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Convolutional Neural Network limitations

• Convolutional Neural Networks (CNNs) at each layer

employ moving convolution kernel (2D filter) windows.

• 2D convolution kernels are learned feature detectors.

• They are local operators.

• CNNs cannot benefit from distant image patch correlations.

• CNN kernels are inefficient at modeling visual elements

with varying spatial distributions.
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CNN limitations

• CNN features do not consider important spatial hierarchies

between objects.

• Only local interactions are considered in each

convolutional layer.

• CNNs detect parts with no sense of the whole (Picasso

problem).
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CNN limitations

• Most CNN architectures leverage pooling for increasing the

receptive field of higher-level layers kernels, allowing them

to capture higher-level features on large image regions.

• Pooling may lead to severe information loss.

• Only local interactions are considered in each

convolutional layer.
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CNN inductive bias

• CNNs rely on the assumptions of locality and stationarity

governing the 2𝐷 image signal.

• Locality refers to the fact that neighboring pixel intensity

values tend to be more correlated than those of distant

ones.

• Stationarity denotes that image statistics do not vary

spatially (e.g., across image regions).
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Locally adaptive kernels

• Each CNN layer is static. That is, the same fixed

convolution kernel (CNN parameters) slides across different

image regions.

• Data-dependent locally-adaptive kernels can facilitate the

accurate cope with varying spatial image distributions.

• Such kernels (Bilateral filter [ELA2002], Non-local means

[BUA2005], LARK [TAK2007]) have widely been applied on

image denoising.
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Locally adaptive kernels

• Bilateral filter:

𝑘𝑖𝑗 = exp
− 𝑥𝑖 − 𝑥𝑗

2

𝑏𝑥
2 exp

− 𝐩𝑖 − 𝐩𝑗
2

𝑏𝑝
2 .

• 𝑘𝑖𝑗: similarity between image pixels 𝑖 and 𝑗.

• 𝑥𝑖: intensity of image pixel 𝑖 .

• 𝐩𝑖 ∈ ℝ2: image pixel 𝑖 position.
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Locally adaptive kernels

• Non-local means is a generalization of bilateral filter.

• It operates at image patch than at image pixel level:

𝑘𝑖𝑗 = exp
− 𝐱𝑖 − 𝐱𝑗

2

𝑏𝑥
2 exp

− 𝐩𝑖 − 𝐩𝑗
2

𝑏𝑝
2 .

• 𝑘𝑖𝑗: similarity between two image patches 𝑖 and 𝑗,

• 𝐱𝑖 ∈ ℝ𝑑: vector of patch 𝑖 pixel intensities.

• 𝐩𝑖 ∈ ℝ2: patch position on the image.
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Locally adaptive kernels

• Locally adaptive regression kernel (LARK) captures the

local data structure, by estimating the local geodesic

distance between nearby patches.
:

𝑘𝑖𝑗 = exp − 𝐱𝑖 − 𝐱𝑗
𝑇

𝐂𝑖𝑗 𝐱𝑖 − 𝐱𝑗 .

• 𝑘𝑖𝑗: similarity between two image patches 𝑖 and 𝑗,

• 𝐱𝑖 ∈ ℝ𝑑: vector of patch 𝑖 pixel intensities.

• 𝐂𝑖𝑗 ∈ ℝ𝑑×𝑑 : covariance matrix of the gradient of the

intensity values approximating the local geodetic distance.
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Locally adaptive kernels

• Scaled dot-product attention [VAS2017]:

𝑎𝑖𝑗 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥
𝐪𝑖

𝑇𝐤𝑗

𝑑𝑘

,

𝐪𝑖 = 𝐖𝑄 𝐱𝑖 + 𝐩𝑖 ∈ ℝ𝑑𝑘 ,

𝐤𝑗 = 𝐖𝐾 𝐱𝑗 + 𝐩𝑗 ∈ ℝ𝑑𝑘 .

