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DLR Research Site Oberpfaffenhofen

▪ Institutes:

▪ Communications and Navigation (KN)

▪ Microwaves and Radar (HR)

▪ Remote Sensing Technology (MF)

▪ Atmospheric Physics (PA)

▪ Robotics and Mechatronics (RM)

▪ System Dynamics and Control (SR)

▪ Scientific-Technical Facilities:

▪ German Remote Sensing Data Center (DFD)

▪ Flight Experiments (FX)

▪ Space Operations and Astronaut Training (RB)

▪ Robotics and Mechatronics Center (RMC)

▪ Galileo Control Center (GCC)

▪ Galileo Competence Center (GK)

Dmitriy Shutin, DLR-KN
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Institute of Communications and Navigation

Dmitriy Shutin, DLR-KN

230 employees

at the DLR sites 

Oberpfaffenhofen, Neustrelitz, 

and Aachen

The institute is engaged in the 

design, analysis and realization of 

systems for communication and 

navigation in the fields of space, 

aeronautics, land and ship 

transportation and security.

The work ranges from the 

scientific fundaments to 

technology demonstration in a 

real environment and technology 

transfer in cooperation with 

industry.

The Institute's work is oriented                              

toward four missions that have a 

direct benefit for society and the 

economy.  
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Our Missions

Dmitriy Shutin, DLR-KN

▪ System Concepts for VHTS 

and Mega-Constellations

▪ Data Repatriation from Space

▪ New Communication Standards 

for Aviation and Maritime Traffic

▪ Kepler System Architecture 

and Key Technologies

▪ System Monitoring and 

Threat Analysis

▪ Alternative PNT Systems for 

aviation and Maritime Transport

▪ Robust Communication and 

Reliable Positioning

▪ Cooperative Systems and 

Traffic Assistance Systems

▪ Swarm Systems for Exploration

▪ Cryptographic Algorithms and 

Quantum Key Distribution

▪ Security Measures for Signals 

and Sensors 

▪ Architectures and Technologies 

for Secure Systems and 

Infrastructures

GLOBAL 

CONNECTIVITY

GLOBAL 

POSITIONING

AUTONOMY AND

COOPERATION

CYBERSECUIRITY
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Swarms – towards cooperative navigation and exploration

Key requirements for future robot systems for applications in exploration, NDM and security 

• Autonomy

• Robustness

• Efficiency

• Intelligence

Surveillance and 

und Inspection

NDM

CBRN

Swarms can address all these challages!

… in planetary mission, NDM, as well as in 

a number of security tasks, 

…or air, water and under!

Underwater

Inspection

Dmitriy Shutin, DLR-KN
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SWARMS FOR GAS SOURCE LOCALIZATION 

Dmitriy Shutin, DLR-KN
8



Key application areas

Gas Distribution Mapping with Mobile Robots

Dmitriy Shutin, DLR-KN

Vulcano – Italy

Search and Rescue

Scientific Missions

CBRN HazardsAir Quality Monitoring

Regulatory 

Monitoring
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Swarm movement 

and path planning

Measurements

Uncertainty quantification 

Process 

model

Cooperative 

inference

Swarm, quo vadis?

Dmitriy Shutin, DLR-KN

Inference,

modeling

Exploration

Navigation

DLR.de  •  Chart 10



PROBLEM MODELING

Dmitriy Shutin, DLR-KN
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Measurement model:Process model

Physical model of gas propagation
Advection-Diffusion 

𝜕𝑓 𝒙, 𝑡

𝜕𝑡
− 𝜅𝛻2𝑓 𝒙, 𝑡 + 𝒗 𝒙, 𝑡 𝛻𝑓 𝒙, 𝑡  = 𝑢 𝒙, 𝑡

𝑦𝑓 𝒙, 𝑡 = 𝑓 𝒙, 𝑡 + 𝜀𝑓

𝒘𝒗 𝒙, 𝑡 = 𝒗 𝒙, 𝑡 + 𝜺𝑣

𝑓 𝒙, 𝑡
Concentration

u 𝒙, 𝑡
Source distribution

v 𝒙, 𝑡
Advection (wind)

