

Attention and Transformer Networks in Computer Vision

N. M. Militsis, Prof. Ioannis Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr Version 3.0

Transformers in Computer Vision

- Motivation and related work
- Transformers
- Vision Transformer (ViT)
- Swin Transformer
- DEtection Transformer (DETR)
- SEgmentation TRansformer (SETR)
- Segment Anything Model (SAM)
- DINO
- Video ViT (ViViT)

Convolutional Neural Network limitations

- Convolutional Neural Networks (CNNs) at each layer employ moving convolution kernel (2D filter) windows.
- 2D convolution kernels are learned feature detectors.
- They are local operators.
- CNNs cannot benefit from distant image patch correlations.
- CNN kernels are *inefficient* at modeling visual elements with *varying spatial distributions*.

CNN limitations

- CNN features do not consider important spatial hierarchies between objects.
- Only *local interactions* are considered in each convolutional layer.
- CNNs detect parts with no sense of the whole (*Picasso* problem).

CNN limitations

- Most CNN architectures leverage *pooling* for increasing the receptive field of higher-level layers kernels, allowing them to capture higher-level features on large image regions.
- Pooling may lead to severe information loss.
- Only *local interactions* are considered in each convolutional layer.

CNN inductive bias

- **CNNs** rely on the assumptions of **locality** and **stationarity** governing the 2*D* image signal.
- Locality refers to the fact that neighboring pixel intensity values tend to be more correlated than those of distant ones.
- Stationarity denotes that image statistics do not vary spatially (e.g., across image regions).

Locally adaptive kernels

- Each CNN layer is *static*. That is, the same fixed convolution kernel (CNN parameters) slides across different image regions.
- Data-dependent *locally-adaptive kernels* can facilitate the accurate cope with varying spatial image distributions.
 - Such kernels (*Bilateral filter* [ELA2002], *Non-local means* [BUA2005], *LARK* [TAK2007]) have widely been applied on image denoising.

Locally adaptive kernels

• Bilateral filter:

$$k_{ij} = \exp\left(\frac{-\left\|x_i - x_j\right\|^2}{b_x^2}\right) \exp\left(\frac{-\left\|\mathbf{p}_i - \mathbf{p}_j\right\|^2}{b_p^2}\right)$$

- k_{ij} : similarity between image pixels *i* and *j*.
- x_i : intensity of image pixel *i*.
- $\mathbf{p}_i \in \mathbb{R}^2$: image pixel *i* position.

Locally adaptive kernels

- Non-local means is a generalization of bilateral filter.
- It operates at image patch than at image pixel level:

$$k_{ij} = \exp\left(\frac{-\left\|\mathbf{x}_i - \mathbf{x}_j\right\|^2}{b_x^2}\right) \exp\left(\frac{-\left\|\mathbf{p}_i - \mathbf{p}_j\right\|^2}{b_p^2}\right)$$

- k_{ij} : similarity between two image patches *i* and *j*,
- $\mathbf{x}_i \in \mathbb{R}^d$: vector of patch *i* pixel intensities.
- $\mathbf{p}_i \in \mathbb{R}^2$: patch position on the image.

Locally adaptive kernels

• Locally adaptive regression kernel (LARK) captures the local data structure, by estimating the local geodesic distance between nearby patches.

$$k_{ij} = \exp\left(-(\mathbf{x}_i - \mathbf{x}_j)^T \mathbf{C}_{ij}(\mathbf{x}_i - \mathbf{x}_j)\right).$$

- k_{ij} : similarity between two image patches *i* and *j*,
- $\mathbf{x}_i \in \mathbb{R}^d$: vector of patch *i* pixel intensities.
- C_{ij} ∈ ℝ^{d×d}: covariance matrix of the gradient of the intensity values approximating the local geodetic distance.
 Artificial Intelligence & Information Analysis Lab

Motivation Locally adaptive kernels

11

• Scaled dot-product attention [VAS2017]:

$$a_{ij} = Softmax\left(rac{\mathbf{q}_i^T \mathbf{k}_j}{\sqrt{d_k}}
ight),$$

$$\mathbf{q}_i = \mathbf{W}_Q(\mathbf{x}_i + \mathbf{p}_i) \in \mathbb{R}^{d_k},$$
$$\mathbf{k}_j = \mathbf{W}_K(\mathbf{x}_j + \mathbf{p}_j) \in \mathbb{R}^{d_k}.$$

• a_{ij} : similarity between the image patches *i* and *j* represented by feature vectors $\mathbf{x}_i \in \mathbb{R}^{d_m}$ and $\mathbf{x}_j \in \mathbb{R}^{d_m}$,

• $\mathbf{p}_i, \mathbf{p}_j \in \mathbb{R}^{d_m}$: patch positional encodings.

 $\bigcup_{\text{Information Analysis Lab}} d_k \times d_m, W_K \in \mathbb{R}^{d_k \times d_m} \text{ learnable parameter matrices.}$

Related work

Augmenting CNNs with attention

 Scaled dot-product attention module of Self-Attention Generative Adversarial Networks (SAGANs)

- Operator ⊗ denotes matrix multiplication.
- f(x), g(x), h(x) can be considered as queries Q, keys K and values V, respectively.
- Softmax is performed row-wise [ZHA2018].

Artificial Intelligence & Information Analysis Lab

Related work Augmenting CNNs with attention

Non-local neural networksOutputspatiotemporalfeaturemap $\mathbf{Z} \in \mathbb{R}^{THW \times C'}$ is generatedfrom $\mathbf{X} \in \mathbb{R}^{THW \times C}$:

- $\mathbf{Z} = Softmax (\mathbf{X}\mathbf{W}_{\theta}\mathbf{W}_{\varphi}^{T}\mathbf{X}^{T})\mathbf{X}\mathbf{W}_{g}.$
- $\mathbf{W}_{\theta}, \mathbf{W}_{\varphi}, \mathbf{W}_{g} \in \mathbb{R}^{C \times C'}$: learnable parameter matrices.
- *T* and *H*, *W* are the temporal and spatial dimensions.

