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Human-centered Al overview @ML

 Autonomous vehicles (e.g., self-driving cars, UAVs) are
iIncreasingly being employed in real-world applications.
« Autonomous transportation.
* Infrastructure inspection.
» Disaster management.

e Human-Vehicle interaction: Autonomous vehicles should
understand humans and interact with them effectively.
« Special case of Human-Robot Interaction (HRI).

| | Artificial Intelligence & 3
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Human-centered Al overview @ML

* Autonomous vehicles need to be equipped with visual and
auditory perception systems and Al algorithms.

* These systems and Al algorithms have to demonstrate:
« High perception accuracy.
 Robustness to input data variations.

 Produce quick state estimations to ensure safety and timely
actions.

| | Artificial Intelligence & 4
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Human-centered Al overview @ML

 Deep Neural Networks (DNNs) are actively being used to
build such advanced systems.
« Convolutional Neural Networks (CNNs).
 Transformer networks.
» Main tasks:
 Human detection.
 Human segmentation.
« Human pose/posture estimation.
« Human action/activity recognition.
 Human gesture recognition.

| | Artificial Intelligence & 5
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Human Detection
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Human Detection yuL

* Object detection mathematical formulation:

 We are given:
« RGB image l1€R¥™W where H is the height and W the width.
» Ground truth Y,€R*°, where K is the number of bounding boxes.
. Yl,k= [C,. Xer Vi Wy, h.k]’ vV k€{1, 2, ..., K}, where:
c, is the bounding box class.

X, and y, are the coordinates of the bounding box center.
w, and h,_are the width the height of the bounding box respectively.

« We predict:
» Y, =Y, forallimages I. A
» We use a neural network f(l; ), where f: I-Y,.
« The neural network learns parameters 0 during training.
« SOTA object detection models have tens of millions of parameters.

| | Artificial Intelligence & 3
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Human Detection yuL

* You Only Look Once (YOLO) algorithm.
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YOLO model architecture [RED2016].

Class probability map

YOLO algorithm [RED2016].
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Human segmentation

« Semantic segmentation

Semantic
Segmentation

Input Image

Semantic segmentation example [LEA2022].
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Human segmentation

* Instance segmentation

Instance
Segmentation

Input Image
Instance segmentation example [LEA2022].
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Human segmentation

« Panoptic segmentation

Panoptic
Segmentation

Input Image

Panoptic segmentation example [LEA2022].
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Human segmentation

9®

Person instance segmentation. Scene semantic segmentation [COR2016].
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Human segmentation e

Crowd detection via image segmentation.
* Avoid detected crowds to ensure safety.

| | Artificial Intelligence & 15
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Human segmentation @ML

* Image segmentation partitions the image domainJinto the
subsets R;, i = 1, ..., N, having the following properties:

N
J = U :Ri'
i=1

 Semantic segmentation: Classifies each pixel into a category (e.g.,
road, car, person).

« Instance segmentation: It also separates different objects of the
same class, but considers all non-objects as background.

« Panoptic segmentation: Combines semantic segmentation and
Instance segmentation.

| | Artificial Intelligence & 16
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Human segmentation @ML

- Convolutionalization: Transformation of the fully connected

layers of image classification networks (e.g., AlexNet) into
convolution layers.

- End-to-end dense learning is possible.

onvoluti ona lization
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Human segmentation @ML

- Fully convolutional networks (FCNs) for image semantic
segmentation.

« This FCN architecture modifies a pre-trained AlexNet.

forward /inference

backward /learning

( }”K > Adificial Intelligence & FCN for 21-class semantic segmentation [LON2015].

Information Analysis Lab 18



Human segmentation @ML

- Input resolution is radically reduced — hard to produce
fine-grained segmentations.

- Improvements:
« Skip connections.
« U-shaped network architecture (e.g., U-Net [RON2015]).

* Multiple skip connections to maintain information from
high-resolution feature maps.

 High-resolution networks (e.g., HR-Net [WAN2020]).