Dmitriy Shutin, DLR-KN
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Measurement model for 𝐊 agents

▪ Concentration 𝒇 𝑛 measurement  with gas sensor point spread-function 

(PSF) 𝒎𝑘 𝑛

▪ Wind measurement with PSF 𝜶 𝑛

𝑦𝑓,1 𝑛

𝒘1 𝑛

𝑦𝑓,𝑘 𝑛 = 𝒎𝑘 𝑛 𝑇𝒇 𝑛 + 𝜀𝑓,𝑘  [𝑛]

𝑦𝑓,2 𝑛

𝒘2 𝑛

𝑦𝑓,3 𝑛

𝒘3 𝑛

𝑦𝑓,4 𝑛

𝒘4 𝑛

𝑦𝑓,5 𝑛

𝒘5 𝑛

𝒘𝑘 𝑛 =
𝒗x[𝑛]𝑇

𝒗𝒚[𝑛]𝑇 𝜶𝑘 𝑛 + 𝜺𝑣,𝑘  [𝑛]

Dmitriy Shutin, DLR-KN
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How to model gas sources
Stationary source  assumption

▪ Source modeling:

▪ Sparse Bayesian Learning:

Dmitriy Shutin, DLR-KN

𝑤1𝜹𝜽𝟏
(𝛺) 𝑤2𝜹𝜽𝟐

(𝛺)

𝑤3𝜹𝜽𝟑
(𝛺)

𝜽𝑥,𝟏

𝜽𝑦,1

𝑢 𝒙, 𝑡 ≡ 𝑢 𝒙 = ෍

𝑙=1

𝐿true

𝑤𝑙  𝛿𝜽𝑙
(𝛺)

Ω

𝑢 𝒙 ≈ ෍

𝑙=1

𝐿

𝑤𝑙 𝛿𝜽𝑙
(𝛺)

Surrogate model

• Overfit assumption:  𝐿 ≫ 𝐿true

• 𝑤𝑙 are sparse, i.e. some source weight are zero 𝑤𝑙 = 0
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NUMERICAL APPROACHES

Dmitriy Shutin, DLR-KN
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Discretization: from continuum to finite dimensions
Numerical approaches (PDE in Weak form)

▪ Weak form of a PDE: project the equation on some (test) function 𝜑 𝒙, 𝑡  

▪ Galerkin method: C-dimensional approximation with fixed (spatial) basis 

functions 𝜓𝑖 𝒙 , 𝑖 = 1 … 𝐶

𝜑 𝒙, 𝑡 ,
𝜕𝑓 𝒙, 𝑡

𝜕𝑡
 − 𝜑 𝒙, 𝑡 , 𝜅∇2𝑓 𝒙, 𝑡  + 𝜑 𝒙, 𝑡 , 𝒗 𝒙, 𝑡 ∇𝑓 𝒙, 𝑡 = 𝜑 𝒙, 𝑡 , 𝑢 𝒙, 𝑡

𝑓 𝒙, 𝑡 ≈ ෍

𝑖=1

𝐶

𝑓𝑖 𝑡 𝜓𝑖 (𝒙)
Concertation

distribution

𝑣 𝒙, 𝑡 ≈

෍

𝑖=1

𝐶

𝑣𝑥,𝑖 𝑡 𝜓𝑖 (𝒙)

෍

𝑖=1

𝐶

𝑣𝑦,𝑖 𝑡 𝜓𝑖 (𝒙)

Wind velocity

𝑢 𝒙, 𝑡 ≈ ෍

𝑖=1

𝐶

𝑢𝑖 𝑡 𝜓𝑖 (𝒙) Source

signal

𝜑 𝒙, 𝑡 ≈ ෍

𝑖=1

𝐶

𝜑𝑖 𝑡 𝜓𝑖 (𝒙)
Test

function

Dmitriy Shutin, DLR-KN
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Discretization: from continuum to finite dimensions, 
cont’d