• 𝑎𝑖𝑗 : similarity between the image patches 𝑖 and 𝑗

represented by feature vectors 𝐱𝑖∈ ℝ𝑑𝑚and 𝐱𝑗 ∈ ℝ𝑑𝑚,

• 𝐩𝑖 , 𝐩𝑗 ∈ ℝ𝑑𝑚 : patch positional encodings.

• 𝐖𝑄 ∈ ℝ𝑑𝑘×𝑑𝑚 , 𝐖𝐾 ∈ ℝ𝑑𝑘×𝑑𝑚 learnable parameter matrices. 11
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Augmenting CNNs with attention

• Scaled dot-product attention module of Self-Attention

Generative Adversarial Networks (SAGANs)
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Related work

• Operator ⊗ denotes matrix multiplication.

• 𝐟 𝐱 , 𝐠 𝐱 , 𝐡 𝐱 can be considered as queries 𝐐, keys 𝐊 and values 𝐕, respectively.

• Softmax is performed row-wise [ZHA2018].



Augmenting CNNs with attention

13

Related work

Spatiotemporal non-local block. 

⊗ and ⊕ denote matrix multiplication and 

addition respectively [WAN2018].

Non-local neural networks
Output spatiotemporal feature

map 𝐙 ∈ ℝ𝑇𝐻𝑊×C′
is generated

from 𝐗 ∈ ℝ𝑇𝐻𝑊×𝐶:

𝐙 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝐗𝐖𝜃𝐖𝜑
𝑇𝐗𝑇 𝐗𝐖𝑔.

• 𝐖𝜃 , 𝐖𝜑, 𝐖𝑔 ∈ ℝ𝐶×𝐶′
∶ learnable

parameter matrices.

• 𝑇 and 𝐻, 𝑊 are the temporal

and spatial dimensions.



Augmenting CNNs with attention

• Non-local neural networks
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Related work

Correlations captured by non-local blocks [WAN2018].



Replacing convolution with (local) attention

• Stand-Alone Self-Attention in Vision Models (SASA)
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Related work

Spatial local attention layer [RAM2019].

• Attention can used as stand-

alone primitive for vision

models instead of serving just

as augmentation on top of

convolutions.

• Attention kernel slides accross

different image regions.



Augmenting CNNs with attention
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Related work

The local relation layer [HU2019].

Local Relation Networks

A local relation layer adaptively

determines the aggregation

weights based on the

compositional relationship of local

pixel pairs.



Augmenting CNNs with attention

• Local Relation Networks

Local relation layer:

ω = Softmax Φ 𝑓𝜃𝑞
𝐱𝑖 , 𝑓𝜃𝑘

𝐱𝑗 + 𝑓𝜃𝑘
𝐩𝑖 − 𝐩𝑗 .

• Φ 𝑓𝜃𝑞
𝐱𝑖 , 𝑓𝜃𝑘

𝐱𝑗 is a measure of similarity between

the target pixel 𝐱𝑖 and a pixel 𝐱𝑗 within its position scope.

• 𝑓𝜃𝑞
and 𝑓𝜃𝑘

: pixel transformation functions.
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Augmenting CNNs with attention

• Local Relation Networks

• 𝐩𝑖 ∈ ℝ2: position of pixel 𝑖.

• 𝑓𝜃𝑘
𝐩𝑖 − 𝐩𝑗 : it defines the similarity of a pixel pair (𝑖, 𝑗)

based on a geometric prior.

• The geometric term adopts the relative position as input

and is translationally invariant.

• It is encoded by a small network consisting of two channel

transformation layers, with a ReLU activation in between.

18

Related work



Transformers in Computer 

Vision
• Motivation and related work

• Transformers

• Vision Transformer (ViT)

• Swin Transformer

• DEtection Transformer (DETR)

• SEgmentation TRansformer (SETR)

• Segment Anything Model (SAM)

• DINO

• Video ViT (ViViT)

19



• An image 𝐗 ∈ ℝ𝐻𝑊×𝐶 is split into

fixed-size patches 𝐱 ∈ ℝ𝑁2𝐶.

