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Human-centered AI overview
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• Autonomous vehicles (e.g., self-driving cars, UAVs) are 
increasingly being employed in real-world applications.
• Autonomous transportation.
• Infrastructure inspection.
• Disaster management.

• Human-Vehicle interaction: Autonomous vehicles should 
understand humans and interact with them effectively.
• Special case of Human-Robot Interaction (HRI). 



Human-centered AI overview
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• Autonomous vehicles need to be equipped with visual and 
auditory perception systems and AI algorithms.

• These systems and AI algorithms have to demonstrate:
• High perception accuracy.
• Robustness to input data variations.
• Produce quick state estimations to ensure safety and timely 

actions.



Human-centered AI overview
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• Deep Neural Networks (DNNs) are actively being used to 
build such advanced systems.
• Convolutional Neural Networks (CNNs).
• Transformer networks.

• Main tasks:
• Human detection.
• Human segmentation.
• Human pose/posture estimation.
• Human action/activity recognition.
• Human gesture recognition.
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Human Detection
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Examples of human detection results [NGU2016].



Human Detection

• Object detection mathematical formulation:
• We are given:

• RGB image I∈ℝ3×H×W, where H is the height and W the width.
• Ground truth YI∈ℝK×5, where K is the number of bounding boxes.
• YI,k = [ck, xk, yk, wk, hk], ∀ k∈{1, 2, … , K}, where:

• ck is the bounding box class.
• xk and yk are the coordinates of the bounding box center.
• wk and hk are the width the height of the bounding box respectively.

• We predict:
• ŶI ≈ YI, for all images I.
• We use a neural network f(I; θ), where f: I→ŶI.
• The neural network learns parameters θ during training.
• SOTA object detection models have tens of millions of parameters.
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Human Detection
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YOLO model architecture [RED2016].

• You Only Look Once (YOLO) algorithm.

YOLO algorithm [RED2016].
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Semantic segmentation example [LEA2022].

Human segmentation
• Semantic segmentation
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Human segmentation
• Instance segmentation

Instance segmentation example [LEA2022].
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Human segmentation
• Panoptic segmentation

Panoptic segmentation example [LEA2022].



Human segmentation

Scene semantic segmentation [COR2016].Person instance segmentation.
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Human segmentation

Crowd detection via image segmentation.
• Avoid detected crowds to ensure safety.
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Human segmentation

• Semantic segmentation: Classifies each pixel into a category (e.g., 
road, car, person).

• Instance segmentation: It also separates different objects of the 
same class, but considers all non-objects as background.

• Panoptic segmentation: Combines semantic segmentation and 
instance segmentation.



• Convolutionalization: Transformation of the fully connected 
layers of image classification networks (e.g., AlexNet) into 
convolution layers.

• End-to-end dense learning is possible.

Human segmentation

Convolutionalization [LON2015]. 17



• Fully convolutional networks (FCNs) for image semantic 
segmentation.

• This FCN architecture modifies a pre-trained AlexNet.

Human segmentation

FCN for 21-class semantic segmentation [LON2015].
18



• Input resolution is radically reduced → hard to produce 
fine-grained segmentations. 

• Improvements:
• Skip connections.
• U-shaped network architecture (e.g., U-Net [RON2015]).

• Multiple skip connections to maintain information from 
high-resolution feature maps.

• High-resolution networks (e.g., HR-Net [WAN2020]).
• Maintain high-resolution feature maps throughout the forward pass 

process.

Human segmentation
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U-Net network architecture [RON2015].

Human segmentation
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High-resolution image segmentation networks [WAN2020].

Human segmentation
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• Similar DNN approaches can also be used for monocular 
depth estimation.
• Goal is to regress depth maps that correspond to input images.

Human segmentation

[ZHE2019]

[GEI2013]
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Human pose estimation
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2D body pose.



Human pose estimation
• Human pose estimation (HPE) algorithms describe the 

configuration of human body parts.
• Input:

• RGB images.
• Depth maps.
• Multi-view cameras.