▪ Basis functions 𝜓𝑖 𝒙 , 𝑖 = 1 … 𝐶 (finite elements)

▪ Defined on some discretized exploration domain Ω

▪ Delaunay triangulation is often used

▪ PDE is parameterized with finite-dimensional parameter vectors

Dmitriy Shutin, DLR-KN

Discrete value

𝑓𝑖(𝑡)𝜓𝑖 𝒙

𝒇(𝑡) =
𝑓1(𝑡)

⋮
𝑓𝐶(𝑡)

𝐮(𝑡) =
𝑢1(𝑡)

⋮
𝑢𝐶(𝑡)

𝝋(𝑡) =
𝜑1(𝑡)

⋮
𝜑𝐶(𝑡)

𝒗x(𝑡) =

𝑣x,1(𝑡)

⋮
𝑣x,𝐶(𝑡)

𝒗y(𝑡) =

𝑣y,1(𝑡)

⋮
𝑣y,𝐶(𝑡)

Ω
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Discretization: from continuum to finite dimensions, 
cont’d

• Source term 

𝜑 𝒙, 𝑡 , 𝑢 𝒙, 𝑡 ≈ න

Ω

෍
𝑖=1

𝐶

𝑢𝑖 𝑡 𝜓𝑖 𝒙 ෍
𝑗=1

𝐶

𝜑𝑗 𝑡 𝜓𝑗 𝒙 𝑑𝒙 = 𝝋 𝑡 𝑻𝑨 𝒖 𝑡 , 𝑨 𝑖,𝑗 = න

Ω

𝜓𝑖 𝒙 𝜓𝑗 𝒙 𝑑𝒙

• Time-derivative term

𝜑 𝒙, 𝑡 ,
𝜕𝑓 𝒙, 𝑡

𝜕𝑡
 ≈ 𝝋 𝑡 𝑻𝑨

𝑑𝒇 𝑡

𝑑𝑡

• Diffusion term

𝜑 𝒙, 𝑡 , 𝜅∇2𝑓 𝒙, 𝑡  ≈ 𝜅 𝝋 𝑡 𝑻𝑫 𝒇 𝑡

• Advection term

𝜑 𝒙, 𝑡 , 𝒗 𝒙, 𝑡 ∇𝑓 𝒙, 𝑡 ≈  𝝋 𝑡 𝑻 𝒗x 𝑡 ∘ 𝑮𝒙𝒇 𝑡 + 𝝋 𝑡 𝑻 𝒗y 𝑡 ∘ 𝑮𝒚𝒇 𝑡

Dmitriy Shutin, DLR-KN
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Discretization: from continuum to finite dimensions, cont’d
Discretization in time 

▪ Discrete-space, continuous-time equation

▪ Discretization in time:  𝑡 = 𝑛 △𝑇 , 𝑛 = 0,1,2 …

▪ Final step - boundary conditions :   𝑩𝒇 𝑛 = 𝒃

Dmitriy Shutin, DLR-KN

𝑨
𝑑𝒇 𝑡

𝑑𝑡
− 𝜅𝑫𝒇 𝑡 + 𝒗x 𝑡 ∘ 𝑮𝒙𝒇 𝑡 + 𝒗𝒚 𝑡 ∘ 𝑮𝑦𝒇 𝑡  = 𝑨 𝒖 𝑡

𝑨

△𝑇
 (𝒇 𝑛 − 𝒇[𝑛 − 1]) − 𝜅𝑫𝒇[𝑛] + 𝒗x[𝑛] ∘ 𝑮𝒙𝒇[𝑛] + 𝒗𝒚[𝑛] ∘ 𝑮𝑦𝒇[𝑛] = 𝑨 𝒖[𝑛]
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𝑝 sources, concentration, wind measurements  ∝

 𝑝 measurement wind, concentration 𝑝 concentration wind, sources) 𝑝 wind  𝑝(source)