Related work

Information Analysis Lab

Augmenting CNNs with attention

Non-local neural networks

Correlations captured by non-local blocks [WAN2018].

(VML

Related work

Replacing convolution with (local) attention

- Stand-Alone Self-Attention in Vision Models (SASA)
- Attention can used as standalone primitive for vision models instead of serving just as augmentation on top of convolutions.
- Attention kernel slides accross different image regions.

Artificial Intelligence &

Information Analysis Lab

Spatial local attention layer [RAM2019].

15

Artificial Intelligence & Information Analysis Lab

Augmenting CNNs with attention

Related work

Local Relation Networks

A local relation layer *adaptively determines the aggregation weights* based on the compositional relationship of local pixel pairs.

The local relation layer [HU2019].

Related work

Augmenting CNNs with attention

Local Relation Networks

Local relation layer:

$$\omega = \operatorname{Softmax}\left(\Phi\left(f_{\theta_q}(\mathbf{x}_i), f_{\theta_k}(\mathbf{x}_j)\right) + f_{\theta_k}(\mathbf{p}_i - \mathbf{p}_j)\right).$$

• $\Phi(f_{\theta_q}(\mathbf{x}_i), f_{\theta_k}(\mathbf{x}_j))$ is a measure of **similarity** between the target pixel \mathbf{x}_i and a pixel \mathbf{x}_j within its position scope.

Related work

Augmenting CNNs with attention

- Local Relation Networks
 - $\mathbf{p}_i \in \mathbb{R}^2$: position of pixel *i*.
 - $f_{\theta_k}(\mathbf{p}_i \mathbf{p}_j)$: it defines the similarity of a pixel pair (i, j) based on a geometric prior.
 - The geometric term adopts the relative position as input and is translationally invariant.
 - It is encoded by a small network consisting of two channel transformation layers, with a ReLU activation in between.

Transformers in Computer Vision

- Motivation and related work
- Transformers
- Vision Transformer (ViT)
- Swin Transformer
- DEtection Transformer (DETR)
- SEgmentation TRansformer (SETR)
- Segment Anything Model (SAM)
- DINO
- Video ViT (ViViT)

- An image $\mathbf{X} \in \mathbb{R}^{HW \times C}$ is split into fixed-size patches $\mathbf{x} \in \mathbb{R}^{N^2C}$.
- Each patch gets linearly embedded as following:

$$\mathbf{x}'_i = \mathbf{W}_e \mathbf{x}_i, \quad i = 1, \dots, HW$$

• $\mathbf{W}_e \in \mathbb{R}^{d_m \times N^2 C}$:learnable parameter matrix.

Image patches.

 Positional information is provided through additive learnable positional encodings of the same dimension d_m as the input vectors z_i:

$$\mathbf{z}_i = \mathbf{x}'_i + \mathbf{p}_i.$$

- At initialization, the positional encodings carry no information about the 2D positions of the patches.
- All spatial relations between the patches are learned during training.
- The matrix of input embeddings $\mathbf{Z} \in \mathbb{R}^{L \times d_m}, L = HW/N^2$ is imported in the Transformer encoder.

Transformer was originally designed for neural sequence transduction.

It has an *encoder-decoder* structure followed by one or more *task specific branches*.

 $N \times$

Encoder

- The encoder consists of a stack of N identical blocks.
- Each block has two sub-layers:
 - A multi-head self-attention module.
 - A position-wise fully connected feed-forward network.
- Residual connection [HE2016] is employed around each sub-layer followed by layer normalization [BA2016].

Decoder

- The decoder also consists of a stack of N identical blocks.
- Each block has three sub-layers.
 - A (*causal*) *multi-head self-attention module*. Optionally a mask is employed to prevent current data point from attending subsequent ones.
 - A *multi-head cross-attention module* between encoder and decoder sequences.
 - A position-wise fully connected feed-forward network.
- Again, residual connection and layer normalization are applied around each sub-layer.

Scaled dot-product attention

Three new matrices $\mathbf{Q} \in \mathbb{R}^{L \times d_k}$ (*queries*), $\mathbf{K} \in \mathbb{R}^{L' \times d_k}$ (*keys*), $\mathbf{V} \in \mathbb{R}^{L' \times d_v}$ (*values*) are generated:

$$\mathbf{Q} = \mathbf{Z}\mathbf{W}_Q + \mathbf{1}_{L \times 1}\mathbf{b}_Q, \qquad \mathbf{W}_Q \in \mathbb{R}^{d_m \times d_k}, \mathbf{b}_Q \in \mathbb{R}^{d_k}, \\ \mathbf{K} = \mathbf{Z}'\mathbf{W}_K + \mathbf{1}_{L' \times 1}\mathbf{b}_K, \qquad \mathbf{W}_K \in \mathbb{R}^{d_m \times d_k}, \mathbf{b}_K \in \mathbb{R}^{d_k}, \\ \mathbf{V} = \mathbf{Z}'\mathbf{W}_V + \mathbf{1}_{L' \times 1}\mathbf{b}_V, \qquad \mathbf{W}_V \in \mathbb{R}^{d_m \times d_v}, \mathbf{b}_V \in \mathbb{R}^{d_v}, \end{cases}$$

by linearly transforming two matrices $\mathbf{Z} \in \mathbb{R}^{L \times d}$ and $\mathbf{Z}' \in \mathbb{R}^{L' \times d}$, where $L \neq L'$,

• Learnable parameters: \mathbf{W}_Q , \mathbf{W}_K , \mathbf{W}_V , \mathbf{b}_Q , \mathbf{b}_K , \mathbf{b}_V .

i is arbitrarily chosen that $d_k = d_v$.

Scaled dot-product attention

Using the terminology in [GRAV2014], attention is an averaging of *values*, associated to *keys* matching to specific *queries*.

