

Economic Complexity: How Machine Learning Is helping us
 Understand Sustainable Economic Development

César A. Hidalgo

Center for Collective Learning, University of Toulouse and Corvinus University
Toulouse School of Economics \& Manchester University

Thomas
Thwaites

0 4

The world works not because a few people know a lot, but because many people know a little.

Economic complexity is about understanding how that knowledge comes together.

Economic complexity

machine learning
 $+$
 economic data
 $=$
 development outcomes

Starting from 2006-2007

Why Machine Learning

Because factors of production, and in particular knowledge, are highly specific and non-fungible (not interchangeable).

\square	\square
+	New chat
\square	Phone models discussed.
\square	Al Methods in Economics
\square	Digital trade importance.
\square	RQ: Papers, Ideas / T: Suggest
\square	Al and Economics Revolution
\square	Recommend TV Shows
\square	New chat
\square	New chat
\square	Clear conversations
\square	Upgrade to Plus
\square	Lark mode out
\square	

ChatGPT

Examples	Capabilities	Limitations

The best thing about AI is its ability to	4.5%	
	predict	3.5%
	make	3.2%
	understand	3.1%
	do	2.9%

Verb, Nouns, Adjectives, and Adverbs List

Verbs	Nouns	Adjectives	Adverbs
accuse	accusation	accusing	accusingly
argue	argument	arguable	arguably
characterize	character	characteristic	characteristically
condition	condition	conditional	conditionally
darken	dark, darkness	dark, darkened	darkly
destroy	destruction	destructive	destructively
drink	drink, drunkenness	drunk, drunken	drunkenly

Word Embeddings Provide Semantic Representations That Transcend Parts of Speech Grammar

Male-Female

Country-Capital

Attention!

It is a BIG problem!

Use neural networks to approximate these functions

With only a "few" billion parameters

"Parts of Speech" Economics

Manufacture

Capital Intensive

Agriculture
Capital Intensive

Agriculture
Labor Intensive

Manufacture
Labor Intensive

NLP, LLMs

Economic Complexity

Just like we can count the number of words in each sentence or paragraph, and their co-occurrences, to create representations of their semantic meaning, we can count the number of economic activities that are present across cities, regions, and countries to create representations of the knowledge embedded in them.

Spark Ignition Engines, Tobacco, Engine Parts, Aircraft Parts, Vaccines, Plywood, Tractors, Coffee, Frozen Bovine Meat, etc...

1Spark Ignition Engines, Engine Parts, Aircraft Parts, Aircraft, Wheat, Wine, Perfumes, Vaccines, etc... Crude Petroleum, Refined Petroleum, Petroleum Gases, Wheat, Aircraft Parts, etc.

Two Main Methods in Economic Complexity

Hidalgo et al. Science (2007)

Complexity Indexes

Hidalgo \& Hausmann. PNAS (2009)

Relatedness

What are the export opportunities of Chile? (1979)
TOTAL: \$3.67B

Relatedness

Measures affinity or distance between a location and an activity (e.g. how far is Yerevan from manufacturing Aircrafts).

It is the use of recommender systems to explain and predict changes in specialization patterns.

THE PRINCIPLE OF RELATEDNESS

Economic Complexity

The use of dimensionality
reduction techniques (e.g. SVD) to summarize the sophistication of productive structures.

Economic Complexity Explains

Economic Growth

Hidalgo and Hausmann, 2009
Chávez et al., 2017; Domini, 2019; Hausmann et al., 2014; Koch, 2021; Lo Turco and Maggioni, 2020; Ourens, 2012; Stojkoski et al., 2016

Inequality

Hartmann et al., 2017, Barza et al., 2020; Ben Saâd and Assoumou-Ella, 2019; Chu and Hoang, 2020; Fawaz and Rahnama-Moghadamm, 2019

Emissions

Can and Gozgor, 2017; Dordmond et al., 2020; Fraccascia et al., 2018 Hamwey et al., 2013; Lapatinas et al., 2019; Mealy and Teytelboym, 2020; Neagu, 2019; Romero and Gramkow, 2021