* Maintain high-resolution feature maps throughout the forward pass
process.

| | Artificial Intelligence & 19
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Human segmentation (‘ZML

OO A AT OO DA
S ,\0 Z AN

channel cony. ﬁ ﬂ @ ‘ I @ @ @ ‘\e:‘}vl ﬂ @ @ ‘ e)‘(é ‘

2l -4 A

High-resolution image segmentation networks [WANZ2020].
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Human segmentation @ML

« Similar DNN approaches can also be used for monocular
depth estimation.

 Goal is to regress depth maps that correspond to input images.

[GEI2013]

[ZHE2019]

| | Artificial Intelligence & 29
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Human pose estimation @ML

P

2D body pose.
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Human pose estimation @ML

 Human pose estimation (HPE) algorithms describe the
configuration of human body parts.

* Input:
« RGB images.

* Depth maps.
 Multi-view cameras.

« Output:
» Set of 2D keypoint coordinates: {(x,, ¥,), (X,, ¥,), ---, (X_, ¥.)}-
» Set of 3D keypoint coordinates: {(x,, ¥,, Z,), (X5, ¥5, Z,), .-, (X, ¥, Z )}.

» Set of confidence scores for each keypoint: {c,, C,, ... , C_}.

| | Artificial Intelligence & 55
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Human pose estimation

 Heatmap-based methods for HPE.

[DAN2019]
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Human pose estimation @ML

Multi-person 2D HPE
Top-down pipeline
« Each person is detected on the input image (2D bounding boxes)
using off-the-shelf person detectors [NGU2016].
« Single-person HPE is performed to each person bounding box.
 Inference speed increases linearly with the number of persons.

| =) A ﬂ
~|Detector|ﬂﬂ| 2D HPE | = —

¥
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. [DAN2019]
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Human action recognition @ML

walk jump f. jump p.

Attificial Intelligen
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Human action recognition
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e Human Action Recognition (HAR) aims at automatically recognizing
the actions of persons given a sequence of input data.

~

o

Input

* Depth maps

\

e RGB video frames

e Skeletons (HPE)

i

[

%
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Human action recognition

e 3D CNNs employ 3D convolution \
between kernels and data to produce
feature tensors.

« Can be applied on spatio-temporal

(video) or volumetric data analysis (e.g.,
medical imaging). :

kernel

L —— 3D data

« Can learn spatio-temporal neural
features from raw frame sequences,
without. complex hand-crafted features
or multi-stream DNN architectures.

image from

https://towardsdatascience.com/understanding-1d-and-3d-con
volution-neural-network-keras-9d8f76e29610
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Human action recognition @ML

T-C3D: temporal convolutional 3D network for real-time
action recognition [LIU2018].

Objective:

» Real-time recognition of the action performed in video sequences using 3D
convolutions.

Methodology:

« Temporal info is extracted using the nature of 3D networks.

» A temporal encoding technique is used to model characteristics of the entire
video.

* The overall process is end-to-end trainable.
» Good accuracy.

| | Artificial Intelligence & 37
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Human gesture recognition @ML

e Gesture is an expressive meaningful
body motion involving physical movement
of head, body, hands etc.

* |ntention:

« Convey meaningful information
* Interact with environment.

o _Gestures can be:

. Static: certain body posture or configuration.
e Dynamic: prestrike, stroke and poststroke
phases.

| | Artificial Infelligence & »
Information Analysis Lab




Human gesture recognition @ML

» Gestures can be culture-specific.

» Gestures can be categorized based on the body part as:

 Hand gestures:
* hand poses, sign language etc.

 Head and face gestures:
« Shaking head.
« Speaking by opening and closing the mouth.
e Raising the eyebrows.
« Emotions: surprise, anger, happiness, sadness.

 Body gestures: full body motion.

| | Artificial Intelligence & 35
Information Analysis Lab
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Human gesture recognition @ML

e Gesture recognition is similar to human action
recognition.

« Data sources:

 Visual: RGB images, depth maps, thermal images.
« Wearable: Magnetic field trackers, instrumented gloves (active or
passive).

« Human gestures from visual data are analyzed by DNN
algorithms.