• Each patch gets linearly embedded

as following:

𝐱𝑖
′ = 𝐖𝑒𝐱𝑖 , 𝑖 = 1, … , 𝐻𝑊

• 𝐖𝑒∈ ℝ𝑑𝑚×𝑁2𝐶:learnable parameter

matrix.

20

Transformer architecture

Image patches.



• Positional information is provided through additive

learnable positional encodings of the same dimension 𝑑𝑚

as the input vectors 𝐳𝑖:

𝐳𝑖 = 𝐱𝑖
′ + 𝐩𝑖 .

• At initialization, the positional encodings carry no

information about the 2𝐷 positions of the patches.

• All spatial relations between the patches are learned during

training.

• The matrix of input embeddings 𝐙 ∈ ℝ𝐿×𝑑𝑚 , 𝐿 = 𝐻𝑊/𝑁2 is

imported in the Transformer encoder.

21

Transformer architecture
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Transformer was originally designed

for neural sequence transduction.

It has an encoder-decoder structure

followed by one or more task

specific branches.

General Transformer architecture.

Transformer architecture



23

Transformer architecture

Encoder

• The encoder consists of a stack of 𝑁 identical blocks.

• Each block has two sub-layers:

• A multi-head self-attention module.

• A position-wise fully connected feed-forward network.

• Residual connection [HE2016] is employed around each

sub-layer followed by layer normalization [BA2016].



Transformer architecture
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Decoder

• The decoder also consists of a stack of 𝑁 identical blocks.

• Each block has three sub-layers.

• A (causal) multi-head self-attention module. Optionally a mask is

employed to prevent current data point from attending subsequent

ones.

• A multi-head cross-attention module between encoder and

decoder sequences.

• A position-wise fully connected feed-forward network.

• Again, residual connection and layer normalization are

applied around each sub-layer.



Scaled dot-product attention

Three new matrices 𝐐 ∈ ℝ𝐿×𝑑𝑘 (queries), 𝐊 ∈ ℝ𝐿′×𝑑𝑘(keys),

𝐕 ∈ ℝ𝐿′×𝑑𝑣 (values) are generated:

𝐐 = 𝐙𝐖𝑄 + 𝟏𝐿×1𝐛𝑄 , 𝐖𝑄 ∈ ℝ𝑑𝑚×𝑑𝑘 , 𝐛𝑄 ∈ ℝ𝑑𝑘 ,

𝐊 = 𝐙′𝐖𝐾 + 𝟏𝐿′×1𝐛𝐾 , 𝐖𝐾 ∈ ℝ𝑑𝑚×𝑑𝑘 , 𝐛𝐾 ∈ ℝ𝑑𝑘 ,

𝐕 = 𝐙′𝐖𝑉 + 𝟏𝐿′×1𝐛𝑉 , 𝐖𝑉 ∈ ℝ𝑑𝑚×𝑑𝑣 , 𝐛𝑉 ∈ ℝ𝑑𝑣 ,

by linearly transforming two matrices 𝐙 ∈ ℝ𝐿×𝑑 and 𝐙′ ∈ ℝ𝐿′×𝑑,

where 𝐿 ≠ 𝐿′,

• Learnable parameters: 𝐖𝑄 , 𝐖𝐾 𝐖𝑉 , 𝐛𝑄 , 𝐛𝐾 , 𝐛𝑉 .

• In the original model, it is arbitrarily chosen that 𝑑𝑘= 𝑑𝑣. 25
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Scaled dot-product attention

Using the terminology in [GRAV2014], attention is an averaging 

of values, associated to keys matching to specific queries. 

In cross-attention each data point of sequence 𝐗𝑒
′ attends to all

data points of sequence 𝐙′ in order to compute a new

representation of sequence 𝐙:

𝐘 =𝑆𝑜𝑓𝑡𝑚𝑎𝑥
𝐐𝐊𝑇

𝑑𝑘
𝐕.

