

A. Kaimakamidis, Prof. I. Pitas
Aristotle University of Thessaloniki
pitas@csd.auth.gr
www.aiia.csd.auth.gr

- Decentralized DNN Architectures
 - Federated Learning
 - Edge Computing
 - Peer-to-Peer Networks
- Knowledge Distillation
- Learning-by-Education Node Community (LENC) Framework
 - Federated Learning
 - Peer-to-Peer Networks
 - Continual Learning
 - Edge Computing Decentralized Inference
 - Reproducibility Privacy
 - Deep Learning Tasks Supported by LENC Framework
- Experimental Evaluation

Definition:

Decentralized Deep Neural Network (DNN) architectures distribute computation and decision-making across multiple nodes or devices, offering advantages in scalability, privacy, and robustness.

Characteristics:

- Distribution: Computation and data are spread across multiple nodes or devices.
- Collaboration: Nodes cooperate to train or execute models.
- Privacy Preservation: Data remains localized, enhancing privacy and security.
- Fault Tolerance: Resilience to individual node failures or attacks.

Types:

- 1. Federated Learning: Training a global model across decentralized devices while keeping data on-device.
- 2. Edge Computing: Running inference or lightweight training directly on edge devices.
- 3. Peer-to-Peer Networks: Collaborative learning among peers without a central server.

Federated Learning

- Decentralized DNN Architectures
 - Federated Learning
 - Edge Computing
 - Peer-to-Peer Networks
- Knowledge Distillation
- Learning-by-Education Node Community (LENC) Framework
 - Federated Learning
 - Peer-to-Peer Networks
 - Continual Learning
 - Edge Computing Decentralized Inference
 - Reproducibility Privacy
 - Deep Learning Tasks Supported by LENC Framework
- Experimental Evaluation

Federated Learning

- Privacy Preservation: Data remains on local devices, ensuring privacy.
- Efficiency: Reduces the need to transfer large volumes of data to a central server.
- Scalability: Suitable for large-scale distributed systems with diverse data sources.
- Adaptability: Can accommodate non-IID (non-identically distributed) data across devices.

Edge Computing

- Decentralized DNN Architectures
 - Federated Learning
 - Edge Computing
 - Peer-to-Peer Networks
- Knowledge Distillation
- Learning-by-Education Node Community (LENC) Framework
 - Federated Learning
 - Peer-to-Peer Networks
 - Continual Learning
 - Edge Computing Decentralized Inference
 - Reproducibility Privacy
 - Deep Learning Tasks Supported by LENC Framework
- Experimental Evaluation

- Low Latency: Enables real-time decisionmaking without reliance on distant servers.
- Bandwidth Efficiency: Reduces the need to transfer large volumes of data to central servers.
- Privacy Preservation: Sensitive data can be processed locally, enhancing privacy.
- Offline Capability: Allows for operation in disconnected or low-connectivity environments.

Peer-to-Peer Networks

- Decentralized DNN Architectures
 - Federated Learning
 - Edge Computing
 - Peer-to-Peer Networks
- Knowledge Distillation
- Learning-by-Education Node Community (LENC) Framework
 - Federated Learning
 - Peer-to-Peer Networks
 - Continual Learning
 - Edge Computing Decentralized Inference
 - Reproducibility Privacy
 - Deep Learning Tasks Supported by LENC Framework
- Experimental Evaluation

- Decentralization: Reduces dependency on central servers, enhancing scalability and robustness.
- Resource Efficiency: Utilizes idle computational resources across peers.
- Resilience: Resilient to node failures or attacks due to distributed nature.
- Community-driven Innovation: Facilitates collaborative research and knowledge exchange.

Knowledge Distillation

- Decentralized DNN Architectures
 - Federated Learning
 - Edge Computing
 - Peer-to-Peer Networks
- Knowledge Distillation
- Learning-by-Education Node Community (LENC) Framework
 - Federated Learning
 - Peer-to-Peer Networks
 - Continual Learning
 - Edge Computing Decentralized Inference
 - Reproducibility Privacy
 - Deep Learning Tasks Supported by LENC Framework
- Experimental Evaluation

Definition:

Knowledge Distillation is a technique in machine learning where a compact model, known as the student model, learns from a larger, more complex model, referred to as the teacher model, by mimicking its outputs or internal representations.