Artificial Intelligence & 36
Information Analysis Lab



Human gesture recognition @ML

» Gesture recognition DNN architectures:
e 2D CNN+RNN:
* RNNs are used to encode temporal information.
e 2D CNNs are used to encode spatial information.

3D CNN: encodes both spatial and temporal relationships between
the input frames.

| | Artificial Intelligence & 37
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Human gesture recognition @ML

2D CNN+RNN 3D CNN
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Applications

The presented algorithms have numerous applications on
real-world scenarios that involve self-driving cars, UAVSs, etc.

* Pedestrian detection and intention recognition.
* In-cabin human-venhicle interaction.

* Assessment and modeling of driver’'s behavior.

* Road scene understanding.

 Gesture-based vehicle control.

Artific Il'rlig
@[ @F=c .



Applications @ML

* Pedestrian intention (cross/no-cross) recognition.

Pedestrian intention recognition [PAP2022].

| | Artificial Intelligence & a1
Information Analysis Lab
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Applications

* Scene understanding.

[COR2016]

Road scene segmentation and depth estimation.

Artificial Intelligence &
Information Analysis Lab

[GEI2013]
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Applications @ML

Human-vehicle interaction via gestures.

 Algorithms usually run onboard.
« Estimation accuracy and execution speed of algorithms are crucial.
« Specifically designed DNNSs.
« Software that translates DNN estimations to control commands.

* Real-time gesture recognition.

| | Artificial Intelligence & 43
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Applications VL

 Autonomous vehicle control.

Performing hand gesture detection in the range of the sensor of time-of-flight-ToF (area of detection in red) [ZEN2018].

| | Artificial Intelligence & 44
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Applications

 Autonomous vehicle control.

Lane change with gesture control [ZN2018].

Artificial Intelligence &
Information Analysis Lab
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Applications @ML

Gesture-controlled Drones

* Video stream is recorded through the camera and segmented into
sequences of images.

« Each image is then recognized by a classification process.

* Typical commands:
« Take off.
« Land.
« Move right or left.

| | Artificial Intelligence & 46
Information Analysis Lab
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Applications

captured

by camera

Artificial Intelligence &
Information Analysis Lab

1 |Scene Understanding
Module

——— . e
-

sy w - ————

S."‘.. .I

.o
-

Joint Reason and
Conirol module

Human-Drone Interaction model [HUA2019].
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Applications

 Autonomous vehicle control.
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Applications @ML

» Crowd detection for autonomous UAV navigation.

|| Adificial Intelligen [PAP2021].
Information Ana Iy Lb 49
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Human pose estimation @ML

Muman body pose describes the configuration of human
body parts.

 Human body can be described by a graph of its parts.

« Graph nodes contain body joint descriptions:
« 2D or 3D rotation angles
« 2D or 3D joint coordinates.

« Confused with camera pose:
« Camera 3D rotation R and
& translation t parameters.

i' 54

Artificial Intelligence & .
O”D Information Analysis Lab 2D body pose. Camera pose.



Human pose estimation @ML

MHuman Pose Estimation (HPE) estimates the configuration
of human body parts from input data captured by sensors:

 usually images and videos.
* Provides geometric/motion information of the human body.
* Regression of human body parameters p

p=fD. =

Wide range of applications:

* human-robot interaction (HRI),
» motion analysis, AR/VR, healthcare.

| | Artificial Intelligence &
Information Analysis Lab




Human pose estimation @ML

Human body posture is a specific body state, i.e., a labeled
configuration of the body joints: standing, sitting, lying, etc.

 Human postures are static,
 Human actions are dynamic.
» Classification problem of posture
class c:
c = f().
* Applications:
* human-robot interaction (HRI),

 sign language communication,
O”D aneenaPysical and rehabilitation training. Standing Sitting [ION2013].

Information Analysis Lab 26
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Human pose estimation
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Camera pose estimation in facial images.
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Human pose estimation @ML

 Deep Neural Networks (DNNs) have achieved remarkable
results in HPE.

* DNN-based approaches have outperformed classical
computer vision methods.

 HPE challenges:
 human body part occlusion,
» training data availability,
 depth information availability, form and ambiguity.