Probabilistic modeling of PDE

𝑦𝑙 𝑛 = 𝒎𝑙[𝑛]𝑇𝒇 𝑛  +𝜀𝑙 𝑛 ,

𝑝 measurement wind, concentration ∝ 𝑒
−

𝜏𝑚
2

𝑦𝑙 𝑛 −𝒎𝑙 𝑛 𝑇𝒇 𝑛
2

−
𝜏𝑤
2

𝒘𝑙 𝑛 −
𝒗x[𝑛]𝑇

𝒗𝒚[𝑛]𝑇 𝜶𝒍 𝑛

2

𝑝 concentration wind, sources) ∝  𝑒−
𝜏𝑠
2

 𝒓 𝒏 𝑇𝒓[𝒏] 

Measurement Model:

Relaxed Gas Model:

residual r[n] is zero-mean normal with a precision 𝜏𝑠

Bayesian Inference approach: find posterior

relaxed modelstate likelihood wind prior ? source prior ?

1

△𝑇
𝑨 𝒇 𝑛 − 𝒇 𝑛 − 1 − 𝜅 𝑫 𝒇 𝑛 + 𝒗1 𝑛 ∘ 𝑮𝒙 𝒇 𝑛 + 𝒗2 𝑛 ∘ 𝑮𝑦 𝒇 𝑛 − 𝑨𝒖 𝑛 = 𝒓[𝑛]

𝒘𝑙 𝑛 =
𝒗x[𝑛]𝑇

𝒗𝒚[𝑛]𝑇 𝜶𝒍 𝑛 + 𝜺𝑣,𝑙  [𝑛]

≠ 0

Dmitriy Shutin, DLR-KN
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Wind prior modeling

▪ We do not distinguish between laminar and turbulent components 

▪ X-Y wind directions are assumed statistically independent in space

▪ Parameters 𝜇𝑥, 𝜎𝑥
2 and 𝜇𝑦, 𝜎𝑦

2 have to selected (e.g., weather 

forecast)

𝑝 wind = 𝑝 𝑣𝑥[𝑛] 𝑝 𝑣𝑦[𝑛]

𝑣𝑥[𝑛]~𝒩 (𝜇𝑥, 𝜎𝑥
2) 𝑣𝑦[𝑛]~𝒩 (𝜇𝑥, 𝜎𝑦

2) 

Dmitriy Shutin, DLR-KN
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Source prior modeling: Sparse Bayesian Learning

▪ Main assumption: There are a few distinct gas sources, 

i.e., gas source signal 𝒖[𝑛] is sparse, ∀𝑛 ∈ ℕ

▪ Our goal: find 𝒖 𝑛 with minimal number of non-zero 

elements 

▪ Solution: impose sparsity constraints on 𝑝(source) with 

sparse Bayesian Learning

Dmitriy Shutin, DLR-KN
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𝐮[𝑛] =

0
6
0
⋮
0
2
0
⋮
8
0
0

𝑝 source ≡ 𝑝 source , hyperparameters = 𝑝 source |hyperparameters 𝑝  hyperparameters
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Sparse Bayesian Learning for modeling sources

Dmitriy Shutin, DLR-KN

• Hierarchical Prior: 𝑝 source , hyperparameters = 𝑝 source |hyperparameters  𝑝  hyperparameters

𝑝 sources = 𝑝 𝑢𝑖[𝑛] 

= න 𝑝 𝑢𝑖[𝑛] | 𝛾𝑖 ∙ 𝑝  𝛾𝑖 𝑑𝛾𝑖 = Student‘s t PDF

Student‘s t PDF

𝑝 source |hyperparameters = 𝑝 𝑢𝑖[𝑛] | 𝛾𝑖 = 𝒩 𝑢𝑖[𝑛]|0,
1

𝛾𝑖

𝑝  hyperparameters = 𝑝  𝛾𝑖 = 𝐺𝑎𝑚𝑚𝑎 𝛾𝑖|𝑎, 𝑏

• Equivalent (marginalized) source prior

• SBL requires estimation of hyperparameters 𝛾𝑖 , 𝑖 = 1, … , 𝐶
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Sparse Bayesian Learning for modeling sources, cont’d

likelihood prior posterior~×

Gaussian 
Prior

Student‘s-t 
Prior

highest 
probability:

highest 
probability:

#{𝑢𝑖 ≠ 0} = 2

#{𝑢𝑖 ≠ 0} = 1

𝑢1 = 0.2

𝑢2 = 0.3

𝑢1 = 0

𝑢2 = 0.5

not sparse!

sparse

u1 u1 u1

u1u1u1

u2

u2

Model:

 𝑟 = 𝑢1 + 2𝑢2 − 𝑦
Measurement: 

 𝑦 = 1

Model:

    𝑟 = 𝑢1 + 2𝑢2 − 𝑦
Measurement: 

                        𝑦 = 1

~ 𝑢1
2 + 𝑢2

2

~
1

𝑢1
𝑎

+
1

𝑢2
𝑎

Dmitriy Shutin, DLR-KN
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𝑝 sources, concentration, wind, hyperparamters measurements  ∝

𝑝 measurement wind, concentration ×

𝑝 concentration wind, sources) ×

𝑝 source hyperparameters ×

𝑝(hyperparameters) ×

𝑝 wind

Probabilistic modeling of PDE

▪ Joint PDE  can be represented with a classical Hidden Markov model

Dmitriy Shutin, DLR-KN

𝒇 0 …

𝑛 = 0
Initial conditions 𝑛 = 1

𝑦𝑙 1

𝒖 1 𝐯 1

𝒇 1

𝒘 1𝑦𝑙 1𝑦𝑙 1 𝒘 1𝒘𝑙 1

𝒖 𝑛 − 1 𝒗 𝑛 − 1

𝒇 𝑛 − 1

𝑦𝑙 𝑛 − 1 𝒘𝑙 𝑛 − 1 𝑦 𝑛

𝒖 𝑛 𝒗 𝑛

𝒇 𝑛

𝒘 𝑛𝑦 𝑛 𝒘 𝑛𝑦 𝑛 𝒘𝒍 𝑛

𝑛 − 1 𝑛

𝜸model fit

model

prior

prior

hyperprior
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Probabilistic Inference
From HMM to a factor graph

▪ Graphical model of the PDE

Dmitriy Shutin, DLR-KN

𝑦 𝑛

𝒖 𝑛 𝑣𝑦 𝑛

𝒇 𝑛

𝒘 𝑛𝑦 𝑛 𝒘 𝑛𝑦 𝑛 𝒘𝒍 𝑛

𝑛

𝜸

𝑛 − 1

…

• Factor graph representation of a single spatial cell 

○ variable node = random variables 

□ factor node = relation between variables

𝒇 𝑛 − 1

𝑝 sources, concentration, wind, hyperparamters measurements  ∝

ෑ

Samples

Fit ෑ

Cells

Model ෑ

Cells

Prior ෑ

Cells

Hyperprior

Joint PDF
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Probabilistic Inference on Factor Graphs
Message passing

𝑚
o𝑖→¡𝑗

=  න … න 𝑓(¡1 …¡𝑀 ) ෑ

𝑘≠𝑗

𝐾

𝑚
¡𝑚→o𝑖

d¡1 … d¡𝑀

𝑚
¡𝑖→o𝑗

= ෑ

𝑘≠𝑗

𝐾

𝑚
o𝑚→¡𝑖

(sum-product algorithm; loopy Belief Propagation)

Update Rules

Message Passing Algorithm

Marginal 

PDF

Dmitriy Shutin, DLR-KN
27



How to utilize the learned model?
Exploration strategy

Dmitriy Shutin, DLR-KN

Uncertainty-driven exploration: optimal experiment design

?
uncertainty of parameter estimate: 

→ measurements at locations with high 

uncertainty improve parameter 

estimation

u
n
c
e
rt

a
in

ty

Uncertainty Map:

- based on variance of posterior marginal distribution

- spatial description of uncertainty

- highest uncertainties = proposals for multi agent system

28



Cooperative Exploration Of Spatial Dynamic Processes
Exploration strategy

Dmitriy Shutin, DLR-KN

measurements

source distribution

concentration distribution 𝒇

𝒖

pdf

Probabilistic Inference
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Uncertainty Driven Exploration Strategy

more interesting location

→ robot should 

measure here!