Process:

- 1. Teacher-Student Setup.
- 2. Training: The student model is trained using a combination of the original training data and the teacher model's predictions or intermediate representations.
- 3. Objective Function: The objective is to minimize the discrepancy between the student's predictions and the teacher's outputs or representations.

- Decentralized DNN Architectures
 - Federated Learning
 - Edge Computing
 - Peer-to-Peer Networks
- Knowledge Distillation
- Learning-by-Education Node Community (LENC) Framework
 - Federated Learning
 - Peer-to-Peer Networks
 - Continual Learning
 - Edge Computing Decentralized Inference
 - Reproducibility Privacy
 - Deep Learning Tasks Supported by LENC Framework
- Experimental Evaluation

- External environment data streams \mathcal{D}_s .
- DNN nodes
 - Feature Module (FM) f.
 - Decision Heads (DH) \tilde{f}_i , $i = 1, \dots, T$.
 - Knowledge Self-Assessment (KSA) Modules g_i , $i = 1, \dots, T$.
 - Interaction Manager.

- Knowledge Self-Assessment Modules
 - The KSA Modules consist of an Out-of-Distribution (OOD) detector $g_i(x)$: $\mathcal{X}_i \rightarrow \{0,1\}, i = 1, \dots, T$.
 - This module classifies new data samples $x \in \mathcal{X}_i$, $i = 1, \dots, T$ as in or out of distribution.

- Knowledge Self-Assessment Modules
 - The KSA module is used to automatically detect which DH \tilde{f}_i , $i=1,\cdots,T$ will be used for decision making.
 - We define $j = argmax(g_1, \dots, g_T)$, where j is the index of the task trained on sample data that were like the ones found in \mathcal{X}_i .

Feature Module

- Shared DNN f among tasks, parametrized by w_s .
- Decision Heads \tilde{f}_i , $i = 1, \dots, T$, parametrized by w_i .
- Decision (Inference): $\tilde{y}_j = \tilde{f}_j(f(x; w_s); w_j)$, for an input vector x, where $j = argmax(g_1, \dots, g_T)$.

Interaction Manager

- Handles the communications among the nodes.
- Handles the communications among the nodes and the external environment.

- Interaction Manager
- Three Key Functions:
 - Receives data streams \mathcal{D}^s from the environment.
 - Transmits the data streams \mathcal{D}^s to other nodes and receives their responses $\{q_j, j = 1, \dots, N, i \neq j\}$, where N is the number of nodes and i is the current node.
 - Sends and receives node components, such as data, activations, weights and structure.

Interaction Manager

- Possible ways to compute q_n for each LENC node:
- a) Average Accuracy
 Stored average classification accuracy over past tasks.
- b) OOD Score Function of out-of-distribution score from the KSA module, using \mathcal{D}^s
- c) Prediction Disagreement (Churn)
 Accuracy of student predictions on D^s using the teacher node outputs as pseudo-ground-truth.

- External Environment sends data stream \mathcal{D}_s .
- Node's KSA Module checks if the distribution is known.
- If not the data stream is sent to other nodes.
- The nodes respond with $\{q_j, j = 1, \dots, N, i \neq j\}$.
- The student node selects a teacher node.

- Option 1: Data Transmission
 - The teacher node sends its training data \mathcal{D}^t .
 - The student node uses the training data to learn the task.

- Option 2: Soft-Output Activation Transmission
 - The teacher node sends its training data \mathcal{D}^t , its soft-output activations \tilde{a}^t and its structure f^t and \tilde{f}_i^t for the task j.
 - The student node uses KD to for training using the teacher's guidance.

