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● Forest Fire Computer Vision
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● Deep Learning for Fire & Smoke 

Segmentation
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● Forest Fire Computer Vision

○ Classification

○ Object detection

○ Semantic Segmentation

● Classical Segmentation for Wildfires

● Deep Learning for Fire & Smoke Segmentation

● Real-World Implementation Challenges
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Computer vision

Classification

Object 
detection

Semantic 
segmentation 

Classify an image 

into specific classes

Classify and localize 

objects within an image

Classify each pixel in an 

image into a specific class

Computer Vision
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Burnt area / No Burnt area  Smoke / No Smoke 

Classification

Computer Vision

Fire / No Fire 

Smoke / No Smoke 
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Computer Vision

Fire detection Smoke Detection

Object Detection 

Person & Vehicle 

Detection
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Fire Segmentation Fire+Smoke Segmentation

Computer Vision

Semantic Segmentation
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● Computer Vision

● Classical image segmentation 

techniques
○ Thresholding

○ Region Growing

● Deep semantic image segmentation

● Real Implementation Issues
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Image thresholding

The simplest image segmentation problem occurs when an 

image contains:

● an object having homogenous intensity

● a background with different intensity level

Such image can be segmented in two regions by simple 

thresholding:



Image thresholding

RGB to Gray T = 205



Image thresholding

RGB to Gray T = 205

RGB to Gray
T = 205



Region Growing

Basic Steps
● Seed Selection: Manually or based on intensity or similar rule

● Similarity Criteria Definition: Color, Texture, Intensity

● Region Growing: Iteratively add 4- or 8-connected neighboring pixels 

that meet the criteria.

● Stopping Condition: max region size or no other candidate pixels

● Post-Processing: Remove noisy segments, merge similar segments 



● Forest Fire Computer Vision

● Classical Segmentation for Wildfires

● Deep Learning for Fire & Smoke Segmentation

○ Core Concepts

○ RGB Segmentation

○ Multimodal Segmentation

● Real-World Implementation Challenges
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Convolution is a mathematical operation that 

applies a filter (kernel) to an image to extract 

specific features like edges, textures, or 

patterns.

Process:

• A small filter slides over the image.

• The dot product of the filter and overlapping 

image values is computed.

• The result forms a new, processed image 

(feature map).

Core Concepts
Convolution



15

Original image Convolution output

Edge detection

Core Concepts
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Vision Transformer (ViT) [DOS2020].

• Implementation of transformer architecture in

Computer Vision.

• A pure transformer applied directly to sequences of

image patches works exceptionally well on image

classification, segmentation and object detection

tasks.

• Uses self-attention mechanisms to process images

Core Concepts
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Self-Attention

A mechanism which computes a

weighted sum of the input data,

where the weights are computed

based on the similarity between

the input features.

Core Concepts
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The overlap between a predicted bounding 

box (P) and a ground truth bounding box 

(G) is measured using IoU:

Intersection Over Union (IoU)

Core Concepts

IoU: 40% IoU: 85%



• More advanced semantic segmentation network

architectures have emerged.

• The capacity of the decoder was expanded by using a

U-shaped network architecture (U-Net).

• Consists of a contracting path to capture context and

a symmetric expanding path that enables precise

localization.

RGB Segmentation

U-Net architecture



U-Net network architecture [RON 2015].

RGB Segmentation

U-Net architecture
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• Two-Stream Network: Combines spatial and contextual 
information for high accuracy in segmentation.
• Efficient and Fast: Designed for real-time performance 
with lightweight structure, ideal for real-time applications 
like fire detection.
• Context Path: Captures large-scale features for better 
scene understanding.
• Spatial Path: Retains high-resolution details for precise 
boundary segmentation.

BiseNet architecture

RGB Segmentation
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BiSeNet architecture [CYO2018]

RGB Segmentation

BiseNet architecture
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PIDNet architecture

• Triple-Branch Design: Uses three branches—Proportional (P), 

integral (I), and derivative (D)—to balance accuracy and efficiency.

• Real-Time Performance: Optimized for real-time applications, 

making it suitable for tasks like fire detection in edge environments.

• High Precision in Edge Detection: The Detail branch captures 

fine edges, crucial for accurately outlining objects in segmentation.

• Competitive Accuracy: Delivers performance close to more 

complex models, but with much faster inference speeds.