Dmitriy Shutin, DLR-KN
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Simulation

Dmitriy Shutin, DLR-KN

wind

0 measurements
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10 measurements30 measurements50 measurements100 measurements200 measurements250 measurements

informed
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Impact of Sparsity Inducing Prior

Dmitriy Shutin, DLR-KN

Simulation setup:

- up to 3 sources (random position) - 5 robots

- environment discretized by 676 points/cells - averaged over 45 simulation runs

exploration time [iterations] exploration time [iterations]
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Hardware in the Loop Experiment

Dmitriy Shutin, DLR-KN
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Real-World Experiment: Setup

Dmitriy Shutin, DLR-KN

ethanol vapor 

source 

photoionization 

detector

artificial air flow 

(fan array)
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Real-World Experiment

Dmitriy Shutin, DLR-KN

air flow

s
p
e
e
d
 [

m
/s

]

source strengthconcentration

1 min2 min4 min7 min11 min
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ANALYTICAL METHODS

Dmitriy Shutin, DLR-KN
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Super-resolution Gas Source Localization
Beyond grid

▪ Gridded methods

▪ Typical Numerical complexity  ~𝒪(𝑁3)

▪ Linear in 𝐮 ∈ ℝ𝑁

Dmitriy Shutin, DLR-KN

00

00

00

66

00

00
00

00
00

00

00

00

00
00

00
00

00

00

88

22
𝐮 =

0
6
0
⋮
0
2
0
⋮
8
0
0

∈ ℝ𝑁 

▪ Off-Grid methods

▪ Typical Numerical complexity  ~𝒪 𝐿true
3

▪ Nonlinear in 𝑢 𝑥  (or equivalently, in 𝚯)

𝑢 𝒙 = ෍

𝑙=1

𝐿true

𝑤𝑙  𝛿𝜽𝑙
(𝛺)

𝚯 =

𝜽1
𝑤1

⋮
𝜽𝐿true

𝑤𝐿true

∈ ℝ3𝐿true 
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Super-resolution Gas Source Localization
Green‘s function method

Linear systems and impulse response

𝛿(𝑡) h(t)Linear time-invariant 

System 

Impulse response

𝛿 𝑡 = ቊ
∞, 𝑡 = 0
0, else

 

h(t)

𝜕G(𝒑, 𝜽𝑖 , 𝑡, 𝑡0) 

𝜕𝑡
− 𝜅𝛻2G(𝒑, 𝜽𝑖 , 𝑡, 𝑡0) + 𝒗 𝒙, 𝑡 𝛻G(𝒑, 𝜽𝑖 , 𝑡, 𝑡0) = 𝛿𝜽𝑖,𝑡0

(𝛺, 𝑡)

𝜹𝜽𝒊,𝑡0
(𝛺, 𝑡)

𝜽𝑥,𝒊

𝜽𝑦,𝒊

Ω

𝑡 = 𝑡0

Green’s function method for solving PDE

𝛿𝜽𝑖,𝑡0
(𝛺, 𝑡) G(𝒑, 𝜽𝑖 , 𝑡, 𝑡0)

Linear 

PDE

Green‘s 

function

𝑓 𝒑, 𝑡 = ෍

𝑖=1

𝐿

𝑤𝑖𝐺 𝒑, 𝜽𝑖 , 𝑡, 𝑡𝑖For any number of sources:

Dmitriy Shutin, DLR-KN
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Green’s function method for Advection-Diffusion

𝒗(𝒑, 𝑡) 𝑓 𝒑, 𝒕Physics of smoke dispersion: Advection-Diffusion Equation

Green’s function for unbounded domain 

𝐺 𝒑, 𝜽 =
1

2𝜋 𝜅
 𝑒𝒗 𝒑 𝑇 𝒑−𝜽 𝐾0

𝒑 − 𝜽 𝒗(𝒑)

2 𝜅 

Analytic solution for Ω = [−∞, ∞] × [−∞, ∞]

𝐾0() is zero-order modified Bessel function

Simplification: Time-invariant advection-diffusion

Dmitriy Shutin, DLR-KN
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Signal model

Observations:

• Assume 𝑀 noisy samples 𝑧𝑚 of 𝑓 𝒑  are available,

• collected at 𝒑𝑚 ∈ Ω

• Assume 𝑁 ≫ 𝑀

Measurement modelSensing matrix

Green’s function for Poisson’s equation on unit circle.

- Source location

𝐺 𝒑, 𝜽 =
1

2𝜋 𝜅
 𝑒𝒗 𝒑 𝑇 𝒑−𝜽 𝐾0

𝒑 − 𝜽 𝒗(𝒑)

2 𝜅 

Discretization of the PDE model:

• Discretize Ω into 𝑁 of grid cells 𝐶𝑖 ∈ Ω, 𝑖 = 1 … 𝑁

• For each cell 𝐶𝑖 with center 𝒑𝑖 assume 𝑓 𝒑 = const

• Locations 𝜣 are not on the grid

Concentration Green‘s function Solution of

PDE

Dmitriy Shutin, DLR-KN
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Sparse Bayesian Learning for GSL
Inference model in a probabilistic context

Const.

SBL prior

Likelihood / Measurements

PDE Model

*D. Shutin, T. Wiedemann, and P. Hinsen, “Detection and estimation of gas sources with arbitrary locations based on Poisson’s equation,” IEEE Open Journal of Signal Processing, vol. 
5, pp. 359–373, 2024.

Optimization strategy (nonlinear)

Estimation of source support (SBL)
(fixed source locations ෡𝜣 )

Estimation of source locations
(Fix support ෝ𝜸 )

Source support estimate: ෝ𝜸, ෝ𝒘

Source location estimation ෡𝚯, ෝ𝒘

Standard SBL for linear models Nonlinear optimization

Initial source 

locations ෡𝜣

Full posterior

Dmitriy Shutin, DLR-KN
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SBL with Green‘s function method
Optimization over a network 

▪ Swarm-based Sparse Bayesian Learning for smoke source localization 

Dmitriy Shutin, DLR-KN

Ground truth Sampling pattern Estimation results
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SBL based Cramer-Rao Lower Bound for source localization
Single source

▪ CRLB depends on Green‘s function and its derivative with respect to source location

▪ Key element for Uncertainty-driven exploration (for analytic methods)

Corresponding Fisher informationType II Likelihood function:

- Source sparsity parameter

- Source location

Dmitriy Shutin, DLR-KN
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CONCLUSIONS AND FUTURE DEVELOPMENTS

Dmitriy Shutin, DLR-KN
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Some concluding remarks

▪ Both numerical and analytical approaches introduce performance trade-offs

▪ Information (uncertainty) driven exploration can guide robots to better sampling 
locations 

▪ … also both approaches can be implemented over a network of agents

▪ Green‘s functions can be approximated with NNs for arbitrary domains

▪ Can be quite efficient in terms of complexity

▪ Feed-forward approaches are useful, but need to cope with measures

▪ Fourier Neural Operators can be better for PDEs than DNNs

▪ Wind plays a crucial role in the propagation modeling

▪ Unknown wind can make the problem even more nonlinear

▪ Leads to numerical CFD approaches…

Dmitriy Shutin, DLR-KN
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Thank you 

for your attention!
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