Attificial Infelligen
Q”lemf n Andlysis : Lab o8



2D human pose estimation @ML

* Prediction of the 2D spatial location of human body
key-points/joints from images or videos.

+ Joint description in the image plane.

» Single-person 2D HPE:

 direct regression methods,
* heatmap-based methods.

* Multi-person 2D HPE:

» top-down approach,
* bottom-up approach.

| I Artificial Intelligence & .,
Information Analysis Lab




2D human pose estimation @ML

Single-person 2D HPE

Direct regression methods
« End-to-end framework.

« Regress (learn) a mapping from the input image to body joints or
parameters of human body models.

rlle 3 = I _',/I-‘l' =4 547
EA] o Bt e 4
| I Artificial Intelligence & i,
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2D human pose estimation @ML

Single-person 2D HPE

Direct regression methods

« If Iis an input RGB image of resolution M x N and f is the 2D HPE
DNN, direct regression methods aim to directly predict (estimate):

p=f(),
- p=Ijl,j, ..., ik]T: pre-defined set of body joints that constitute
the 2D human pose,
* K is the number of the body joints,
* k=[x v ]'EN% Kk =1,... K human skeleton joint
representation in pixel coordinates on the image plane.

| | Artificial Intelligence & 61
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2D human pose estimation @ML

Single-person 2D HPE
Heatmap-based methods
« Train a body part detector to predict the position of body joints.
- Estimate joint heatmap images that represent the joint locations.

) |NNmodeI| — ll.III — | Decoding | =) B

[DAN2019]

Attificial Intelligen
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2D human pose estimation @ML

Single-person 2D HPE

Heatmap-based methods

 Instead of directly predicting {j1,j>,...,jx}, f predicts 2D body joint
heatmaps {H{,H,, ..., Hy } of resolution M X N (one for each joint):
{Hl: H2' e HK} = f(l)
« Each heatmap H, € R"*¥ encodes the 2D location of the
corresponding body joint by using a 2D Gaussian function centered
at the 2D position of the body joint in the input image.

« 2D pixel coordinates of each body joint can be obtained by
choosing the j, =[x, vk ]! pairs with the highest heat value.

| | Artificial Intelligence & 63
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2D human pose estimation @ML

Single-person 2D HPE

Heatmap-based methods

Heatmaps provide richer supervision information, by preserving the
spatial location information.

Allow using the powerful Convolutional Neural Networks (CNNSs).
Facilitate DNN/CNN training.
Used in state-of-the-art 2D HPE approaches.

| | Artificial Intelligence & 64
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2D human pose estimation @ML

Single-person 2D HPE

2D HPE in video sequences
 Video sequences are spatio-temporal (3D) signals.

« Temporal information — model that can handle sequential data:
 Recurrent Neural Networks (RNN), or
e Long Shot-Term Memory (LSTM) networks.

'
i
1 : ((((((
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| [LUO2018].
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2D human pose estimation @ML

Multi-person 2D HPE

« Estimate the 2D skeletons of multiple persons that appear in
the input image.
 All persons must be localized.
« Detected body keypoints must be grouped for different persons.

| I Artificial Infelligence & [CAO2017] .
Information Analysis Lab



2D human pose estimation @ML

Multi-person 2D HPE
Top-down pipeline
« Each person is detected on the input image (2D bounding boxes)
using off-the-shelf person detectors [REN2015].
« Single-person HPE is performed to each person bounding box.
 Inference speed increases linearly with the number of persons.

ﬁt\s& | ‘l Detector |~

Funded by AN2019]
the European Union

| | Artificial Intelligence &
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2D human pose estimation @ML

Multi-person 2D HPE
Bottom-up pipeline
» Localize all the body joints in the input image.
« Group the detected body joints to the corresponding persons.

e Increased inference speed compared to top-down approaches,
since body joints for all persons are-estimated simultaneously.

« Grouping of estimated body joints is required.

Artificial Intelligence & [DAN2019]
Information Analysis Lab
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Human action/activity @ML
recognition

e Human Activity/Action Recognition (HAR) aims to automatically
recognize the actions of persons given a sequence of input data.

