
This Project has received funding from the European union’s
HE Research and Innovation programme under grant agreement 101093003

NGSI-LD Context Broker
Workshop

Antonio Filograna, Matteo Basile

Agenda

• JSON-LD (@context)
• NGSI: History and Evolution to NGSI-LD
• NGSI-LD Entity
• NGSI-LD Tenant and Scope
• NGSI-LD Attributes and SubAttributes
• Different Payload Format of a JSON-LD
• The @context attribute
• CRUD Operations on NGSI-LD Context Broker
• Query Langugage on an NGSI-LD Context Broker
• NGSI-LD Subscriptions
• Using NGSI-LD Context Broker – TEMA Case
• NGSI-LD vs NGSIv2
• Q&A Session (10 minutes)

2

JSON-LD
• JSON is in data exchange format. However, it is not so easy for machines to read. The attributes of

a JSON can have different meanings even among humans themselves.

• For example, consider a JSON that has “name” as an attribute. For a person that attribute could
mean the person's native name. For another, it could mean the person's stage name. For yet
another the username of the person.

• What has been done is to define a JSON extension in which I annotate a piece of JSON with
additional information.

• Instead of having the name attribute without context (JSON) I make that attribute a URI rather than
a simple key-value pair. In this way, via the URI, I publicise the fact that that name attribute
actually represents the person's real name: easier for people and machines to understand it.

3

JSON-LD Example

4

NSGI-LD

5

Next Generation Service Interface-Linked Data (NGSI-LD) is an open
standard for context information management developed to
facilitate the exchange of information between applications in the
context of the Internet of Things (IoT).

FIWARE AWS IUDX Partners

+ 300 FIWARE Smart
Cities over the globe

AWS for its STF – Smart
Territory Framework

Adopted by IUDX,
currently deployed in

+35 Smart Cities

FIWARE’s partners
supporting NGSI-LD: Red

Hat, Atos, Telefonica,
NEC

NGSI History

6

2012

OMA (Open
Mobile Alliance)
publishes v1.0 of

NGSI (Next Gen
Service

Interfaces)

FIWARE, a huge
European project
starts, with the

conviction of
using NGSI

2012 2014

Telefonica I+D
defines NGSIv2 (we
got tired of NGSI’s
“verboseness”)

ETSI ISG CIM
starts to define
“NGSIv3” -NGSI
for Linked Data,

or “NGSI-LD”

2017 2018

CEF (Connecting Europe
Facility) selects Orion/Orion-LD
to be one of five of its principal

building blocks, thereby
making NGSI/NGSI-LD a

“preferred standard by EC”

NGSIv2 to NGSI-LD

NGSI-LD is the evolution of the NGSIv2 information model, which has
been updated and improved to support entity relationships, property
graphs and semantics (JSON-LD):

• The “id” now must be an URN (or an URI HTTP)
• The entity must have a “type” attribute which represent the class of
the entity

• The class must then be defined in the @context
• @context implicitly includes the core @context of NGSI-LD:
https:/ /uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld

7

https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld

Core @context

8

NGSI-LD Entity

9

Database

For
Create and

Search Entity
(+Subscription)

Type of Entity
(if SDM which one)

Entity
Identifier

Entity

id type scope

tenant

SCOPE

TENANTTY
PE

ID

ENTITY

In NGSI-LD, a 'tenant' refers to a separate instance within a system or platform using
this standard. The idea is to isolate information and resources between different
organisations or users within the same system. Using tenants, a single broker can
serve more than one “system” at a time, each system with its own database, its own
“tenant”. The header “NGSILD-Tenant: <tenant>” is used to choose the tenant.

10

NGSI-LD – Tenant

NGSI-LD

Context

Broker

Tenant: X

Database for
Tenant 1

Database for
Tenant 2

Database for
Tenant 3

Database for
Tenant 4

ISOLATED

In NGSI-LD, the “NGSI-LD-Scope” is used when creating and searching for
entities. An entity can have more than one scope, and searches support a list
of scopes, as well as wildcards (e.g. /Europe/Italy/Lecce/#).

11

NGSI-LD – Scope

Europe

Italy GreeceSpain

Lecce

Roma

Milano

Madrid Athens

Gallipoli

Otranto

NGSI-LD utilizes the type attribute to specifically identify an entity's
type. This serves as a representation of the entity's class or category.
Each individual entity can possess one or multiple types, which assist
in defining its unique characteristics and properties.

The type attribute plays a crucial role in data semantics. It provides
valuable insights about an entity's characteristics and behaviour by
defining its specific type. For instance, the type "Car" suggests that
the entity will possess attributes like "speed", "location” and
"fuelLevel".