• Output:
• Set of 2D keypoint coordinates: {(x1, y1), (x2, y2), … , (xn, yn)}.
• Set of 3D keypoint coordinates: {(x1, y1, z1), (x2, y2, z2), … , (xn, yn, zn)}.
• Set of confidence scores for each keypoint: {c1, c2, … , cn}.

25



Human pose estimation

• Heatmap-based methods for HPE.

26

[DAN2019]
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Multi-person 2D HPE
Top-down pipeline
• Each person is detected on the input image (2D bounding boxes) 

using off-the-shelf person detectors [NGU2016].
• Single-person HPE is performed to each person bounding box.
• Inference speed increases linearly with the number of persons.

Detector 2D HPE

[DAN2019]

Human pose estimation
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bend sit wave fall
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Human action recognition
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• Human Action Recognition (HAR) aims at automatically recognizing 
the actions of persons given a sequence of input data. 

Input
• RGB video frames

• Depth maps
• Skeletons (HPE)

Feature 
Extraction and 
Classification 
Algorithms

Output
Activity Label(s)

(e.g., running, dancing)

Human action recognition

#
#
#
#
#
#


• 3D CNNs employ 3D convolution 
between kernels and data to produce 
feature tensors.

• Can be applied on spatio-temporal 
(video) or volumetric data analysis (e.g., 
medical imaging).

• Can learn spatio-temporal neural 
features from raw frame sequences, 
without complex hand-crafted features 
or multi-stream DNN architectures.

image from 
https://towardsdatascience.com/understanding-1d-and-3d-con
volution-neural-network-keras-9d8f76e29610
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Human action recognition

https://towardsdatascience.com/understanding-1d-and-3d-convolution-neural-network-keras-9d8f76e29610
https://towardsdatascience.com/understanding-1d-and-3d-convolution-neural-network-keras-9d8f76e29610


T-C3D: temporal convolutional 3D network for real-time 
action recognition [LIU2018].
Objective: 
• Real-time recognition of the action performed in video sequences using 3D 

convolutions.

Methodology: 
• Temporal info is extracted using the nature of 3D networks.
• A temporal encoding technique is used to model characteristics of the entire 

video. 
• The overall process is end-to-end trainable.
• Good accuracy.

32

Human action recognition
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Human gesture recognition
• Gesture is an expressive meaningful 

body motion involving physical movement 
of head, body, hands etc.

• Intention:
• Convey meaningful information
• Interact with environment.

• Gestures can be: 
• Static: certain body posture or configuration.
• Dynamic: prestrike, stroke and poststroke 

phases.
34



• Gestures can be culture-specific.
• Gestures can be categorized based on the body part as:

• Hand gestures: 
• hand poses, sign language etc.

• Head and face gestures: 
• Shaking head.
• Speaking by opening and closing the mouth. 
• Raising the eyebrows.
• Emotions: surprise, anger, happiness, sadness.

• Body gestures: full body motion.

35

Human gesture recognition



• Gesture recognition is similar to human action 
recognition.

• Data sources:
• Visual: RGB images, depth maps, thermal images.
• Wearable: Magnetic field trackers, instrumented gloves (active or 

passive).
• Human gestures from visual data are analyzed by DNN 

algorithms.

36

Human gesture recognition



• Gesture recognition DNN architectures:
• 2D CNN+RNN: 

• RNNs are used to encode temporal information. 
• 2D CNNs are used to encode spatial information.

• 3D CNN: encodes both spatial and temporal relationships between 
the input frames.

37

Human gesture recognition



2D CNN+RNN 3D CNN
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Applications
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The presented algorithms have numerous applications on 
real-world scenarios that involve self-driving cars, UAVs, etc.
• Pedestrian detection and intention recognition. 
• In-cabin human-vehicle interaction.
• Assessment and modeling of driver’s behavior.
• Road scene understanding.
• Gesture-based vehicle control.
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Applications
• Pedestrian intention (cross/no-cross) recognition.

