multimodal, Early-Fusion)

ccuracy (%)
curacy (%)

Original Accuracy

cccccccccccccccc

EEEEEEE

Early Mid Late

» For audio attacks, late fusion is slightly better than early or mid fusion strategies.
« Similar to the CNN experiments, audio modality seems more susceptible to attacks comparing to image

modality, at least for mid and late fusion architectures.
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Case Study 1: Results & Analysis

Attacks on Both Modalities

100

(Both) Original vs PGD and FGSM (Multimodal, Early-Fusion)
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(BOTH) Original vs PGD and FGSM (Multimodal, Mid-Fusion)
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(BOTH) Original vs PGD and FGSM (Multimodal, Late-Fusion, Strong ViT, Strong AuT)
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Case Study 1: Results & Analysis

Attacks on Both Modalities

(Both) Original vs PGD and FGSM (Multimodal, Early-Fusion)

(BOTH) Original vs PGD and FGSM (Multimodal, Mid-Fusion) (BOTH) Original vs PGD and FGSM (Multimodal, Late-Fusion, Strong ViT, Strong AuT)
100 100 100
> > >
9 3
e c
-1 -1
3 3
40 4 & 404 & 40
20 A 20 20
- ginal Accuracy —— ginal Accuracy —e— Original y
o{ - F Accuracy 04 —®— FGSM Accuracy 04 —®— FGSM Accurac y
- ccuracy —o— P ccuracy - y
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.0 0.06 0.08 0.10
Epsilon Epsilon Epsilon

Early Mid Late

For multimodal attacks, late fusion is still better than early or mid fusion, particularly for FGSM attacks.

Again, multi-modal attacks resulted in greater accuracy degradation because the multi-modal attacks
could perturb both input modalities.
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Case Study 1: Results & Analysis

Transformer-based models

 In this experiment, late fusion appears more robust to adversarial attacks on

single modality (image or audio).

 When compared to image-only or audio-only attack, multi-modal attack seem to
result in greater accuracy degradation. This is consistent with earlier findings that
multi-modal attacks perturb both input modalities.

« Again, need to consider trade-off between accuracy and robustness based on

fusion depth.
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Research Questions

= Question 1: Does fusion depth in a ML model impact robustness,
particularly to single-modal attacks?

*= Question 2: Can the inclusion of data modalities that are more
vulnerable to perturbation make a model less robust to adversarial
attacks?

= Question 3: Does the impact of quantization on model robustness differ
by data modality?
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Case Study 2: Overview

Question 2: Can the inclusion of data modalities that are more vulnerable to perturbation make
a model less robust to adversarial attacks?

. . : _ Adv. @ | O 0 oY |g |g & _»,(_’

Modality: Audio (susceptible), Baseline IF Perturb [~ 3 HuEnal Ind -t

|mage o | o o | o R i

Res blc;ck, 16
Attacks: FGSM and PGD “\ -
Adv. @ g & B |7

Single-modal Perturb g R % % %_E ‘:’

Fusion Types: Early, Adv. Attack 2218 8 ¥ 3

yP . ) “ore’ 5 & 8 |2 i

Intermediate, Late Fusion -
Evaluation: o » = |m ]
Compare single and multi Mult-moal v @) o g g g & 0
V. ac ertur 5 S S Q '§ z
modal attack results AR A
*))) “One” o)} o N S |

Concatenation
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100 1

= Attacking only image modality (Purples):
Accuracy is higher than baseline (Blue) as
adding audio helps improve robustness

80 1

2
= 60
= Attacking on both modalities :
(Red, Green, ): § 4o o basetive mose (mage
Accuracy is lower than baseline as audio —e— intermediate (both)

== late (both)

IS more suspectable to adversarial attacks 20 —e— early (image)

=& intermediate (image)
= late (image)

EI_IL'IE EI_IIZM 0.06 0.08 0.10
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Case Study 2: Results & Analysis

100 1

= Attacking only image modality (Purples):
Accuracy is higher than baseline (Blue) as
adding audio helps improve robustness

80 1

=
= 60-
= Attacking on both modalities :
(Red, Green, ): § 4o o basetive mose (mage
Accuracy is lower than baseline as audio —e— intermediate (both)

== |ate (both)

IS more suspectable to adversarial attacks 20 —e— early (image)

=& intermediate (image)
late (Image)

0.02 0.04 0.06 0.08 0.10

Observations: Epsilon

* A new susceptible modality can degrade resistance to multi-modal adversarial attacks

= A counterexample to the conventional view that fusion inherently improves
robustness
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Research Questions

= Question 1: Does fusion depth in a ML model impact robustness,
particularly to single-modal attacks?

* Question 2: Can the inclusion of data modalities that are more
vulnerable to perturbation make a model less robust to adversarial
attacks?