The row-wise Softmax operator renders a probability

distribution, representing the normalized correlation scores of

each query to all the keys.
26

Transformer architecture



Transformers

• They can have multiple heads, facilitating both parallelization 

and attention to different regions.

• Transformer encoder and decoder can have multiple layers. 

27

Transformer architecture
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In ViT [DOS2021] an image is split into non overlapping

patches. The sequence of linear embeddings of these

patches is provided as input to a Transformer encoder.

The model is trained on image classification task in

supervised fashion.

29

Vision Transformer (ViT)



ViT architecture

• An image 𝐗 ∈ ℝ𝐻𝑊×𝐶 is split into

fixed-size patches 𝐱 ∈ ℝ𝑁2𝐶.

• Each patch gets linearly embedded

as following:

𝐱𝑖
′ = 𝐖𝑒𝐱𝑖 , 𝑖 = 1, … , 𝐻𝑊

• 𝐖𝑒∈ ℝ𝑑𝑚×𝑁2𝐶:learnable parameter

matrix.
30

Vision Transformer (ViT)

ViT overview [DOS2021].



ViT architecture

• Positional information is provided through additive

learnable positional encodings of the same dimension 𝑑𝑚

as the input vectors 𝐳𝑖:

𝐳𝑖 = 𝐱𝑖
′ + 𝐩𝑖 .

• At initialization, the positional encodings carry no

information about the 2𝐷 positions of the patches.

• All spatial relations between the patches are learned during

training.

31

Vision Transformer (ViT)



ViT architecture

• The matrix of input embeddings 𝐙 ∈ ℝ𝐿×𝑑𝑚 , 𝐿 = 𝐻𝑊/𝑁2 is

imported in the Transformer encoder.

• Similar to BERT [class] token, an extra learnable

embedding vector 𝐳𝑠 ∈ ℝ𝑑𝑚 is appended at the start of 𝐙

leading to 𝐙′ ∈ ℝ(𝐿+1)×𝑑𝑚

• The state of 𝐳𝑠 at the encoders output serves as the final

image representation 𝐲𝑠 ∈ ℝ𝑑𝑚 .

32
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ViT architecture

• The final image representation 𝐲𝑠 ∈ ℝ𝑑𝑚 is fed to a single

linear layer parameterized by 𝐖 ∈ ℝ𝑑𝑚×𝐾 (for 𝐾 classes)

followed by a Softmax activation function to produce the

final class probability distribution.

• Typically, ViT is pre-trained on large datasets and fine-tuned

on downstream tasks.

33
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ViT architecture

• Neighboring image patches tend

to have similar position

embeddings.

• Patches in the same

row/column have similar

embeddings.

• Positional encoding pairwise

similarities exhibit row-column

structure.

34

Vision Transformer (ViT)

Positional encodings pairwise similarities 

[DOS2021].



Remarks

• For extracting the distribution of

class probabilities, the output

token 𝐲𝑠 ∈ ℝ𝑑𝑚 attends to

semantically relevant image

regions.

35

Vision Transformer (ViT)

Attention of the output token to the input 

space [DOS2021].



Remarks

• The attention distance

increases with network depth.

• It can be considered bo be

analogous to the receptive field

in CNNs.

• Globally, the ViT model attends

to image regions that are

semantically similar for

classification.

36

Vision Transformer (ViT)

Distance of attended area by head and layer 

[DOS2021].



Remarks

• ViT attention distances shift

from local to global when

moving deeper in the network.

• ResNet effective receptive fields

are highly local and grow

gradually, when moving deeper

in the CNN network.

37

Vision Transformer (ViT)

ViT attention distance vs ResNet receptive 

field [RAG2022].



Remarks

• When trained on large datasets,

multi-headed ViT attention

flattens the loss function,

leading to better performance

and generalization.