Pedestrian intention recognition [PAP2022].
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Applications
• Scene understanding.

Road scene segmentation and depth estimation.

[COR2016]

[GEI2013]



Human–vehicle interaction via gestures.
• Algorithms usually run onboard.

• Estimation accuracy and execution speed of algorithms are crucial.
• Specifically designed DNNs.
• Software that translates DNN estimations to control commands.

• Real-time gesture recognition.

43

Applications



Performing hand gesture detection in the range of the sensor of time-of-flight-ToF (area of detection in red) [ZEN2018].

44

Applications
• Autonomous vehicle control.



Lane change with gesture control [ZEN2018].
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Applications
• Autonomous vehicle control.



Gesture-controlled Drones
• Video stream is recorded through the camera and segmented into 

sequences of images.
• Each image is then recognized by a classification process.
• Typical commands:

• Take off.
• Land.
• Move right or left.
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Applications



Human-Drone Interaction model [HUA2019].

47

Applications



48

Applications
• Autonomous vehicle control.



[PAP2021].

• Crowd detection for autonomous UAV navigation.

Applications

49
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Human pose estimation
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•  

2D body pose. Camera pose.



Human pose estimation
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•  

2D HPE 3D HPE



Human pose estimation
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Human body posture is a specific body state, i.e., a labeled 
configuration of the body joints: standing, sitting, lying, etc. 
 

Standing Sitting [ION2013].



Human pose estimation

Camera pose estimation in facial images.
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Human pose estimation
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• Deep Neural Networks (DNNs) have achieved remarkable 
results in HPE.

• DNN-based approaches have outperformed classical 
computer vision methods.

• HPE challenges:
• human body part occlusion,
• training data availability,
• depth information availability, form and ambiguity.



2D human pose estimation
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• Prediction of the 2D spatial location of human body 
key-points/joints from images or videos.

• Joint description in the image plane.

• Single-person 2D HPE:
• direct regression methods,
• heatmap-based methods.

• Multi-person 2D HPE:
• top-down approach,
• bottom-up approach.



2D human pose estimation
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Single-person 2D HPE
Direct regression methods
• End-to-end framework.
• Regress (learn) a mapping from the input image to body joints or 

parameters of human body models.

NN model



2D human pose estimation
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•  



2D human pose estimation
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Single-person 2D HPE
Heatmap-based methods
• Train a body part detector to predict the position of body joints.
• Estimate joint heatmap images that represent the joint locations.

NN model Decoding

[DAN2019]



2D human pose estimation
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•  



2D human pose estimation
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Single-person 2D HPE
Heatmap-based methods
• Heatmaps provide richer supervision information, by preserving the 

spatial location information.
• Allow using the powerful Convolutional Neural Networks (CNNs).
• Facilitate DNN/CNN training.
• Used in state-of-the-art 2D HPE approaches.



2D human pose estimation
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Single-person 2D HPE
2D HPE in video sequences
• Video sequences are spatio-temporal (3D) signals.
• Temporal information → model that can handle sequential data: 

• Recurrent Neural Networks (RNN), or 
• Long Shot-Term Memory (LSTM) networks.

[LUO2018].



2D human pose estimation
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Multi-person 2D HPE
• Estimate the 2D skeletons of multiple persons that appear in 

the input image.
• All persons must be localized.
• Detected body keypoints must be grouped for different persons.

[CAO2017]



2D human pose estimation
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Multi-person 2D HPE
Top-down pipeline
• Each person is detected on the input image (2D bounding boxes) 

using off-the-shelf person detectors [REN2015].
• Single-person HPE is performed to each person bounding box.
• Inference speed increases linearly with the number of persons.

Detector 2D HPE

[DAN2019]



2D human pose estimation
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Multi-person 2D HPE
Bottom-up pipeline
• Localize all the body joints in the input image.
• Group the detected body joints to the corresponding persons.
• Increased inference speed compared to top-down approaches, 

since body joints for all persons are estimated simultaneously.
• Grouping of estimated body joints is required.