In *cross-attention* each data point of sequence X'_e attends to all data points of sequence Z' in order to compute a new representation of sequence Z:

$$\mathbf{Y} = Softmax\left(\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d_k}}\right)\mathbf{V}.$$

The **row-wise Softmax operator** renders a probability distribution, representing the normalized correlation scores of each query to all the keys.

Transformers

- They can have multiple heads, facilitating both parallelization and attention to different regions.
- Transformer encoder and decoder can have multiple layers.

Transformers in Computer Vision

- Motivation and related work
- Transformers
- Vision Transformer (ViT)
- Swin Transformer
- DEtection Transformer (DETR)
- SEgmentation TRansformer (SETR)
- Segment Anything Model (SAM)
- DINO
- Video ViT (ViViT)

In ViT [DOS2021] an image is split into non overlapping *patches*. The sequence of *linear embeddings* of these patches is provided as input to a *Transformer encoder*.

The model is trained on *image classification* task in *supervised* fashion.

ViT architecture

- An image $\mathbf{X} \in \mathbb{R}^{HW \times C}$ is split into fixed-size patches $\mathbf{x} \in \mathbb{R}^{N^2C}$.
- Each patch gets linearly embedded as following:

$$\mathbf{x}'_i = \mathbf{W}_e \mathbf{x}_i, \qquad i = 1, \dots, HW$$

• $\mathbf{W}_e \in \mathbb{R}^{d_m \times N^2 C}$:learnable parameter

ViT overview [DOS2021].
----------------	-----------

ViT architecture

 Positional information is provided through additive learnable positional encodings of the same dimension d_m as the input vectors z_i:

$$\mathbf{z}_i = \mathbf{x}'_i + \mathbf{p}_i.$$

- At initialization, the positional encodings carry no information about the 2D positions of the patches.
- All spatial relations between the patches are learned during training.

ViT architecture

- The matrix of input embeddings $\mathbf{Z} \in \mathbb{R}^{L \times d_m}$, $L = HW/N^2$ is imported in the Transformer encoder.
- Similar to BERT [class] token, an **extra learnable embedding vector** $\mathbf{z}_s \in \mathbb{R}^{d_m}$ is appended at the start of **Z** leading to $\mathbf{Z}' \in \mathbb{R}^{(L+1) \times d_m}$
- The state of z_s at the encoders output serves as the *final image representation* $y_s \in \mathbb{R}^{d_m}$.

ViT architecture

• The *final image representation* $\mathbf{y}_s \in \mathbb{R}^{d_m}$ is fed to a single linear layer parameterized by $\mathbf{W} \in \mathbb{R}^{d_m \times K}$ (for *K* classes) followed by a *Softmax* activation function to produce the final class probability distribution.

Typically, ViT is pre-trained on large datasets and fine-tuned on downstream tasks.

ViT architecture

Artificial Intelligence &

Information Analysis Lab

- Neighboring image patches tend to have similar position embeddings.
- Patches in the same row/column have similar embeddings.
- Positional encoding pairwise similarities exhibit row-column structure.

Position embedding similarity

Positional encodings pairwise similarities [DOS2021]. 34

Remarks

 For extracting the distribution of class probabilities, the output token $\mathbf{y}_{s} \in \mathbb{R}^{d_{m}}$ attends to semantically relevant image regions.

Attention of the output token to the input space [DOS2021]. 35

Remarks

- The *attention distance* increases with network depth.
- It can be considered bo be analogous to the receptive field in CNNs.
 - Globally, the ViT model attends to image regions that are semantically similar for classification.

Artificial Intelligence & Information Analysis Lab

Distance of attended area by head and layer [DOS2021]. 36

37

Remarks

Artificial Intelligence &

Information Analysis Lab

- ViT attention distances shift from local to global when moving deeper in the network.
- ResNet effective receptive fields are highly local and grow gradually, when moving deeper in the CNN network.

ViT attention distance vs ResNet receptive field [RAG2022].

Remarks

 When trained on large datasets, multi-headed ViT attention
flattens the loss function, leading to better performance and generalization.

Negative log likelihood loss + ℓ_2 regularization [PAR2022]. 38

Remarks

• When trained on small datasets, multi-headed ViT attention allows negative Hessian eigenvalues, leading to *non-convex loss function forms*.

Negative Hessian eigenvalues and amplitude of positive Hessian eigenvalues for ImageNET. The dotted line corresponds to the 6% of the dataset [PAR2022].

ViT

Remarks

- Fourier analysis of feature maps can show that *Multi-headed Self-Attention* (*MSA*) modules dampen high signal frequencies, while convolutional kernels tend to amplify them.
- Thus, MSA layers are homogeneous region-biased, while convolutional ones are texturebiased.

Artificial Intelligence &

Information Analysis Lab

0.0 0.0 Δ Log amplitude -7.0 - -7.0 - -7.0 - -7.0 - -7.0 - -9.0 Log amplitude ^{1.00} qebth 0.75 debth -1.0 Normalized o -2.0 < 0.00 0.0π 0.5π 1.0π 0.0π 0.5π 1.0π Frequency Frequency

ResNet

Relative log amplitudes of Fourier transformed feature map. Δ log amplitude of high-frequency signals is the difference between the log amplitude at normalized frequency 0.0π and at 1.0π [PAR2022].

Hybrid ViT architecture

- The ViT input sequence can be formed from CNN feature maps of image patches.
- The input embedding projection using $W_e \in \mathbb{R}^{d_m \times N^2 C}$ is applied to patches extracted from a CNN feature map.
- As a special case, the patches can have spatial size 1 × 1, which means that the input sequence is obtained by simply flattening the spatial dimensions of the feature map.

Transformers in Computer Vision

- Motivation and related work
- Transformers
- Vision Transformer (ViT)
- Swin Transformer
- DEtection Transformer (DETR)
- SEgmentation TRansformer (SETR)
- Segment Anything Model (SAM)
- DINO
- Video ViT (ViViT)

- Unlike the word tokens in Natural Language Processing (NLP), visual elements can vary substantially in scale.
- This issue is important in vision tasks, such as object detection.