= Question 3: Does the impact of quantization on model robustness differ
by data modality?
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Case Study 3: Overview

Question 3: Does the impact of quantization on model robustness differ by data modality?

“\ v O] meey ¢ F 2 Z ]
ngn . . ertur w » ) » > |
Modalities: Audio, Image Early Fusion ; NG ARG JENG JI W
< & o ) =3 ®
) “one 5 & |8 |2 -
Attacks:
FGSMandPGD e
: | |
(Single-modal attack) “\ e 2 8 5 § 8 o |
Early Fusion 1o =7 = = E (,2 :
with Quantization ! | g "arartiaT e e
= & 2 & =1 o)
Fusion Type: Early Fusion ) “ore’ e I B

- = = = 6-9-bit Quantized =~ ~'
Quantization Technique: Quantization with min-max scaling (for each layer)

Evaluation: Compare Adv. Attacks on quantized and un-quantized early fusion models
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Case Study 3: Results & Analysis

= Attacks on audio modality ( ):

Model Accuracy

= Attacks on image modality (Green) :

* Quantization reduced adversarial
robustness in the image modality more

Ratio of Quantized to Un-Quantized
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Case Study 3: Results & Analysis o
0.8 RV\Q\{M
2 "
S 0.6 o
= Attacks on audio modality ( ): Gy 1 =
. . 3¢ oo
= Attacks on image modality (Green) : 3 0s ] P PGo
* Quantization reduced adversarial g
robustness in the image modality more
o0 0.02 0.04 0.06 0.08 0.10
Epsilon
Image: —&— 6bit quant —&= 7bit quant -~ B8bit quant @+ 9bit quant
Audio: 6bit quant 7bit quant 8bit quant 9bit quant

Observations:
* Quantization impacts model robustness differently across data modalities

* Modality-dependent quantization algorithms could benefit multimodal ML
applications
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Key Takeaways



R I T Rochester Institute of Technology | 48

Key Takeaways

Case study 1: Fusion strategy impacts adversarial robustness to single-modal attacks
and this result appears to differ by data modality

j‘> The available modalities may be relevant when selecting a fusion strategy
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Case study 1: Fusion strategy impacts adversarial robustness to single-modal attacks
and this result appears to differ by data modality

j‘> The available modalities may be relevant when selecting a fusion strategy

Case study 2: The robustness of multi-modal models against multi-modal adversarial
attacks is limited by the more vulnerable to attack modality

j‘> A counterexample to the view that fusion inherently improves robustness
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Case study 1: Fusion strategy impacts adversarial robustness to single-modal attacks
and this result appears to differ by data modality

j‘> The available modalities may be relevant when selecting a fusion strategy

Case study 2: The robustness of multi-modal models against multi-modal adversarial
attacks is limited by the more vulnerable to attack modality

j‘> A counterexample to the view that fusion inherently improves robustness

Case study 3: Robustness to adversarial perturbations differs not only by data
modality, but also by the level of quantization applied to the modality

j‘> Quantization in multimodal ML apps should consider quantization by modality
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Future Work

= Robustness of ML/DL architectures against adversarial attacks on a broader
range of modalities.
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Future Work

= Robustness of ML/DL architectures against adversarial attacks on a broader
range of modalities.

= Implications of fusion architectures (depth) against different attack strategies
(single-modal, multi-modal) for advanced ML/DL models and applications.



R I T Rochester Institute of Technology | 54

Robustness of ML/DL architectures against adversarial attacks on a broader
range of modalities.

Implications of fusion architectures (depth) against different attack strategies
(single-modal, multi-modal) for advanced ML/DL models and applications.

Adversarial robustness of candidate modalities considering the relative difficulty of
performing adversarial perturbation to a candidate data modality.
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Robustness of ML/DL architectures against adversarial attacks on a broader
range of modalities.

Implications of fusion architectures (depth) against different attack strategies
(single-modal, multi-modal) for advanced ML/DL models and applications.

Adversarial robustness of candidate modalities considering the relative difficulty of
performing adversarial perturbation to a candidate data modality.

Modality-dependent quantization algorithms and strategy.
Mitigation techniques, e.g., data augmentation, regularization, adversarial training.
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Robustness of ML/DL architectures against adversarial attacks on a broader
range of modalities.

Implications of fusion architectures (depth) against different attack strategies
(single-modal, multi-modal) for advanced ML/DL models and applications.

Adversarial robustness of candidate modalities considering the relative difficulty of
performing adversarial perturbation to a candidate data modality.

Modality-dependent quantization algorithms and strategy.
Mitigation techniques, e.g., data augmentation, regularization, adversarial training.

Digital-space attacks vs. physical-world attacks.
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