1- Japan

Economic Complexity

Knowledge of a place is the knowledge of the activities present in it

Knowledge of an activity is the knowledge of the places where it is present

$$
K_{c}=f\left(M_{c p}, K_{p}\right),
$$

$$
K_{p}=g\left(M_{c p}, K_{c}\right)
$$

$$
K_{c}=f\left(M_{c p}, g\left(M_{c p}, K_{c}\right)\right),
$$

Knowledge can be estimated

 as the solution to a linear eigenproblem$$
\widetilde{M}_{c c^{\prime}} K_{c}=\lambda K_{c}
$$

When f and g are defined as simple averages.

$$
\begin{aligned}
& K_{c}=\frac{1}{M_{c}} \sum_{p} M_{c p} K_{p} \\
& K_{p}=\frac{1}{M_{p}} \sum_{c} M_{c p} K_{c}
\end{aligned}
$$

The "easy way" to estimate $K c$ and $K p$ is to simply iterate the mapping, starting with $K p=M p$ and $K c=M c$. The mapping converges after about 20 iterations.

But is not that easy!

Units of observation are not comparable!

China \& USA ~ 15 to 20 trillion GDP

Macedonia ~ 0.0012 trillion GDP

Economic Complexity Index Trade (ECI Trade) vs GDP per capita

Economic Complexity and Economic Growth

Explains more growth than institutions

Explains more growth than education

	Next-century growth	Next-century growth
ECI	0.509***	0.400***
	(0.154)	(0.128)
GDP per capita	$-0.597 * * *$	-0.542**
	(0.161)	(0.219)
Constant	-0.128	-0.092**
	(0.121)	(0.043)
Country fixed effects	No	Yes
N of observations	96	96
N of countries	33	33
N of time periods	5	5
Adjusted R^{2}	0.221	0.770

b Economic complexity of US MSAs (industry payroll)

ECl (payroll by industry)

-1.5	$\begin{array}{lllllll}0.5 & 0 & 0.5 & 1 & 1.5 & 2 & 2.5\end{array}$	$\begin{array}{lllllll}3 & 3.5 & 4 & 4.5 & 5 & 5.5 & 6\end{array}$
Table 1 \| Rankings of economic complexity		
Rank	Economic complexity rankings	
	US metro areas: payroll by industry (2018)	US metro areas: patents by technology (2018)
1	San Jose-Sunnyvale-Santa Clara, CA	San Jose-Sunnyvale-Santa Clara, CA
2	San Francisco-Oakland-Hayward, CA	Austin-Round Rock-San Marcos, TX
3	Boston-Cambridge-Newton, MA-NH	San Francisco-Oakland-Fremont, CA
4	Los Angeles-Long Beach-Anaheim, CA	Boise City-Nampa, ID
5	Seattle-Tacoma-Bellevue, WA	Rochester, MN

Economic complexity of US MSAs

(patents by technology class)

ECI (patents by technology)
$\begin{array}{lllllllllllll}-1.5 & -1 & -0.5 & 0 & 0.5 & 1 & 1.5 & 2 & 2.5 & 3 & 3.5 & 4 & 4.5\end{array}$

Hidalgo et al. Economic Complexity Theory and Applications. Nature Review Physics (2021)

Economic Complexity of UK Local Authorities by Industry

Mealy, Penny, and Diane Coyle. "To them that hath: economic complexity and local industrial strategy in the UK." International Tax and Public Finance (2021): 1-20.

Economic Complexity of Chinese Provinces Using Data on Publicly Listed Firms

Gao, Jian, and Tao Zhou. "Quantifying China's regional economic complexity." Physica A:
Statistical Mechanics and its Applications 492 (2018): 1591-1603.

Economic Complexity of Mexican States Using Industry Data

Map 1: States' Level of Economic Complexity, 2013

Índice de Complejidad Económica (ECI) por Entidad Federativa (Semestre 2021)

Economic Complexity Explains Variations in Income Inequality

Hartmann, Guevara, Jara-Figueroa, Aristaran, \& Hidalgo,. World Development (2017)