Visual input embeddings of *fixed scale* are *unsuitable* for most vision applications.

44

Swin Transformer

Swin Transformer [LIU2021] constructs *hierarchical* feature maps by *merging* image patches in *deeper layers*.

- Self-attention is computed locally within non-overlapping *local* windows (in red) consisting of $M \times M$ patches.
- Linear computation complexity.

Artificial Intelligence &

Information Analysis Lab

Hierarchical and fixed resolution feature maps of patches (in grey) [LIU2021].

segmentation

16×

detection ...

classification

(a) Swin Transformer (ours)

(b) ViT

- A *hierarchical* image representation is constructed by starting from small-sized patches and *gradually merging neighboring* ones in *deeper layers*.
- The Swin Transformer employs these hierarchical feature maps to leverage advanced techniques for *dense prediction*, such as *feature pyramid networks* (FPN) [LIN2017] or U-Net [RON2015].

 To introduce cross-window connections while maintaining computational efficiency, a cyclically shifted window (Swin) approach is utilized between layers.

Shifted window approach [LIU2021].

 Computation of self-attention in layer *l*+1 crosses the boundaries of windows in layer *l*.

- The window is *shifted cyclically*, as it is typically done in cyclic convolutions.
- Assuming that the feature map is repeated periodically in both spatial dimensions, the window is shifted *from top-left to bottom-right*.
- Masks are employed to prevent the computation of selfattention between patches that are not adjacent in the original image.

Cyclic shift of windows [LIU2021].

Positional information in injected to the model, by including a *learnable relative position* bias $\mathbf{B} \in \mathbb{R}^{M^2 \times M^2}$ to each head of local self attention within a *window* consisting of M^2 patches:

$$\mathbf{X}_{w}^{h} = Softmax \left(\frac{\mathbf{Q}_{w}^{h} (\mathbf{K}_{w}^{h})^{T}}{\sqrt{D_{k}}} + \mathbf{B}^{h} \right) \mathbf{V}_{w}^{h}.$$

• $\mathbf{Q}_{w}^{h}, \mathbf{K}_{w}^{h} \in \mathbb{R}^{M^{2} \times d_{k}}, \mathbf{V}_{w}^{h} \in \mathbb{R}^{M^{2} \times d_{v}}$: queries, keys and values corresponding to window w and head h.

Swin Transformer architecture

• Shifted window configuration is utilized between consecutive blocks in each stage [LIU2021].

Transformers in Computer Vision

- Motivation and related work
- Transformers
- Vision Transformer (ViT)
- Swin Transformer
- DEtection Transformer (DETR)
- SEgmentation TRansformer (SETR)
- Segment Anything Model (SAM)
- DINO
- Video ViT (ViViT)

- DETR [CAR2020] object detection employs neither handcrafted components, such as *Non-Maximum Suppression* (NMS) nor *anchor boxes* that encode prior knowledge about the task.
- DETR employs the conjunction of a *bipartite matching loss* and a *parallel decoding* transformer (non autoregressive).

DETR architecture [CAR2020].

(VML

VML

DETR architecture

- Given an input image $X \in \mathbb{R}^{C_0 \times H_0 W_0}$ DETR uses a conventional *CNN backbone* to learn a lower resolution feature map $X' \in \mathbb{R}^{C \times HW}$.
- Typical values:

$$C = 2048, H = H_0/32, W = W_0/32.$$

• The channel dimension *C* is reduced through an 1×1 convolution creating a new feature map $\mathbf{X}'' \in \mathbb{R}^{d_m \times HW}$.

DETR architecture

• Positional information is provided through *additive fixed* vectors of the same dimension d_m as the input embeddings:

$$\mathbf{z}_i = \mathbf{x}_i^{\prime\prime} + \mathbf{p}_i, \quad i = 1, \dots, HW$$

 The elements of p_i are computed through sinusoids, as in the original transformers [VAS2017].

VML

DETR architecture

- The final sequence is imported to a *standard* Transformer *encoder* consisting of *N* blocks.
- A matrix 0 ∈ ℝ^{d_m×L_o} of L_o learned vectors, namely object queries, is imported to a standard Transformer decoder which decodes them in parallel.
- *K*: the *maximum number of objects* in an image.
- L_o : hyperparameter obeying the restriction $L_o > K$.

VML

DETR architecture

- The decoder outputs a matrix $\mathbf{Y} \in \mathbb{R}^{d_m \times L_o}$. Each vector $\mathbf{y}_i \in \mathbb{R}^{d_m}$, $i = 1, ..., L_o$ passes through *two different branches*.
- One branch outputs distribution of class probabilities (*classification task*), while the other one regresses bounding box coordinates (*regression task*).

• Overall, the model produces L_o final predictions.

VML

DETR architecture

- The *classification* branch consists of a linear projection layer followed by a *Softmax* activation function.
- The *regression* branch consists of a 3-layer perceptron with *ReLU* activation function.
- It predicts the *normalized center* coordinates, *height* and width of the bounding box with respect to the input image.

VML

DETR architecture

- The DETR model predicts a set of L_o bounding boxes, where L_o is usually *much larger* than the actual *number of objects* in an image.
- An additional special class label Ø is used to represent that no object is detected within a slot.
- The class Ø plays a similar role to the "background" class in the standard object detection approaches.

Bipartite matching loss

- Since the number of L_o predictions is much larger than the actual number of objects in an image, a special loss function is needed.
- The loss function must produce an optimal bipartite matching between predicted and ground truth objects, and afterwards optimize object-specific (bounding box) losses.

Bipartite matching loss

- Given an image the set of ground-truth is denoted by $\mathbf{Y} = \{\mathbf{y}_i\}_{i=1}^{N_o}$ where N_o is the number of objects.
- $\mathbf{y}_i \in \mathbb{R}^{K+4}$, where *K* denotes the number of classes and 4 stands for the bounding box coordinates.
- The set of model predictions in denoted by $\widehat{\mathbf{Y}} = \{\widehat{\mathbf{y}}_i\}_{i=1}^{L_o}$ where $\widehat{\mathbf{y}} \in \mathbb{R}^{K+4}$.
- Since $L_o > N_o$ the set Y must be padded with \emptyset before finding a bipartite matching between ground-truth and predictions.