38

Vision Transformer (ViT)

Negative log likelihood loss + ℓ2

regularization [PAR2022].



Remarks

• When trained on small datasets, multi-headed ViT attention

allows negative Hessian eigenvalues, leading to non-

convex loss function forms.

39

Vision Transformer (ViT)

Negative Hessian eigenvalues and amplitude of positive Hessian eigenvalues for 

ImageNET. The dotted line corresponds  to the 6% of the dataset [PAR2022].



Remarks

• Fourier analysis of feature maps can

show that Multi-headed Self-

Attention (MSA) modules dampen

high signal frequencies, while

convolutional kernels tend to amplify

them.

• Thus, MSA layers are

homogeneous region-biased, while

convolutional ones are texture-

biased.
40

Vision Transformer (ViT)

Relative log amplitudes of Fourier transformed

feature map. ∆ log amplitude of high-frequency

signals is the difference between the log

amplitude at normalized frequency 0.0𝜋 and at 

1.0𝜋 [PAR2022].



Hybrid ViT architecture

• The ViT input sequence can be formed from CNN feature

maps of image patches.

• The input embedding projection using 𝐖𝑒 ∈ ℝ𝑑𝑚×𝑁2𝐶 is

applied to patches extracted from a CNN feature map.

• As a special case, the patches can have spatial size 1 × 1,

which means that the input sequence is obtained by simply

flattening the spatial dimensions of the feature map.
41

Vision Transformer (ViT)
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• Unlike the word tokens in Natural Language Processing

(NLP), visual elements can vary substantially in scale.

• This issue is important in vision tasks, such as object

detection.

• Visual input embeddings of fixed scale are unsuitable for

most vision applications.
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Swin Transformer [LIU2021]

constructs hierarchical feature

maps by merging image

patches in deeper layers.

• Self-attention is computed

locally within non-overlapping

local windows (in red)

consisting of 𝑀 × 𝑀 patches.

• Linear computation

complexity.

44

Swin Transformer

Hierarchical and fixed resolution feature maps of

patches (in grey) [LIU2021].



• A hierarchical image representation is constructed by

starting from small-sized patches and gradually merging

neighboring ones in deeper layers.

• The Swin Transformer employs these hierarchical feature

maps to leverage advanced techniques for dense

prediction, such as feature pyramid networks (FPN)

[LIN2017] or U-Net [RON2015].

45
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• To introduce cross-window

connections while maintaining

computational efficiency, a

cyclically shifted window

(Swin) approach is utilized

between layers.

• Computation of self-attention in

layer 𝑙 + 1 crosses the

boundaries of windows in layer 𝑙.

46

Swin Transformer

Shifted window approach [LIU2021] .



• The window is shifted cyclically, as it is typically done in

cyclic convolutions.

• Assuming that the feature map is repeated periodically in

both spatial dimensions, the window is shifted from top-left

to bottom-right.

• Masks are employed to prevent the computation of self-

attention between patches that are not adjacent in the

original image.

47

Swin Transformer

Cyclic shift of windows [LIU2021] .



Positional information in injected to the model, by including a

learnable relative position bias 𝐁 ∈ ℝ𝑀2×𝑀2
to each head of

local self attention within a window consisting of 𝑀2 patches:

𝐗𝑤
ℎ = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥

𝐐𝑤
ℎ (𝐊𝑤

ℎ )𝑇

𝐷𝑘

+ 𝐁ℎ 𝐕𝑤
ℎ .

• 𝐐𝑤
ℎ , 𝐊𝑤

ℎ ∈ ℝ𝑀2×𝑑𝑘 , 𝐕𝑤
ℎ ∈ ℝ𝑀2×𝑑𝑣 : queries, keys and values

corresponding to window 𝑤 and head ℎ.

48

Swin Transformer



Swin Transformer architecture
• Shifted window configuration is utilized between consecutive blocks in each

stage [LIU2021].