Economic Complexity Explains Greenhouse Emission Intensity

	Contents lists available at ScienceDirect World Development l homepage: www.elsevier.com/locate/worlddev							
Economic complexity and greenhouse gas emissions João P. Romero ${ }^{\mathrm{a}, *}$, Camila Gramkow ${ }^{\mathrm{b}, 1}$ ${ }^{\text {a }}$ Universidade Federal de Minas Gerais (UFMG), Center for Development and Regional Planning (Cedeplar), Brazil ${ }^{\mathrm{b}}$ United Nations Economic Commission for Latin America and the Caribbean (ECLAC), Brazil and Chile								
Table 2 Emission intensity fixed effects regressions.								
Model	(i)	(ii)	(iii)	(iv)	(v)	(vi)	(vii)	(viii)
ECI	-0.0475 (0.119)	-0.0423 (0.136)	-0.0501 (0.125)	0.0676 (0.0711)	-0.0709 (0.117)	$\begin{aligned} & \hline-0.0840 \\ & (0.130) \end{aligned}$	0.0437	0.0912
Lagged ECI	$-0.156^{* *}$	-0.166^{*} (0.0846)	$\left(0.156^{* *}\right.$	$-_{-0.169^{* *}}$ $\begin{aligned} & (0.085) \\ & (0) \end{aligned}$	-0.128^{*}	${ }_{-0.118}^{(0.150}$ $\underset{(0.0737)}{-0.118}$	$-0.166^{* *}$	-0.137^{*}
Ln of GDP per capita	$\begin{aligned} & -0.470^{* *} \\ & (0.189) \end{aligned}$	$\begin{aligned} & -0.450^{*} \\ & (0.238) \end{aligned}$	$\begin{aligned} & -0.472^{* *} \\ & (0.191) \end{aligned}$	$\begin{aligned} & -0.682^{\circ} \cdots \\ & (0.105) \end{aligned}$	$\begin{aligned} & -0.438^{* *} \\ & (0.185) \end{aligned}$	$\begin{aligned} & -0.491^{* *} \\ & (0.187) \end{aligned}$	$\begin{aligned} & -0.382^{* * *} \\ & (0.0956) \end{aligned}$	$\begin{aligned} & -0.408^{* *} \\ & (0.172) \end{aligned}$
Ln of Agric. Share	0.172^{*} (0.0963)	$\begin{aligned} & 0.148 \\ & (0.0994) \end{aligned}$	$\begin{aligned} & 0.170^{*} \\ & (0.0968) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.138^{*} \\ & (0.0792) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.138 \\ & (0.0879) \end{aligned}$	$\begin{aligned} & { }_{\left(0.182^{*}\right.}^{(0.0931)} \end{aligned}$	$\begin{aligned} & 0.143^{*} \\ & (0.0844) \end{aligned}$	$\begin{aligned} & 0.0678 \\ & (0.0778) \\ & \hline \end{aligned}$
Ln of Openness	${ }^{0.167^{* *}}$ (0.0768)	$\begin{aligned} & 0.171^{* *} \\ & (0.0782) \end{aligned}$	$\begin{aligned} & 0.166^{* * *} \\ & (0.0736) \end{aligned}$	$\begin{aligned} & 0.151^{*} \\ & (0.0771) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.165^{+*} \\ & (0.0742) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.174^{+0} \\ & (0.0703) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0594 \\ & (0.0626) \end{aligned}$	$\begin{aligned} & 0.0958 \\ & (0.0667) \\ & \hline \end{aligned}$
Ln of Electricity Cons.		$\begin{aligned} & 0.0112 \\ & (0.125) \end{aligned}$						
Ln of Urbanization			$\begin{aligned} & 0.0280 \\ & (0.247) \end{aligned}$					$\begin{aligned} & -0.770^{* * *} \\ & (0.232) \end{aligned}$
Ln of Sec. School Enrol.				$\begin{aligned} & 0.0441 \\ & (0.107) \end{aligned}$				$\begin{aligned} & -0.00561 \\ & (0.0922) \end{aligned}$
Ln of Population					$\begin{aligned} & 0.253 \\ & (0.321) \end{aligned}$			$\begin{aligned} & 0.49^{*} \\ & (0.232) \end{aligned}$
Ln of Manuf. Share						$\begin{aligned} & 0.114 \\ & (0.0744) \end{aligned}$		$\begin{aligned} & -0.0526 \\ & (0.0660) \end{aligned}$
Ln of Patents							0.0000429 (0.0217)	$\begin{aligned} & -0.00135 \\ & (0.0234) \end{aligned}$
Constant	$\begin{gathered} (1.98979 \end{gathered}$	$\begin{aligned} & 9.779 \cdots \cdots \\ & (1.690) \end{aligned}$	$\begin{aligned} & 9.9000^{* *} \\ & (1.769) \end{aligned}$	$\begin{gathered} 1.2 .27 \cdots \\ (0.847) \end{gathered}$	$\begin{aligned} & 5.635 \\ & (5.466) \end{aligned}$	$\frac{9.774 \cdots \cdots}{(1.725)}$	$\begin{gathered} 9.61^{* * *} \\ (0.866 \end{gathered}$	$\begin{aligned} & 4.991 \\ & (3.752) \end{aligned}$
N. Obs.	485 0358	469 0359	${ }_{0}^{485}$	${ }_{4}^{439}$	${ }_{0}^{485}$	${ }_{0}^{469}$	${ }_{0}^{383}$	344 0728
Adj. R-sq.	0.358	0.359	0.357	0.515	0.361	0.406	0.636	0.728