Bipartite matching loss

• Bipartite matching is accomplished by finding a permutation of L_o elements, $\sigma \in \mathfrak{S}_{L_o}$ with the lowest cost:

$$\hat{\sigma} = \arg\min_{\sigma \in \mathfrak{S}_{L_o}} \sum_{i=1}^{L_o} \mathcal{L}_m(\mathbf{y}_i, \hat{\mathbf{y}}_{\sigma(i)}).$$

 $\mathcal{L}_m(\mathbf{y}_i, \hat{\mathbf{y}}_{\sigma(i)})$ is a *pair-wise matching cost* between ground truth \mathbf{y}_i and a prediction with index $\sigma(i)$.

Bipartite matching loss

• The pair-wise matching cost between ground truth y_i and a prediction with index $\sigma(i)$ is computed as follows:

$$\mathcal{L}_m(\mathbf{y}_i, \hat{\mathbf{y}}_{\sigma(i)}) = -\mathbb{1}_{\{k_i \neq \emptyset\}} \hat{p}_{\sigma(i)}(k_i) + \mathbb{1}_{\{k_i \neq \emptyset\}} \mathcal{L}_b(\mathbf{b}_i, \hat{\mathbf{b}}_{\sigma(i)}).$$

- k_i is the ground truth class label.
- $b_i \epsilon [0,1]^4$ is a vector that defines the normalized ground truth bounding-box coordinates, height and width.
- $\hat{p}_{\sigma(i)}$ is the predicted probability distribution corresponding to the ground-truth.

VML

Bipartite matching loss

• The regression loss $\mathcal{L}_b(\mathbf{b}_i, \hat{\mathbf{b}}_{\sigma(i)})$ is a linear combination of the L_1 loss and the generalized IoU loss:

$$\mathcal{L}_{b}(\mathbf{b}_{i}, \hat{\mathbf{b}}_{\sigma(i)}) = \lambda_{iou} \mathcal{L}_{iou}(\mathbf{b}_{i}, \hat{\mathbf{b}}_{\sigma(i)}) + \lambda_{L_{1}} \|\mathbf{b}_{i} - \hat{\mathbf{b}}_{\sigma(i)}\|_{1}$$

• $\lambda_{iou}, \lambda_{L_1} \in \mathbb{R}$: hyperparameters.

• Both terms are normalized by the number of objects inside the batch of images used during loss computation.

VML

Bipartite matching loss

• A *Hungarian loss* is computed for all the pairs matched in the previous step:

$$\mathcal{L}_{H}(\mathbf{Y}, \widehat{\mathbf{Y}}) = \sum_{i=1}^{L_{o}} \left[-log \hat{p}_{\widehat{\sigma}(i)} + \mathbb{1}_{\{k_{i} \neq \emptyset\}} \mathcal{L}_{b}(\mathbf{b}_{i}, \widehat{\mathbf{b}}_{\widehat{\sigma}(i)}) \right]$$

• $\hat{\sigma}$ is the optimal assignment computed in the previous step.

VML

Object queries

 Each object query learns to specialize on certain areas and box sizes.

Visualization of all box predictions on all images from COCO 2017 val set for 20 out of total $L_o = 100$ prediction slots in DETR decoder. Each box prediction is represented as a point with the coordinates of its center in the 1-by-1 square normalized by each image size. The points are color-coded so that green color corresponds to small boxes, red to large horizontal boxes and blue to large vertical boxes.[CAR2020].

Artificial Intelligence & Information Analysis Lab

self-attention(430, 600)

self-attention(520, 450)

self-attention(450, 830)

self-attention(440, 1200)

Encoder self-attention for a set of reference points. The encoder is able to separate individual instances. Predictions are made with baseline DETR model on a validation set image [CAR2020].

Artificial Intelligence & Information Analysis Lab VML

DETR for panoptic segmentation

• DETR can be naturally extended by adding a segmentation branch on top of the decoder outputs.

DETR with panoptic head. A binary mask is generated in parallel for each detected object, then the masks are merged using pixel-wise argmax [CAR2020].

Artificial Intelligence & Information Analysis Lab

Real Time Detection Transformer (RT-DETR) for forest fire detection.

Information Analysis Lab

Pipe defect detection.

70

Application in industrial inspection

Artificial Intelliaence &

nformation Analysis Lab

- DETR has been applied for defect detection on pipes for industrial inspection.
- Real Time DETR (RT-DETR) did not match YOLO performance.

Pipe defect detection results [MEN2024].

	#0/11+/TT11		
Model	mAP 0.50	mAP 0.50:95	mAR 0.50:95
Yolov5	0.432	0.216	0.405
Yolov8	0.371	0.168	0.317
Yolo-Nas	0.319	0.140	0.359
Yolov6	0.519	0.251	0.444
RT-Detr	0.398	0.210	0.398

Transformers in Computer Vision

- Motivation and related work
- Transformers
- Vision Transformer (ViT)
- Swin Transformer
- DEtection Transformer (DETR)
- SEgmentation TRansformer (SETR)
- Segment Anything Model (SAM)
- DINO
- Video ViT (ViViT)

SEgmentation TRansformer

SETR encoder

- An image $\mathbf{X} \in \mathbb{R}^{HW \times C}$ is split into fixed-size patches $\mathbf{x} \in \mathbb{R}^{N^2C}$.
- Each patch gets linearly embedded as following:

$$\mathbf{x}'_i = \mathbf{W}_e \mathbf{x}_i, \quad i = 1, \dots, HW$$

• $\mathbf{W}_e \in \mathbb{R}^{d_m \times N^2 C}$:learnable parameter matrix.