- Option 3: Feature Activation Transmission
 - The teacher node sends its training data \mathcal{D}^t , its soft-output activations $\tilde{\boldsymbol{a}}^t$, its feature activations $\tilde{\boldsymbol{u}}^t$ and its structure f^t and \tilde{f}_i^t for the task j.
 - The student node uses KD to for training using the teacher's guidance.

- Option 4: Weights Transmission
 - The teacher node its structure f^t and \tilde{f}_j^t and its weights ξ_s and ξ_j for the task j.
 - The student node is now a copy of the teacher node's model.

LENC selects the appropriate knowledge transfer policy based on user-defined environmental conditions.

Key Questions:

- 1. Are there privacy limitations on the model, dataset, or parameters?
- 2. Are there network traffic limitations?
- 3. Is there a latency requirement for instant transfer?

Policy Selection Logic:

- Policy 2 (Default)
 - Use when strong privacy restrictions apply
 - Only the first input option $(D^s \rightarrow \text{soft activations})$
 - Works with any architecture or dataset

- Policy 3
 - Use if the teacher and student share architecture
 - More effective guidance
 - Second input (D_j^t) allowed only if no privacy or traffic limitations

Policy Selection Logic:

- Policy 4
 Use if all apply:
 - Latency-sensitive
 - No privacy limits
 - Student is untrained

Training-free option

- Policy 1
 Use if all apply:
 - No privacy or traffic limits
 - Teacher's architecture can be shared
 - Student > Teacher in model complexity

Federated Learning

- Decentralized DNN Architectures
 - Federated Learning
 - Edge Computing
 - Peer-to-Peer Networks
- Knowledge Distillation
- Learning-by-Education Node Community (LENC) Framework
 - Federated Learning
 - Peer-to-Peer Networks
 - Continual Learning
 - Edge Computing Decentralized Inference
 - Reproducibility Privacy
 - Deep Learning Tasks Supported by LENC Framework
- Experimental Evaluation

- Define a node as a master node.
- All nodes with the same structure within the community train themselves using their local data.
- The master node uses Option 4 to receive the weights of all nodes with the same structure within the community.
- The master node aggregates the weights of all participating nodes.
- The process is repeated until convergence.

Peer-to-Peer Networks

- Decentralized DNN Architectures
 - Federated Learning
 - Edge Computing
 - Peer-to-Peer Networks
- Knowledge Distillation
- Learning-by-Education Node Community (LENC) Framework
 - Federated Learning
 - Peer-to-Peer Networks
 - Continual Learning
 - Edge Computing Decentralized Inference
 - Reproducibility Privacy
 - Deep Learning Tasks Supported by LENC Framework
- Experimental Evaluation

- Options 1-4 constitute forms of Peer-to-Peer Network interactions.
- Nodes act exclusively to enhance their knowledge.
- No need for a central server.
- Retaining knowledge within the node community.

Continual Learning

- Decentralized DNN Architectures
 - Federated Learning
 - Edge Computing
 - Peer-to-Peer Networks
- Knowledge Distillation
- Learning-by-Education Node Community (LENC) Framework
 - Federated Learning
 - Peer-to-Peer Networks
 - Continual Learning
 - Edge Computing Decentralized Inference
 - Reproducibility Privacy
 - Deep Learning Tasks Supported by LENC Framework
- Experimental Evaluation

Continual Learning

Task 1

Scenes 67 classes; 15.620 images

Task 2

Birds 200 classes; 11,788 images

Task k-1

Blood Cell 4 classes; 12,500 images

Task k

Cars 196 classes; 16,185 images

Task k+1

SVHN 10 classes; 99,289 images

Edge Computing – Decentralized Inference

- Decentralized DNN Architectures
 - Federated Learning
 - Edge Computing
 - Peer-to-Peer Networks
- Knowledge Distillation
- Learning-by-Education Node Community (LENC) Framework
 - Federated Learning
 - Peer-to-Peer Networks
 - Continual Learning
 - Edge Computing Decentralized Inference
 - Reproducibility Privacy
 - Deep Learning Tasks Supported by LENC Framework
- Experimental Evaluation

Edge Computing – Decentralized Inference

- Raw data is processed locally on nodes.
- Nodes use real-time inference on their data.
- Lightweight training of Feature Modules directly on nodes.
- A master node (server) can be defined to aggregate inference results.
- Generating responses or actions locally without centralized decision-making.