2D HPE Grouping

[DAN2019]
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• Human Activity/Action Recognition (HAR) aims to automatically 
recognize the actions of persons given a sequence of input data. 

Input
• RGB frames

• Depth frames
• Skeletons

• Hand crafted 
Features

Feature 
Extraction and 
Classification 
Algorithms

Output
Activity Label
(e.g. running, 

dancing)

Human action/activity 
recognition

#
#
#
#
#
#


 

Human action/activity 
recognition



run walk jump p.jump f.

bend sit wave fall

Human action/activity 
recognition



 

 

Human action/activity 
recognition



• Still images 🡪 spatial 
information.

• Multiple video frames 🡪 
temporal information. 

• 3D CNNs
• Multi-stream DNN 

networks. 
• They capture both 

temporal & spatial 
information.  

Neural HAR



• 3D CNNs employ 3D convolution 
between kernels and data to produce 
feature tensors.

• Can be applied where spatio-temporal 
(video) or volumetric data (e.g., 
Medical Imaging) analysis is important.

• Can learn spatio-temporal neural 
features from raw frame sequences, 
without complex hand-crafted features 
or multi-stream DNN architectures.

image from 
https://towardsdatascience.com/understanding-1d-and-3d-con
volution-neural-network-keras-9d8f76e29610

HAR with 3D CNNs

https://towardsdatascience.com/understanding-1d-and-3d-convolution-neural-network-keras-9d8f76e29610
https://towardsdatascience.com/understanding-1d-and-3d-convolution-neural-network-keras-9d8f76e29610


T-C3D: temporal convolutional 3D network for real-time 
action recognition [LIU2018].
Objective: 
• Real-time recognition of the action performed in video sequences using 3D 

convolutions.

Methodology: 
• Temporal info is extracted using the nature of 3D networks.
• A temporal encoding technique is used to model characteristics of the entire 

video. 
• The overall process is end-to-end trainable.
• Good accuracy.

HAR with 3D CNNs



T-C3D: temporal convolutional 3D network for real-time action 
recognition [LIU2018].
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HAR with 3D CNNs
•  
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Gesture recognition

• Gesture is an expressive meaningful 
body motion involving physical 
movement of head, body, hands etc.

• Intention:
• Convey meaningful information
• Interact with environment.

• Gestures can be: 
• Static: certain body posture or configuration.
• Dynamic: prestrike, stroke and poststroke 

phases.
80



Gesture recognition 

• Gestures can be culture-specific.
• Gestures can be categorized based on the body part as:

• Hand gestures: 
• hand poses, sign language etc.

• Head and face gestures: 
• Shaking head.
• Speaking by opening and closing the mouth. 
• Raising the eyebrows.
• Emotions: surprise, anger, happiness, sadness.

• Body gestures: full body motion.
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Gesture recognition

• Gesture recognition is similar to human action 
recognition.

• Data sources:
• Visual: RGB, depth, thermal images.
• Wearable: Magnetic field trackers, body suits, instrumented gloves 

(active or passive).
• Human gestures from visual data are analyzed by DNN 

algorithms.
• Applications

• Gesture-based vehicle control.
82



• Gesture recognition DNN architectures:
• 2D CNN+RNN: RNNs are used to encode temporal information and 

2D CNNs for spatial information from the input sequence.
• 3D CNN: encodes spatial and temporal relationships between the 

input frames.
• Skeleton-based models: analyze input sequences of 2D/3D 

skeletons with RNNs/LSTMs to recognize gestures.
• Spatio-temporal GCNs: model the spatio-temporal dependencies of the 

skeleton sequences.

83

DNN architectures for 
gesture recognition



2D CNN+RNN 3D CNN
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DNN architectures for 
gesture recognition
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Pose RNN
Pose TGCN
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DNN architectures for 
gesture recognition

Keypoints j Keypoints k

RNN RNN

Pooling

⁞

Image i
Image i

Keypoints i

Temporal
GCN

Pooling

time

Keypoints are the joints of human bodies.
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