SETR encoder

• A 24-layer *pre-trained ViT* [DOS2021] is employed to generate a matrix of discriminative feature representations on image patches, denoted by $\mathbf{Y} \in \mathbb{R}^{L \times d_m}$, where $L = HW/N^2$.

In the pre-trained model, positional information is provided through *additive learnable* positional encodings of the same dimension d_m as the input vectors z_i :

$$\mathbf{z}_i = \mathbf{x}'_i + \mathbf{p}_i.$$

SETR encoder

- In SETR [ZHE2021], positional encoding employs a 2D interpolation on the pre-trained position embeddings, according to their location in the original image for different input size fine-tuning.
- Given Y ∈ ℝ^{L×dm}, a decoder is used to recover the original image resolution. Crucially there is *no down-sampling* in spatial resolution, but *global context modeling* at every layer of the encoder transformer.

SETR decoder

- The goal of SETR decoder is to generate the segmentation results in the original 2D image space $\mathbb{R}^{H \times W \times C}$.
- The encoder features $\mathbf{Y} \in \mathbb{R}^{L \times d_m}$ must be translated into a 3*D* feature map $O \in \mathbb{R}^{H \times W \times C}$.
- Three different designs are explored: *naïve*, progressive upsampling (*UP*) and multi-level feature aggregation (*MLA*).

SETR naïve decoder

- A simple *2-layer network* composed by 1 × 1 convolutions with ReLU activation function in between is used.
- The output of this network, is simply bilinearly up sampled to the original image resolution followed by a classification layer with pixel-wise cross-entropy loss.

SETR UP decoder

 Instead of one-step upscaling which may introduce noisy predictions, a *progressive upsampling strategy* that alternates convolutional layers and upsampling operations is considered.

 To maximally mitigate the adversarial effect, each upsampling is restricted to 2×.

- *Multi-level feature aggregation* is employed in similar spirit of feature pyramid networks.
- Intermediate feature representations \mathbf{Y}^{l_e} , $l_e = 1, ..., L_e$ at the encoder l_e^{th} layer) share the same resolution.
- Multi-level feature aggregation is applied through sampling feature representations \mathbf{Y}^m from M layers: $m \in \left\{\frac{L_e}{M}, 2\frac{L_e}{M}, \dots, M\frac{L_e}{M}\right\}$.

- *M* streams are deployed, with each focusing on one specific encoder layer.
- Each $\mathbf{Y}^m \in \mathbb{R}^{L \times d_m}$ is mapped to a 3D feature map $Y^m \in \mathbb{R}^{\frac{H}{N} \times \frac{W}{H} \times d_m}$.

- A 3-layer (kernel sizes 1 × 1, 3 × 3, and 3 × 3) network is applied with the feature channels halved at the first and third layers respectively, and the spatial resolution upscaled 4 × by bilinear operation after the third layer.
- To enhance the interactions across different streams, a topdown aggregation via element-wise addition after the first layer is introduced.

- An additional 3×3 convolutional layer is applied after the element-wise feature sum.
- After the third layer, the fused feature from all the streams via channel-wise concatenation is obtained which is the bilinearly up-sampled $4 \times$ to the full resolution.

a) SETR architecture, b) UP decoder, c) MLA decoder [ZHE2021].

Artificial Intelligence & Information Analysis Lab

Transformers in Computer Vision

- Motivation and related work
- Transformers
- Vision Transformer (ViT)
- Swin Transformer
- DEtection Transformer (DETR)
- SEgmentation TRansformer (SETR)
- Segment Anything Model (SAM)
- DINO
- Video ViT (ViViT)

- It is designed to be *prompt-responsive*, accepting both:
 - sparse prompts (including points, bounding boxes, and text) and
 - dense prompts (masks) alongside the input image.
- The main novelty of SAM is the prompt encoder.

Model architecture

SAM architecture [KIR2023].

SAM architecture

- *Image encoder*: A *Masked Auto Encoding* (MAE) pretrained Vision Transformer (ViT) encoder that embeds the image and extracting its essential features.
- **Prompt encoder**: Lightweight prompt encoder designed to transform user prompts into embedding vectors in real time.
 - Mask decoder: Lightweight decoder dedicated to predicting segmentation masks, by integrating both the image and prompt embeddings.

Image Encoder is any network with the following input and output:

- Input: Image $\mathbf{X} \in \mathbb{R}^{H_0 \times W_0 \times C_0}$, typically rescaled and padded to an analysis of $1024 \times 1024 \times 3$.
- Output: Image embedding $\mathbf{Y} \in \mathbb{R}^{H \times W \times C}$, typically with size $64 \times 64 \times 256$.
- SAM image encoder is the MAE pre-trained Vision Transformer (ViT).

Prompt Encoder

- Input: N_t sparse prompts (points, bounding boxes and text).
- Output: N_t vectorial embeddings (one per prompt).
- **Point**: Sum of positional encoding of points location $\mathbf{p}_i \in \mathbb{R}^{256}$ and a learned embedding $\mathbf{x}_i \in \mathbb{R}^{256}$.
- **Bounding box**: Embedding pair of upper left and lower right corner $\mathbf{x}_{iu} \in \mathbb{R}^{256}$, $\mathbf{x}_{il} \in \mathbb{R}^{256}$.
- **Text**: Text prompts are fed into the CLIP text encoder, generating an output embedding $\mathbf{x}_i \in \mathbb{R}^{256}$ which serves as the input for the prompt encoder.

Mask prompt Encoder

Dense prompts (masks) are embedded using 1×1 and 2×2 convolutions to produce $\mathbf{Y}_m \in \mathbb{R}^{H \times W \times C}$.

- Typically, one segmentation mask is provided.
- The mask and image embeddings **Y**, **Y**_m are added elementwise:

 $\mathbf{Y}'=\mathbf{Y}+\mathbf{Y}_m.$

If there is no dense prompt, then a default learned embedding Y_o ∈ ℝ^{H×W×C} is added to the image embedding.
Artificial Intelligence & Information Analysis Lab

Mask Decoder (modified Transformer decoder) maps the image embedding \mathbf{Y}' and a set of prompt embeddings $\mathbf{x}_i, i = 1, ..., N_t$ to output masks $\mathbf{Y}_o \in \mathbb{R}^{H \times W \times 3}$.