- Decentralized DNN Architectures
 - Federated Learning
 - Edge Computing
 - Peer-to-Peer Networks
- Knowledge Distillation
- Learning-by-Education Node Community (LENC) Framework
 - Federated Learning
 - Peer-to-Peer Networks
 - Continual Learning
 - Edge Computing Decentralized Inference
 - Reproducibility Privacy
 - Deep Learning Tasks Supported by LENC Framework
- Experimental Evaluation

Reproducibility - Privacy

- DNN node 1 is the model of a published paper.
- DNN node 2 wants to replicate the model and the experiments.
- Using variations of Options 1-4 DNN node 2 can replicate the initial model and also consider possible privacy constraints.
- Private weights, architecture, training dataset, etc.

Deep Learning Tasks using the LENC Framework

- Decentralized DNN Architectures
 - Federated Learning
 - Edge Computing
 - Peer-to-Peer Networks
- Knowledge Distillation
- Learning-by-Education Node Community (LENC) Framework
 - Federated Learning
 - Peer-to-Peer Networks
 - Continual Learning
 - Edge Computing Decentralized Inference
 - Reproducibility Privacy
 - Deep Learning Tasks Supported by LENC Framework
- Experimental Evaluation

Deep Learning Tasks using the LENC Framework

- Decentralized DNN Architectures
 - Federated Learning
 - Edge Computing
 - Peer-to-Peer Networks
- Knowledge Distillation
- Learning-by-Education Node Community (LENC) Framework
 - Federated Learning
 - Peer-to-Peer Networks
 - Continual Learning
 - Edge Computing Decentralized Inference
 - Reproducibility Privacy
 - Deep Learning Tasks Supported by LENC Framework
- Experimental Evaluation

Datasets: CIFAR-10 & CIFAR-100.

Architectures: ResNet-18 (teacher), WRN-16-4, VGG11, and additional ResNet-18s (students).

Key Details:

- Pretrained ResNet-18 used as the sole teacher
- Competing CKD methods adapted to use teacher responses (not ground-truth).
- Two stream sizes: 1,000 & 5,000 data points from the teacher's training set.
- 10 sequential data streams \mathcal{D}_s , each triggering a knowledge cycle

Experimental Evaluation (VML)

Dataset	Students	Stream Size	DML	KDCL	SwitOKD	LENC (proposed)
CIFAR-10	ResNet-18 & ResNet-18 WRN-16-4 & VGG11	1000	52.20±0.52 51.17±0.71	$62.23 \pm 0.15 \\ 62.09 \pm 0.21$	56.15±0.73 57.85±0.80	$76.93 {\pm} 0.71 \\ 70.16 {\pm} 0.82$
	ResNet-18 & ResNet-18 WRN-16-4 & VGG11	5000	77.85 ± 0.31 75.56 ± 0.82	85.76 ± 0.07 84.47 ± 0.08	79.08 ± 0.70 78.79 ± 0.68	$\begin{array}{c} 86.31 \pm\ 0.32 \\ 87.12 {\pm} 0.24 \end{array}$
CIFAR-100	ResNet-18 & ResNet-18 WRN-16-4 & VGG11	1000	9.77 ± 0.25 6.12 ± 0.38	25.16 ± 0.12 27.59 ± 0.19	13.71±0.57 14.72±0.61	$34.96\pm0.47 \ 29.75\pm0.49$
	ResNet-18 & ResNet-18 WRN-16-4 & VGG11	5000	31.53±0.31 8.30±0.16	58.70 ± 0.09 56.94 ± 0.12	35.31±0.29 37.27±0.45	$65.02{\pm}0.13 \ 58.18{\pm}0.17$

Comparisons of LENC with competing CKD methods, for incoming data streams Ds of sizes 1000 and 5000. The average test accuracy (%) of the student nodes is reported.