4 N

Input 4 ) o
* RGB frames Feature UtPUt
 Depth frames Extraction and Activity Label
e Skeletons _‘ CIassnf!catlon (e.g. rurmmg,
e Hand crafted Algorithms dancing)

oo w2
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Human action/activity (\ZML
recognition

Human Activity/Action Recognition (HAR):
* To identify the action of a person.

« Action is an elementary human activity.
Classification problem:

 Input. a single-view or multi-view video or a sequence of 3D
human body models (or point clouds).

* Output. An action label belonging to a set of N, action
classes (e.g., walk, run) for each frame or for the entire

laVYaWa NEE oW . W W\

|| Atificial Intelligen
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Human action/activity C\ZML
recognition

walk jump f. jump p.




Human action/activity @ML
recognition

» Single-view. methods utilizing one camera:
* special cases of multi-view ones, i.e., for N, = 1.
* Multi-view. methods utilizing multiple cameras forming a
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Neural HAR

————————————————————————————

i « Still images [ spatial
: information.

'« Multiple video frames [
| temporal information.
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e 3D CNNs

e Multi-stream DNN
networks.

 They capture both
temporal &  spatial
information.
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HAR with 3D CNNs

3D CNNs employ 3D convolution
between kernels and data to produce
feature tensors.

Can be applied where spatio-temporal
(video) or volumetric data (e.qg.,
Medical Imaging) analysis is important.

Can learn spatio-temporal neural
features from raw frame sequences,
without complex hand-crafted features
or multi-stream DNN architectures.

| | Artificial Intelligence &
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HAR with 3D CNNs (vmL

T-C3D: temporal convolutional 3D network for real-time
action recognition [LIU2018].

Objective:
» Real-time recognition of the action performed in video sequences using 3D
convolutions.

Methodology:

« Temporal info is extracted using the nature of 3D networks.

» A temporal encoding technique is used to model characteristics of the entire
video.

» The overall process is end-to-end trainable.

» Good accuracy.

| | Artificial Intelligence &
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HAR with 3D CNNs @""—

3D convolutions are notoriously

computationally expensive. . \é
* Fast 3D convolution algorithms: & g :
P
y = C(Ax®Bh). N
R
e GEneral Matrix Multiplication :

(GEMM) BLAS or cuBLAS routines ..~
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Gesture recognition

 Gesture is an expressive meaningful
body  motion iInvolving physical
movement of head, body, hands etc.

* Intention:
« Convey meaningful information
* |Interact with environment.
 Gestures can be:

e Static: certain body posture or configuration.
e Dynamic. prestrike, stroke and poststroke

TS hases.
” Artificial INtelligence &
Information Analysis Lab
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Gesture recognition @ML

» Gestures can be culture-specific.

» Gestures can be categorized based on the body part as:

 Hand gestures:
* hand poses, sign language etc.

 Head and face gestures:
« Shaking head.
« Speaking by opening and closing the mouth.
e Raising the eyebrows.
« Emotions: surprise, anger, happiness, sadness.

 Body gestures: full body motion.

| | Artificial Intelligence & 31
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Gesture recognition @ML

e Gesture recognition is similar to human action
recognition.

« Data sources:

 Visual: RGB, depth, thermal images.
« Wearable: Magnetic field trackers, body suits, instrumented gloves

(active or passive).
« Human gestures from visual data are analyzed by DNN
algorithms.

« Applications
e Gesture-based vehicle control.

| | Artificial Intelligence & 27
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DNN architectures for @ML
gesture recognition

» Gesture recognition DNN architectures:

e 2D CNN+RNN: RNNs are used to encode temporal information and
2D CNNs for spatial information from the input sequence.

e 3D CNN: encodes spatial and temporal relationships between the
iInput frames.

 Skeleton-based models. analyze input sequences of 2D/3D
skeletons with RNNs/LSTMs to recognize gestures.

« Spatio-temporal GCNs: model the spatio-temporal dependencies of the
skeleton sequences.

| | Artificial Intelligence & 33
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gesture recognition
2D CNN+RNN 3D CNN
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