Mask Decoder layer has 4 steps:

- Self-attention on the prompt embeddings.
- **Cross-attention** from prompt embeddings (as queries) to the image embedding.
- **Point-wise MLP** to update the prompt embeddings.
- Cross-attention from image embeddings (as queries) to the prompt embedding.

Mask Decoder

- 3 learned output token embeddings are inserted in the set of prompt embeddings.
- A small MLP head estimates the IoU between each predicted mask and the object it covers, ranking the predicted masks.

SAM loss functions

- SAM loss is the sum of a mask loss and an IoU loss.
- The *mask loss*, the loss in the supervised mask prediction, is a linear combination of *focal loss* and *dice loss* in a 20:1 focal loss to dice loss ratio.
- The *IoU loss*, for the IoU prediction head, is the meansquare-error loss between the IoU prediction and the predicted mask IoU with the ground truth mask.
- The IoU loss is added to the mask loss with a constant scaling factor of 1.0.

Industrial Inspection Applications

SAM has been applied to real-world use cases, such as pipe region segmentation.

 A CNN model and SAM were combined in order to produce masks of pipes in the image.

Pipe Image Segmentation Architecture [PSA2024].

Pipe Image Segmentation

Transformers in Computer Vision

- Motivation and related work
- Transformers
- Vision Transformer (ViT)
- Swin Transformer
- DEtection Transformer (DETR)
- SEgmentation TRansformer (SETR)
- Segment Anything Model (SAM)
- DINO
- Video ViT (ViViT)

DINO [CAR2021] is a **self-supervised ViT** trained in a self-**DI**stillation with **NO** labels fashion.

• DINO is used in:

Artificial Intelligence &

nformation Analysis Lab

- Image feature extraction
- Image classification.
- Feature representations extracted from DINO contain **explicit information** about the **semantic segmentation** of an image and they are excellent **k-NN classifiers** (78.3% top-1 accuracy on ImageNet).

DINO architecture

- Two different random transformations of an input image are passed through two *different versions* of the *same ViT*.
- The two versions of ViT are called **student and teacher network** and they are denoted by $g_s(\cdot; \mathbf{W}_s)$ and $g_t(; \mathbf{W}_t)$ respectively.
- Both student and teacher have the same architecture.
- The teacher parameters are updated with an exponential moving average of the student ones.

DINO architecture

- The output of the teacher network is centered with a mean computed over the batch.
- Each network outputs a *K* dimensional feature that is normalized with a temperature *Softmax* over the feature dimension.

Their similarity is measured with a cross-entropy loss.

DINO architecture

- Given an input image $\mathbf{X} \in \mathbb{R}^{C \times HW}$ both networks output probability distributions denoted by $p_s(\mathbf{X}), p_t(\mathbf{X}) \in \mathbb{R}^K$.
- The temperature *Softmax* for the student is computed by:

$$p_s^j(\mathbf{X}_i) = \frac{\exp(\boldsymbol{g}_s^j(\mathbf{X}; \mathbf{W}_s) / \tau_s)}{\sum_{k=1}^{K} \exp(\boldsymbol{g}_t^j(\mathbf{X}; \mathbf{W}_t) / \tau_s)}$$

• τ_s is the temperature parameter controlling the sharpness of distribution.

DINO architecture

- Each input image X ∈ ℝ^{C×H×W} is randomly cropped multiple times forming 2 global crops at resolution covering 50% of the original image and several *local crops* covering less than 50% of the original image.
- All crops are passed through the student network, while only the global ones are passed through the teacher one.
- For a specific image, the network is self-trained based on all pairs of random crops.

DINO architecture

- A stop-gradient (sg) operator is applied on the teacher network to propagate gradients only through the student one.
- Centering prevents one dimension to dominate, but encourages collapse to the uniform distribution.
- Softmax temperature compensates for this.

DINO architecture [CAR2021].

Artificial Intelligence & Information Analysis Lab Self-attention per head on the last DINO layer [CAR2021].

extra learnable embedding.

- This is visualized using different colors.
- Different heads focus on different objects or parts.

DINO

Self-attention on the last DINO layer for a set of reference points [CAR2021].

Transformers in Computer Vision

- Motivation and related work
- Transformers
- Vision Transformer (ViT)
- Swin Transformer
- DEtection Transformer (DETR)
- SEgmentation TRansformer (SETR)
- Segment Anything Model (SAM)
- DINO
- Video ViT (ViViT)

Video ViT (ViViT)

ViViT [ARN2021] extracts *spatio-temporal tokens* from input *video* and encodes them through a series of Transformer *encoder* layers.

- ViViT is used in:
 - video feature extraction
 - video classification.

Video ViT (ViViT)

Four different ViViT variants *factorize* different components of the transformer encoder over the *spatial* and *temporal* dimensions:

- Spatio-temporal attention.
- Factorized encoder.
- Factorized self-attention (each single head is factorized).
- Factorized multi-headed attention (factorization across heads).

ViViT architecture

- A video $\mathbf{V} \in \mathbb{R}^{THW \times C}$ is mapped into a sequence of spatiotemporal fixed-size patches $\mathbf{v}_p \in \mathbb{R}^{N_T N_H N_W C}$.
- This can be done through *uniform frame sampling* or *tubelet embedding*.
- Each patch gets linearly embedded as following:

$$\mathbf{v}_p' = \mathbf{W}_e \mathbf{v}_p \in \mathbb{R}^{d_m}.$$

• $\mathbf{W}_e \in \mathbb{R}^{d_m \times N_T N_H N_W C}$ is learnable.

ViViT architecture

• In *tubelet embedding*, spatio-temporal patches of dimensions $N_T \times N_H \times N_W$ are extracted.