Springer Link

Open Access | Published: 05 February 2021
Economic Complexity and Environmental Performance: Evidence from a World Sample

258								E. Boletiet al.
Table 2 The effect of economic complexity on environmental performance: pooled OLS								
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
ECI	$\begin{aligned} & \begin{array}{l} 6.414 * * * \\ (0.331) \end{array} \end{aligned}$	$\begin{aligned} & \text { 4.869*** } \\ & (0.337) \end{aligned}$	$\begin{aligned} & \text { 5.167*** } \\ & (0.343) \end{aligned}$	$\begin{aligned} & \hline 3.904^{* * *} \\ & (0.378) \end{aligned}$	$\begin{aligned} & 3.584^{* * *} \\ & (0.408) \end{aligned}$	$\begin{aligned} & \hline 3.459 * * * \\ & (0.403) \end{aligned}$	$\begin{aligned} & \text { 4.071*** } \\ & (0.422) \end{aligned}$	$\begin{aligned} & 3.220 * * * \\ & (0.39) \end{aligned}$
GDP per capita	$\begin{aligned} & 7.805 * * * \\ & (0.321) \end{aligned}$	$\begin{aligned} & 7.770 * * * \\ & (0.306) \end{aligned}$	$\begin{aligned} & 7.532 * * * \\ & (0.305) \end{aligned}$	$\begin{aligned} & 7.704 * * * \\ & (0.437) \end{aligned}$	$\begin{aligned} & { }^{6.891 * * *} \\ & (0.478) \end{aligned}$	$\begin{aligned} & 7.158 * * * \\ & (0.476) \end{aligned}$	$\begin{aligned} & { }_{(0.541 * * *}^{(0.584)} \end{aligned}$	$\begin{aligned} & 5.760 * * * \\ & (0.576) \end{aligned}$
GDP per capita ${ }^{2}$	$\begin{aligned} & 0.443 * * \\ & (0.136) \end{aligned}$	$\begin{aligned} & 0.639 * * * \\ & (0.149) \end{aligned}$	$\begin{aligned} & 0.658 * * * \\ & (0.149) \end{aligned}$	$\begin{aligned} & 0.883 * * * \\ & (0.157) \end{aligned}$	$\begin{aligned} & 0.651 * * * \\ & (0.169) \end{aligned}$	$\begin{aligned} & 0.591 * * * \\ & (0.165) \end{aligned}$	$\begin{aligned} & 0.14 \\ & (0.182) \end{aligned}$	$\begin{aligned} & -0.262 \\ & (0.179) \end{aligned}$
Population			$\begin{aligned} & -0.006 * * * \\ & (0.001) \end{aligned}$	$\begin{aligned} & -0.006 * * * \\ & (0.001) \end{aligned}$	$\begin{aligned} & -0.006 * * * \\ & (0.001) \end{aligned}$	$\begin{aligned} & -0.006 * * * \\ & (0.001) \end{aligned}$	$\begin{aligned} & -0.005 * * * \\ & (0.001) \end{aligned}$	$\begin{aligned} & -0.006 * * * \\ & (0.001) \\ & \hline \end{aligned}$
Agriculure				$\begin{aligned} & -0.115^{* * *} \\ & (0.038) \end{aligned}$	$\begin{aligned} & -0.106 * * * \\ & (0.038) \end{aligned}$	$\begin{aligned} & -0.140 * * * \\ & (0.039) \end{aligned}$	$\begin{aligned} & -0.129 * * \\ & (0.046) \\ & \end{aligned}$	$\begin{aligned} & -0.157 * * \\ & (0.044) \end{aligned}$
Industry				$\begin{aligned} & -0.057 * * * \\ & (0.022) \end{aligned}$	$\begin{aligned} & -0.028 \\ & (0.022) \end{aligned}$	$\begin{aligned} & -0.049^{* *} \\ & (0.023) \end{aligned}$	$\begin{gathered} 0.005 \\ (0.027) \end{gathered}$	$\begin{gathered} 0.012 \\ (0.026) \end{gathered}$
Corruption					$\begin{aligned} & 1.248^{* * *} \\ & (0.377) \end{aligned}$	$\begin{aligned} & 1.036 * * * \\ & (0.371) \end{aligned}$	$\begin{aligned} & 2.144 * * * \\ & (0.383) \end{aligned}$	$\begin{aligned} & 1.186 * * * \\ & (0.354) \end{aligned}$
Trade						$\begin{aligned} & 0.023 * * * \\ & (0.005) \end{aligned}$	$\begin{gathered} 0.006 \\ (0.005) \end{gathered}$	$\begin{gathered} 0.015 * * * \\ (0.005) \end{gathered}$
Urban							$\begin{gathered} 0.028 \\ (0.02) \end{gathered}$	$\begin{gathered} 0.026 \\ (0.02) \end{gathered}$
Education							$\begin{aligned} & -0.000 * * * \\ & (0.000) \end{aligned}$	$\begin{aligned} & -0.000 * * * \\ & (0.000) \end{aligned}$
OECD								$\begin{aligned} & 6.523 * * * \\ & (0.774) \end{aligned}$
Observations	1283	1210	1210	1160	1160	1149	940	940
R-squared	0.814	0.855	0.857	0.865	0.866	0.87	0.89	0.9
F-statistic	555.8	525.3	521.8	479	466.7	460.2	483.9	526.2