12

NGSI-LD – Entity Type

The identifier of an entity in NGSI-LD must be a URI (Uniform Resource Identifier).
URIs are strings that uniquely identify a resource on the Internet. In the context of
NGSI-LD, the entity id represents a specific entity in the context of the Internet of
Things (IoT). Infact, the entity id must be unique within the context in which it is used.
For example, it could have the following structure:

13

NGSI-LD – Entity Id

urn:ngsi-ld:<entity_type>:<entity_id>

Where:

❖<entity_type> is the type of the entity (e.g. “Car”, “WeatherStation”)

❖<entity_id> is a unique identifier for that entity within the specific entity type
Example:

urn:ngsi-ld:car:1234

(URIs may be represented in different formats, such as HTTP URL, URN, or
any other scheme supported by URIs)

Entity Unique Identifier

14

Tenant
(Database)

Entity
Identifier

Entity

id type scope

tenant Unique Identifier of Entity

The "total" identifier of an entity is the set of { id, tenant }
In other words, there can be two entities with the same "id" but in

different tenants.

In NGSI-LD, the attributes of an entity represent the characteristics or properties of the entity. In
adherence to the Entity-Attribute-Value (EAV) model, an entity in NGSI-LD consists of:

• Entity: A tangible object in the physical world, such as a car or weather station, capable of
being defined and tracked.

• Attribute: Descriptors that define an entity's specific characteristics.
• Value: The current measurement or state of an attribute.

15

NGSI-LD – Entity Attributes
🡪 Entity-Attribute-Value

Entity

id type scope

tenant

Attribute

type name value

has

1 n

An attribute is a component of an entity that describes a particular characteristic or property of
that entity. Each attribute is composed of:
• Type:

• Property: an attribute of an entity that has a single value. For example, the temperature
of a sensor may be an attribute of type Property.

• GeoProperty: a geographical attribute of an entity (usually a GeoJSON).
• TemporalProperty: keeps track of the temporal information associated with a given

attribute.
• LanguageProperty: linguistic information, e.g. the language of a text associated with an

entity.
• VocabularyProperty: uses a specific vocabulary to define its value, contributing to better

semantic interoperability.
• Relationship: a relationship between two entities.
• ListProperty: a list of values rather than a single value (list of temperature

measurements).
• ListRelationship: a relationship involving more than two entities.

• Name: refers to the field that uniquely identifies an attribute within an entity.
• Value: the actual information associated with a specific attribute.

16

NGSI-LD – Entity
Attributes

Attribute

type name value

The concept of “Sub-Attribute” can sometimes be used informally to refer to
a hierarchical structure of attributes within a data model.

Name:
• unitCode
• observedAt

17

NGSI-LD – Sub-Attribute

Entity

id type scope

tenant

Attribute

type name value

has

1 n

SubAttrib

ute

type name value

has

1
n

NGSI-LD supports three different formats for JSON payload (for input as well as
output):

• Normalized
• Concise
• Simplified

18

NGSI-LD – Different
Payload Formats

Normalized Concise Simplified

The @context field in NGSI-LD is used to define the semantic context of the
data in a resource. The context helps interpret and understand the semantics
of the data, indicating how to interpret data types, attributes and other
elements within a JSON-LD resource. This context may be a URL pointing to
an external context document or a JSON object embedded in the document
itself. Context is crucial to correctly interpret the meaning of the data in the
JSON-LD document and to ensure proper semantic interoperability
between different systems.

Default Context: The Core @context is a built-in in an ETSI NGSI-LD
compliant broker and it has precedence over any user supplied @context.

19

NGSI-LD – @context

The @context field in NGSI-LD is used to define the semantic context of the data in
a resource. The context helps interpret and understand the semantics of the data,
indicating how to interpret data types, attributes and other elements within a JSON-
LD resource. This context may be a URL pointing to an external context document or
a JSON object embedded in the document itself.

20

NGSI-LD – @context:
Example

The Base Path of an NGSI-LD Context Broekr is:

https://<YOUR_DOMAIN>/ngsi-ld/v1
(The /v2 is for NGSI-v2)

21

NGSI-LD – CRUD on
Entities/Attributes

Create Read DeleteUpdate

/entities

/entityOperations/create

/entityOperations/upsert

/entities

/entities/{entityId}

/entityOperations/query

/entities/{entityId}/attrs

/entities/{entityId}/attrs/
{attrName}

/entityOperations/update

/entities/{entityId}

/entities/{entityId}

/entities/{entityId}/attrs

/entities/{entityId}

/entities/{entityId}/attrs/
{attrName}

/entityOperations/delete

POST

POST

POST POST

GET

GET DELETE

DELETE

POST

POST

PATCH

PATCH

POST

PATCH

PUT

Filters are criteria or parameters used to restrict and select specific entities or
information during a query of entities. These filters are used to customise queries and
obtain only the desired data. Filters are represented as parameters in the URI, except
when using a “POST Query”, where they are included in the body of the request (*).