ViViT architecture

• Positional information is provided through *additive learnable* positional encodings of the same dimension d_m as the input embeddings:

$$\mathbf{z}_{pi} = \mathbf{v}_{pi}' + \mathbf{p}_i.$$

- The video model processes N_T times more tokens than the one pre-trained on images.
- Thus, as an initialization step, the *positional encodings pre-trained on images* are repeated temporally to all frames. Then they are fine-tuned on video.

Spatio-temporal attention

• All spatio-temporal tokens are simply forwarded through the Transformer encoder.

Tubelet embedding [ARN2021].

Factorized ViViT architecture

• In *uniform frame sampling*, N_T video frames are uniformly sampled and each 2D frame is split into patches of dimensions $N_H \times N_W$.

Uniform video frame sampling [ARN2021].

Factorized encoder

- The model consists of two separate encoders in series, a spatial and a temporal one.
- It corresponds to a late fusion of spatial and temporal information.

VML

Factorized encoder

- The *spatial encoder* captures correlations between tokens extracted from the same video frame, to produce a latent representation per frame.
- Like ViT, an *extra learnable embedding* is appended to the beginning of the spatial sequence.
- Its state at the spatial encoder output serves as the *latent* frame representation $\mathbf{h}_t \in \mathbb{R}^{d_m}$ where t denotes time.

Factorized encoder

- The *temporal encoder* models interactions between latent representations at different time instances.
- Again, an *extra learnable embedding* is appended to the beginning of the temporal sequence.
- Its state at the temporal encoder output serves as the *final* video representation y ∈ ℝ^{dm}.

Factorized self-attention

• Within each transformer block, the multi-headed selfattention operation is factorized into two operations that first only compute self-attention spatially, and then temporally.

Factorized self-attention [ARN2021].

Factorized multi-headed attention

 Half of the heads compute self-attention over the spatial axis, while the other half compute self-attention over the temporal axis.

Artificial Intelligence & Information Analysis Lab Factorized multi-headed attention [ARN2021].

Bibliography

[ELA2002] M. Elad, "On the origin of the bilateral filter and ways to improve it", IEEE Transactions on Image Processing, vol. 11, issue 10, pp. 1141-1151, 2002

[BUA2005] A. Buades, B. Coll, J.M. Morel, "A Review of Image Denoising Algorithms, with a New One", Multiscale Modelling & Simulation, vol. 4, issue 2, pp. 490-530, 2005

[TAK2007] H. Takeda, S. Farsiu, P. Milanfar, Kernel regression for image processing and reconstruction, IEEE Transactions on Image Processing, vol. 16, issue 2, pp. 349-366, 2007

[VAS2017] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, I. Polosukhin, "Attention Is All You Need", Advances in Neural Information Processing Systems (NIPS), 2017.

[GRAV2014] A. Graves, G. Wayne, I. Danihelka, Neural Turing Machines, arxiv preprint arXiv:1410.5401, 2014

[ZHA2018] H. Zhang, I. Goodfellow, D. Metaxas, A. Odena, "Self-Attention Generative Adversarial Networks", arxiv preprint <u>arXiv:1805.08318</u>, 2018

[WAN2018] X. Wang, R. Girshick, A. Gupta, K. He, "Non-local Neural Networks", Conference on Computer Vision and Pattern Recognition (CVPR), 2018

Bibliography

[RAM2019] P. Ramachandran, N. Parmar, A. Vaswani, I. Bello, A. Levskaya, J. Shlens, "Stand-Alone Self-Attention in Vision Models", Advances in Neural Information Processing Systems (NeurIPS), 2019

[HU2019] H. Hu, Z. Zhang, Z. Xie, S. Lin, "Local Relation Networks for Image Recognition", International Conference on Computer Vision (ICCV) 2019

- [RAD2018] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, "Improving Language Understanding by Generative Pre-Training", OpenAI Blog, 2018.
- [RAD2018] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, "Improving Language Understanding by Generative Pre-Training", OpenAI Blog, 2018.
- [DEV2018] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", arxiv preprint <u>arXiv:1810.04805</u>, 2018.

[DOS2021] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. Houlsby, "An Image is Worth 16 × 16 Words: Transformers for Image Recognition at Scale", International Conference on Learning Representations (ICLR), 2021

Bibliography

[PAR2022] N. Park, S. Kim, "How do vision transformers work?", International Conference on Learning Representations (ICLR), 2022

[RAG2022] M. Raghu, T. Unterthiner, S. Kornblith, C. Zhang, A. Dosovitskiy, "Do Vision Transformers See Like Convolutional Neural Networks?", Neural Information Processing Systems (NeuIPS), 2022

[LIU2021] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows", International Conference on Computer Vision (ICCV), 2021

[LIN2017] T.Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, S. Belongie, "Feature Pyramid Networks for Object Detection", Conference on Computer Vision and Pattern Recognition (CVPR), 2017

[RON2015] O. Ronneberger, P. Fischer, T. Brox, "U-net: Convolutional networks for biomedical image segmentation", International Conference on Medical image computing and computer-assisted intervention, 2015

[CAR2020] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, S. Zagoruyko, "End-to-End Object Detection with Transformers", European Conference on Computer Vision (ECCV), 2020

[ARN2021] A. Arnab, M. Dehghani, G. Heigold, C. Sun, M. Lučić, C. Schmid, "ViViT: A Video Vision Transformer", arxiv preprint <u>arXiv:2103.15691</u>, 2021

[CAR2021] M. Caron, H. Touvron, I. Misra, H. Jegou, J. Mairal, P. Bojanowski, A. Joulin, "Emerging Properties in Self-Supervised Vision Transformers", International Conference on Computer Vision (ICCV), 2021

[ZHE2021] S. Zheng, J. Lu, H. Zao, X. Zhu, Z. Luo, Y. Wang, Y. Fu, J. Feng, T. Xiang, P.H.S. Torr, L. Zhang, "Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers", Conference on Computer Vision and Pattern Recognition (CVPR) 2021

Thank you very much for your attention!

More material in http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