$\begin{array}{lllllll}\text { F-statistic } & 555.8 & 525.3 & 521.8 & 479 & 466.7 & 460.2\end{array}$ Dependent variable: Environmental Performance Index (EPI). Main independent variable: Economic Complexity Index (ECI). Time fixed effects
are included in all regressions. Regional dummies are also included: europe, asia, oceania, north america, south america. Robust standard errors in parentheses

Limitations of trade ECI

Economic Complexity Index Trade (ECI Trade)

Stojkoski, Viktor, Philipp Koch, and César A. Hidalgo. "Multidimensional economic complexity and inclusive green

Solution: Combine Data from Different Outputs

International Trade

Patents

Research Papers

Economic Complexity Index Technology (ECI Technology)

Economic Complexity Index Research (ECI Research)

Stojkoski, Viktor, Philipp Koch, and César A. Hidalgo. "Multidimensional economic complexity and inclusive green growth." Communications Earth \& Environment 4.1 (2023): 130.

Economic growth
a

Income inequality

Emission intensity
c

Digital Product Trade

C
Digital Product Exports
(by fiscal residency of subsidiaries)

Viktor Stojkoski, Koch, Philipp, Eva Coll and César A. Hidalgo. "The Geography of Digital Trade" Forthcoming Nature Communications (2024)

Digital Trade is Growing Fast

Viktor Stojkoski, Koch, Philipp, Eva Coll and César A. Hidalgo. "The Geography of Digital Trade" Forthcoming Nature Communications (2024)

It help us revisit trade balances

It is correlated with decoupling C

And it involves high complexity sectors

d

Estimating Historical GDPpc

Getting from here...

... to here

Data

Data on 2 million+ famous individuals from Wikipedia ${ }^{9}$, including their geocoded places of birth and death as well as their occupation.