RGB Segmentation
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PIDNet architecture [JXU2023]

RGB Segmentation

PIDNet architecture
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Ι2Ι-CNN architecture

• Dual-Branch Design: Adds an auxiliary neural branch to the BiseNet branch 

for enhanced semantic accuracy without slowing down execution.

• GAN-Based Auxiliary Branch: Trained using a Generative Adversarial 

Network (GAN) to generate RGB-like segmentation maps, capturing additional 

semantic information.

• Adversarial Training with Discriminator: The auxiliary branch learns 

through adversarial loss, where a Discriminator validates its output for 

improved semantic feature extraction.

• Lightweight and Fast: This network has the same inference speed as 

Bisenet. 

RGB Segmentation
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I2I-CNN architecture [PAP2021]

RGB Segmentation
Ι2Ι-CNN architecture
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Process of creating the S channel (visualization)

RGB HSV Saturation (S) Thresholding of S

Multimodal Segmentation
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Smoke
Optical non 

visible Flames
Optical 
visible 
Flames

RGB INFRARED

A Venn Diagram of RGB and IR Capabilities

Multimodal Segmentation



Early Fusion: Concatenate the three RGB channels with the IR image 

to create a unified 4D input for the DNN.

Intermediate Fusion : Feed the RGB and IR images separately into 

their respective DNNs, concatenate their intermediate feature maps, 

and then pass the aggregated map through a common network for 

further processing.

Late Fusion: Process the RGB and IR images separately through their 

respective DNNs, then concatenate the segmentation results from both 

networks to obtain the final output.

Combining IR and RGB:

Multimodal Segmentation
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Multimodal Segmentation
RFFNet



31

Multimodal Segmentation
RFFNet
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Multimodal Segmentation

RFFNet



● Forest Fire Computer Vision

● Classical Segmentation for Wildfires

● Deep Learning for Fire & Smoke Segmentation

● Real-World Implementation Challenges

○ Domain Shift

○ Optimization
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Domain Shift in Natural Disaster Management
● Deep learning models for natural disaster response rely heavily 

on large, labeled datasets.

● However, annotating such data is both time-consuming and 

costly.

● Despite large training datasets, models often encounter unseen 

or novel data due to domain shift — changes in conditions, 

geography, or disaster type.

Domain Shift
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USS architectures in deep 

learning do not rely on labeled 

datasets. However, without 

prior information about the 

objects of interest, they 

struggle to achieve the desired 

clustering.
Unsupervised segmentation results that 
correspond to the above raw images

Unsupervised Fire Segmentation

Unsupervised Semantic Segmentation
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Prompted fire segmentation

36

Raw Images

We select a single image from the 

dataset and specify only one point 

where our object of interest is 

located.

1. Combine the raw images 

with the signal from the 

annotated point.

2. Push fire representations 

closer together in the feature 

space

3. Create a cluster head that 

separates fire from the 

background



Prompted fire segmentation
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• Unsupervised performance : 50 % 

mIoU

• Our performance : 75 % mIoU

• Our approach achieves a 25% 

increase in mIoU using only a 

single point to indicate fire. 

Visualizations show that our results 

closely match the actual labels. 

This method can be extended to 

other classes, such as smoke, 

flood, and more

Raw Images and Labels

Prediction
s



Test-Time Domain Adaptation
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● TTDA is a technique in machine learning where a model 

adapts to a new (target) domain during inference, without 

access to target labels during training.

● Unlike traditional domain adaptation, TTDA assumes:

○ No target data during training.

○ Only the trained source model and test samples are 

available.

○ Adaptation happens on-the-fly during testing.



Test-Time Domain Adaptation
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● Entropy Minimization: Encourages consistent and confident 

predictions across augmented test samples by minimizing the 

uncertainty in model outputs.

● Pseudo-labels: Generates stable labels from  test-time 

predictions, guiding refinement during inference without access to 

ground truth.

● Memory Banks: Maintains history features that produce robust 

feature representations and though consistency and feature 

alignment try to alleviate domain shift.



Optimization
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● Why Optimization of Fire Segmentation is 

Essential

○ Limited Resources

○ Medium-range GPU with limited VRAM

○ Simultaneous frame input from multiple drones

○ Fast response for early fire detection

● How Optimization is Achieved

○ Designing a real-time segmentation pipeline

○ Applying quantization to reduce floating-point 

precision and memory usage

○ Using the TensorRT framework for inference 

optimization
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Q & A

Thank you very much for your attention!

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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