49

Swin Transformer
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• DETR [CAR2020] object detection employs neither hand-

crafted components, such as Non-Maximum Suppression

(NMS) nor anchor boxes that encode prior knowledge

about the task.

• DETR employs the conjunction of a bipartite matching

loss and a parallel decoding transformer (non auto-

regressive).

51

DEtection TRanformer (DETR)



52

DEtection TRanformer (DETR)

DETR architecture [CAR2020]. 



DETR architecture

• Given an input image 𝐗 ∈ ℝ𝐶0×𝐻0𝑊0 DETR uses a

conventional CNN backbone to learn a lower resolution

feature map 𝐗′ ∈ ℝ𝐶×𝐻𝑊.

• Typical values:

𝐶 = 2048, 𝐻 = Τ𝐻0 32 , Τ𝑊 = 𝑊0 32.

• The channel dimension 𝐶 is reduced through an 1 × 1
convolution creating a new feature map 𝐗′′ ∈ ℝ𝑑𝑚×𝐻𝑊.

53

DEtection TRanformer (DETR)



DETR architecture

• Positional information is provided through additive fixed

vectors of the same dimension 𝑑𝑚 as the input embeddings:

𝐳𝑖 = 𝐱𝑖
′′ + 𝐩𝑖 , 𝑖 = 1, … , 𝐻𝑊

• The elements of 𝐩𝑖 are computed through sinusoids, as in

the original transformers [VAS2017].

54

DEtection TRanformer (DETR)



DETR architecture

• The final sequence is imported to a standard Transformer

encoder consisting of 𝑁 blocks.

• A matrix 𝐎 ∈ ℝ𝑑𝑚×𝐿𝑜 of 𝐿𝑜 learned vectors, namely object

queries, is imported to a standard Transformer decoder

which decodes them in parallel.

• 𝐾: the maximum number of objects in an image.

• 𝐿𝑜: hyperparameter obeying the restriction 𝐿𝑜 > 𝐾.

55

DEtection TRanformer (DETR)



DETR architecture

• The decoder outputs a matrix 𝐘 ∈ ℝ𝑑𝑚×𝐿𝑜. Each vector 𝐲𝑖 ∈
ℝ𝑑𝑚 , 𝑖 = 1, … , 𝐿𝑜 passes through two different branches.

• One branch outputs distribution of class probabilities

(classification task), while the other one regresses

bounding box coordinates (regression task).

• Overall, the model produces 𝐿𝑜 final predictions.

56

DEtection TRanformer (DETR)



DETR architecture

• The classification branch consists of a linear projection

layer followed by a Softmax activation function.

• The regression branch consists of a 3-layer perceptron

with ReLU activation function.

• It predicts the normalized center coordinates, height and

width of the bounding box with respect to the input image.

57

DEtection TRanformer (DETR)



DETR architecture

• The DETR model predicts a set of 𝐿𝑜 bounding boxes,

where 𝐿𝑜 is usually much larger than the actual number of

objects in an image.

• An additional special class label ∅ is used to represent

that no object is detected within a slot.

• The class ∅ plays a similar role to the "background" class

in the standard object detection approaches.

58

DEtection TRanformer (DETR)



Bipartite matching loss

• Since the number of 𝐿𝑜 predictions is much larger than the

actual number of objects in an image, a special loss

function is needed.

• The loss function must produce an optimal bipartite

matching between predicted and ground truth objects, and

afterwards optimize object-specific (bounding box)

losses.

59
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Bipartite matching loss

• Given an image the set of ground-truth is denoted by 𝐘 =

{𝐲𝑖}𝑖=1
𝑁𝑜 where 𝑁𝑜 is the number of objects.

• 𝐲𝑖 ∈ ℝ𝐾+4, where 𝐾 denotes the number of classes and 4
stands for the bounding box coordinates.

• The set of model predictions in denoted by 𝐘 = {ො𝐲𝑖}𝑖=1
𝐿𝑜

where ො𝐲 ∈ ℝ𝐾+4.