22

NGSI-LD – Options for
Querying Entities

Comma-separated
list of Entity
iDentifiers

Id

REGEX to match
an Entity IDentifier

idPattern

Comma-separated
list of Entity Types

type

Comma-separated list
of attribute names

(two functions)

attrs*

NGSI-LD Query
Language, over

attributes

q

Comma-separated
list of scopes

scopeQ

Really 4 different
URL-params

geo-
query*

To select the language to
use for

LanguageProperties

lang*

The “NGSI-LD Query Language” is a query language used in the context of NGSI-LD
to perform advanced queries on entity attributes. Operators are fundamental
elements of this language and are used to define query conditions.

23

NGSI-LD – Query
Language: Operators

NGSI-LD Query
Language, over

attributes

q

q=A (no operator, just the
name of the attr)

Existence

q=!A

Non-
Existence

q=A==7
q=A==7,13,23
q=A==(7,23)

Equality
q=A!=7

q=A!=7,13,23
q=A!=(7,23)

Inequality

q=B.observedAt>”2023”

GT

q=C[present]<23.4

LT

q=D>=16

GTE

q=E<=19

LTE

q=A~=“<REGEX>”

Pattern
Match

AND OR Parenthesis

Each geometry type has its own “georels” that specifies the geographical relationship between the entity and
the specified point. (e.g., “near;minDistance==X” for “Point”). See: https://www.rfc-editor.org/rfc/rfc7946.

24

NGSI-LD – Query
Language: Operators

Really 4 different URL-
params

geo-
query*Point

MultiPoint
LineString

MultiLineString
Polygon

MultiPolygon

The “geo-query” is a functionality within NGSI-LD that allows spatial queries to be performed to select
entities based on geographical criteria. This functionality is particularly useful when managing geographical
or geospatial location data.z

Example (GET)

Example (POST)

/entities?geoProperty=location&geometry=Point&coordinates=[1,2]&georel=near;maxDistance==100

https://www.rfc-editor.org/rfc/rfc7946

25

NGSI-LD – Subscriptions
Subscriptions are mechanisms that allow users to receive real-time notifications
when information associated with entities meets certain specified conditions. A
Subscription defines “what to get notified for” and “where and in what format to send
the notification”. The notification are sent by CB via HTTP or MQTT Protocols.

DSS

Backend

Real Time Event Processing

NGSI-LD
Context
Broker

Update Entity
(temperature = 20)

Subscribed for temperature > 15

Subscribed for temperature = 23

Subscribed for temperature < 40

NGSI-LD Subscription
Parmeters

26

A subscription in NGSI-LD is characterized by:

• Watched Attributes and Conditions: when you want to receive notification
(example temperature greater than 20)

• Entities: which entity you want to monitor (obviously in the example before they
must have the temperature attribute)

• Notification: here you can specify the endpoint (HTTP or MQTT) to which you want
to receive the notification and the data format

See example in the next slide.

27

NGSI-LD – Subscriptions
(Example)

Trigger
Condition(s)

Target

Data/Json
tobe Reicived

URL for
Subscription

How to use Context Broker
in TEMA

28

CREATE MINIO CLIENT
To interface with Minio, you need to create a MINio Client.
The required parameters are:

● url minio
● client_id
● client_secret

Storage: MINIO (02)

29

Example code:

MinioClient minioClient =
MinioClient.builder()

.endpoint("https://play.min.io")

.credentials("Q3AM3UQ867SPQQA43P2F",
"zuf+tfteSlswRu7BJ86wekitnifILbZam1KYY3TG")

.build();

UPLOAD OBJECT:
After the creation of Minio Client, it’s possible to uploade contents from a
file as object in bucket.

Storage: MINIO (02)

30

Upload an JSON file.
minioClient.uploadObject(

UploadObjectArgs.builder()
.bucket("my-

bucketname").object("my-
objectname").filename("person.j
son").build());

Upload a video file.
minioClient.uploadObject(

UploadObjectArgs.builder()
.bucket("my-bucketname")
.object("my-objectname")
.filename("my-video.avi")
.contentType("video/mp4")
.build());

POST API:
url: http://temacontextbroker.eu/ngsi-ld/v1/entities/
body:

{
“id”:”urn:ngsi-ld:TemaEvent:Sardinia:26bc1c18-6cc3-11ee-b962-0242ac120002”,
“type”: “TemaEvent”,
“creator”: “Team Sardinia”,
“title”: “Drone image”

“description” : “Fire occurred in Sardinia at 11pm”,
“img_url”:“http://temastorage.eu/Tema/Sardinia/FireImages/651d7e8370125df5812ebb1d.jpg”

}

Create/Update metadata (03)

31

The payload data of a notification contains information about the
subscription that triggered the notification and the entities that provoked
it.