Looking at continental Europe and North America between 1300 and 2000 (and only using individuals with at least 2 language editions and an identifiable occupation), we end up using data on $\sim 561 \mathrm{k}$ famous individuals assigned to one of 49 occupations.

Koch, Stojkoski, Hidalgo (2024)

Why biographies?

Our collective memory on famous individuals is likely one of the most comprehensive representation of the historical geography of knowledge.

The famous individuals that were born at, have died at, immigrated to or emigrated from a specific place tell us something about the level of economic development.

Regularized Elastic Net

Leave 20% out-of-sample cross validation

Baseline model

Full model

Model

Model performance

Validation - Little Divergence

In 1300, the bottom $10^{\text {th }}$ percentile of the South has been as rich as the top $90^{\text {th }}$ percentile of the North. In 1800, the opposite holds: The bottom $10^{\text {th }}$ percentile of the North exhibits a similar income level as the $90^{\text {th }}$ percentile of the South.

Validation - proxies of economic development

Body height in the 18th century

OECD Wellbeing indicator in 1850

City-level church building activity

Results 1300

Our approach also allows for regional estimates of historical GDP per capita levels. Which regions in Europe had the highest per capita income levels in e.g. 1300 ?

1400
1400

1500

1600

1750

~~~

1800

1850

1900

1950

\# TREE MAP	^ STACKED
COUNTRY	Exports Imports Export Destinations Import Origins
PRODUCT	- Exporters Importers
BILATERAL	Exports to Destination Imports from Origin Exports by Product Imports by Product
* NETWORK	\%RINGS
- GEO MAP	\% SCATTER
PARTNER	
- All	\checkmark
PRODUCT	
\square Cars	\checkmark
TRADE FLOW	DATASET
Export \checkmark	HS92
YEAR	
2013	\checkmark

\# TREE MAP	$』$ STACKED
COUNTRY	Exports Imports Export Destinations Import Origins
PRODUCT	- Exporters Importers
BILATERAL	Exports to Destination Imports from Origin Exports by Product Imports by Product
* NETWORK	\% RINGS
- GEO MAP	\% SCATTER
PARTNER	
- All	\checkmark
PRODUCT	
\square Cars	\checkmark
TRADE FLOW	DATASET
Export	HS92
YEAR	
2013	\checkmark

\qquad

Which countries export Cars? (2013)

Germany	22\%	United Kingdom		Japan			United States			
				8.3\%						
			6.0\%					\%		Canada
Spain	France	Italy	-	South Korea			6.8\%			
4.3\%	3.3\%	1.6\%	$\underline{\mathrm{m}}$		1.1\%		Mexico			
seoplim..	${ }^{\text {smame }}$	-		6.4\%			4.9\%			
3.5\%	21×1	-			-		$\underline{\sim}$			

Which occupations make Fruit Juice?

Examine the common industries for a product.

Top Exporting Municipalities

2. Rio de Janeiro USD 7.49 B

3. Sâo Paulo USD 7.32 B

5. Sâo José Dos Campos USD 4.6B

6. Santos USD 4.36B

7. Paranaguá USD 4.3B

8. Itajal USD 3.92 B

9. Sāo Bernardo do Campo USD 3.59 B

Dozens economic data visualization platforms

Combined for millions of monthly users

¿Qué es DataMéxico?
DataMéxico permite la integración, visualización y análisis de datos públicos para fomentar la innovación, inclusión y diversificación de la economía mexicana.

PERFILES

Explore México mediante datos económicos, sociales y ocupacionales a través de visualizaciones interactivas personalizables.

*゚ COMPLEJIDAD ECONÓMICA

Conozca el nivel de desarrollo industrial y económico en México a múltiples niveles geograficos.

fe VIZ BUILDER

Genere sus propias visualizaciones con base en la selección de datos de su interés.
.... INDUSTRIAS

(o) PAÍSES :inuevol Estados Uhidos

OCUPACIONES

1. Médicos, Enfermeras y otros Especialistas en calud espe

PR PRODUCTOS

La diplomacia de México

The world is complex
Made of highly-specific and non-fungible knowledge

Economic complexity methods allow us to make high resolution representations of economies to understand where they stand and where they are going.

Hidalgo et al. Science (2007)

Hidalgo \& Hausmann. PNAS (2009)