Average student LENC node classification accuracy (%) for varying Ds sizes in the CIFAR-10 dataset. The 3 alternative LENC teacher selection policies are compared against competing methods.

- Comparisons of the LENC knowledge transfer policies, for incoming data streams \mathcal{D}_s of sizes 100, 500, 1000, 5000, and 60000 (full dataset).
- Policies 2-3 are independently evaluated with both unlabeled (using \mathcal{D}_s) and labeled (using \mathcal{D}_j^t) input options.
- The average test classification accuracy (%) of the student LENC nodes is reported.

Dataset	Stream Size	Policy 1	Policy 2	Policy 3
$\overline{\mathcal{D}_{j}^{t}}$	60000	91.97	93.72	93.59
,	60000	_	91.86	92.07
	100	-	37.75	37.11
\mathcal{D}^s	500	-	61.13	62.48
	1000	-	74.04	74.29
	5000	i -	90.15	90.05

Student LENC node classification accuracy (%) for varying Ds sizes in the CIFAR-10 dataset. The 3 alternative knowledge transfer policies are examined.

Experiment Setup:

- Repeated the CKD experiment.
 Used two untrained ResNet-18 students.
- Data stream: 1,000 CIFAR-10 samples.
- Simulated KSA failure by injecting binary noise into KSA outputs.

Key Observation:

- LENC remained robust despite KSA corruption.
- Only a slight drop in average accuracy was observed.

KSA module robustness analysis by adding binary noise to the KSA modules' output.

Bibliography

[1] I. Pitas, "Artificial Intelligence Science and Society Part A: Introduction to Al Science and Information Technology", Amazon/Kindle Direct Publishing, 2022,

https://www.amazon.com/dp/9609156460?ref_=pe_3052080_397514860

[2] I. Pitas, "Artificial Intelligence Science and Society Part B: AI Science, Mind and Humans", Amazon/Kindle Direct Publishing, 2022,

https://www.amazon.com/dp/9609156479?ref_=pe_3052080_397514860

[3] I. Pitas, "Artificial Intelligence Science and Society Part C: Al Science and Society", Amazon/Kindle Direct Publishing, 2022,

https://www.amazon.com/dp/9609156487?ref =pe 3052080 397514860

[4] I. Pitas, "Artificial Intelligence Science and Society Part D: Al Science and the Environment", Amazon/Kindle Direct Publishing, 2022,

https://www.amazon.com/dp/9609156495?ref_=pe_3052080_397514860

Bibliography

[KAI2024] Kaimakamidis, A., Mademlis, I., & Pitas, I. (2024). Collaborative Knowledge Distillation via a Learning-by-Education Node Community. arXiv preprint arXiv:2410.00074.

[ZHA2021] Zhang, C., Xie, Y., Bai, H., Yu, B., Li, W., & Gao, Y. (2021). A survey on federated learning. Knowledge-Based Systems, 216, 106775.

[MAS2020] Masinde, N., & Graffi, K. (2020). Peer-to-peer-based social networks: A comprehensive survey. SN Computer Science, 1(5), 299.

[BEL2021] Bellavista, P., Foschini, L., & Mora, A. (2021). Decentralised learning in federated deployment environments: A system-level survey. ACM Computing Surveys (CSUR), 54(1), 1-38.

Bibliography

[OUY2021] Ouyang, S., Dong, D., Xu, Y., & Xiao, L. (2021). Communication optimization strategies for distributed deep neural network training: A survey. Journal of Parallel and Distributed Computing, 149, 52-65.

[REN2023] Ren, W. Q., Qu, Y. B., Dong, C., Jing, Y. Q., Sun, H., Wu, Q. H., & Guo, S. (2023). A survey on collaborative DNN inference for edge intelligence. Machine Intelligence Research, 20(3), 370-395.

[HIN2015] Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531.

Q & A

Thank you very much for your attention!

More material in http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