{
"id": "notification identifier",
"type": "Notification",
"subscriptionId": "urn:ngsi-ld:Subscription:Sardinia:TemaEvent",
"notifiedAt": "DateTime Timestamp corresponding to the instant when
the notification was generated",
"data": [
{ Entity 1 },
{ Entity 2 },
…
{ Entity N}]
}

Context broker push metadata (04)

32

GET DIGITAL OBJECT:
After the creation of Minio Client, it’s possible to get and download
contents from minio

get Digital Object (05)

33

// Download object given the bucket,
object name and output file name
minioClient.downloadObject(
DownloadObjectArgs.builder()
.bucket("my-bucketname")
.object("my-objectname")
.filename("my-object-file")
.build());

// get object given the bucket and object
name
try (InputStream stream =
minioClient.getObject(
GetObjectArgs.builder()
.bucket("my-bucketname")
.object("my-objectname")
.build())) {
// Read data from stream

}

34

NGSI-LD vs NGSI-v2

Data Representation

Data Model

Query Language

Attribute Management

Semantic Approach

Standard

NGSIv2NGSI-LD

Only JSON

Has a simpler data model than NGSI-LD and does not
exploit the Linked Data concept.

Uses a simpler and more straightforward query syntax,
without the support of advanced features such as those

found in the NGSI-LD Query Language.

Has simpler attribute management than NGSI-LD.

It focuses on a lighter and more direct approach
without fully adopting the concepts of Linked Data.

Based on specifications developed by FIWARE, a
consortium of companies and organisations promoting

open solutions for data management in the IoT.

It uses the JSON-LD (Linked Data) serialisation format
to represent data. This enables a semantic

representation of the data by incorporating context
information within the JSON payload.

Adopts a Linked Data based data model, providing
richer semantics and greater interoperability between

IoT applications.

Introduces the NGSI-LD Query Language, which allows
advanced queries on entity attributes, supporting

logical operators and complex conditions.

Allows greater flexibility in attribute management,
including the ability to define nested attributes

(subAttribute) and specify metadata for attributes.

It adopts a more advanced semantic approach through
the use of Linked Data, enabling better semantic
interoperability between heterogeneous systems.

Aligned with the standardisation principles of the
World Wide Web Consortium (W3C) for linked data.

Thanks!

Q&A
and

DEMO

35

This Project has received funding from the European union’s
HE Research and Innovation programme under grant agreement 101093003

Thank you for your
attention!
Matteo Basile (matteo.basile@eng.it)

	Slide 1: NGSI-LD Context Broker Workshop
	Slide 2: Agenda
	Slide 3: JSON-LD
	Slide 4: JSON-LD Example
	Slide 5: NSGI-LD
	Slide 6: NGSI History
	Slide 7: NGSIv2 to NGSI-LD
	Slide 8: Core @context
	Slide 9: NGSI-LD Entity
	Slide 10: NGSI-LD – Tenant
	Slide 11: NGSI-LD – Scope
	Slide 12: NGSI-LD – Entity Type
	Slide 13: NGSI-LD – Entity Id
	Slide 14: Entity Unique Identifier
	Slide 15: NGSI-LD – Entity Attributes 🡪 Entity-Attribute-Value
	Slide 16: NGSI-LD – Entity Attributes
	Slide 17: NGSI-LD – Sub-Attribute
	Slide 18: NGSI-LD – Different Payload Formats
	Slide 19: NGSI-LD – @context
	Slide 20: NGSI-LD – @context: Example
	Slide 21: NGSI-LD – CRUD on Entities/Attributes
	Slide 22: NGSI-LD – Options for Querying Entities
	Slide 23: NGSI-LD – Query Language: Operators
	Slide 24: NGSI-LD – Query Language: Operators
	Slide 25: NGSI-LD – Subscriptions
	Slide 26: NGSI-LD Subscription Parmeters
	Slide 27: NGSI-LD – Subscriptions (Example)
	Slide 28: How to use Context Broker in TEMA
	Slide 29: Storage: MINIO (02)
	Slide 30: Storage: MINIO (02)
	Slide 31: Create/Update metadata (03)
	Slide 32: Context broker push metadata (04)
	Slide 33: get Digital Object (05)
	Slide 34: NGSI-LD vs NGSI-v2
	Slide 35: Thanks!
	Slide 36: Thank you for your attention!