• Since 𝐿𝑜 > 𝑁𝑜 the set 𝐘 must be padded with ∅ before

finding a bipartite matching between ground-truth and

predictions.
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Bipartite matching loss

• Bipartite matching is accomplished by finding a permutation

of 𝐿𝑜 elements, 𝜎 ∈ 𝔖𝐿𝑜
 with the lowest cost:

ො𝜎 = 𝑎𝑟𝑔 min
𝜎∈𝔖𝐿𝑜



𝑖=1

𝐿𝑜

ℒ𝑚 𝐲𝑖 , ො𝐲𝜎 𝑖 .

• ℒ𝑚(𝐲𝑖 , ො𝐲𝜎(𝑖)) is a pair-wise matching cost between

ground truth 𝐲𝑖 and a prediction with index 𝜎(𝑖).
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Bipartite matching loss

• The pair-wise matching cost between ground truth 𝒚𝑖 and a

prediction with index 𝜎(𝑖) is computed as follows:

ℒ𝑚 𝐲𝑖 , ො𝐲𝜎 𝑖 = −𝟙 𝑘𝑖≠∅ Ƹ𝑝𝜎 𝑖 𝑘𝑖 + 𝟙 𝑘𝑖≠∅ ℒ𝑏 𝐛𝑖 , መ𝐛𝜎 𝑖 .

• 𝑘𝑖 is the ground truth class label.

• 𝒃𝑖𝜖 0,1 4 is a vector that defines the normalized ground

truth bounding-box coordinates, height and width.

• Ƹ𝑝𝜎 𝑖 is the predicted probability distribution corresponding to

the ground-truth.
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Bipartite matching loss

• The regression loss ℒ𝑏(𝐛𝑖 , መ𝐛𝜎 𝑖 ) is a linear combination of

the 𝐿1 loss and the generalized IoU loss:

ℒ𝑏 𝐛𝑖 , መ𝐛𝜎 𝑖 = 𝜆𝑖𝑜𝑢ℒ𝑖𝑜𝑢 𝐛𝑖 , መ𝐛𝜎 𝑖 + 𝜆𝐿1
𝐛𝑖 − መ𝐛𝜎 𝑖 1

.

• 𝜆𝑖𝑜𝑢, 𝜆𝐿1
∈ ℝ: hyperparameters.

• Both terms are normalized by the number of objects inside

the batch of images used during loss computation.
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Bipartite matching loss

• A Hungarian loss is computed for all the pairs matched in

the previous step:

ℒ𝐻 𝐘, 𝐘 = 

𝑖=1

𝐿𝑜

−𝑙𝑜𝑔 Ƹ𝑝ෝ𝜎 𝑖 + 𝟙 𝑘𝑖≠∅ ℒ𝑏(𝐛𝑖 , መ𝐛ෝ𝜎 𝑖 ) .

• ො𝜎 is the optimal assignment computed in the previous step.
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Object queries

• Each object query learns to specialize on certain areas

and box sizes.
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Visualization of all box predictions on all images from COCO 2017 val set for 20 out of total 𝐿𝑜 =
100 prediction slots in DETR decoder. Each box prediction is represented as a point with the

coordinates of its center in the 1-by-1 square normalized by each image size. The points are

color-coded so that green color corresponds to small boxes, red to large horizontal boxes and

blue to large vertical boxes.[CAR2020].
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Encoder self-attention for a set of reference points. The encoder is able to separate individual

instances. Predictions are made with baseline DETR model on a validation set image

[CAR2020].



DETR for panoptic segmentation

• DETR can be naturally extended by adding a segmentation

branch on top of the decoder outputs.
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DETR with panoptic head. A binary mask is generated in parallel for each detected object, then the masks 

are merged using pixel-wise argmax [CAR2020].
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Real Time Detection Transformer (RT-DETR) for forest fire detection.



69

DEtection TRanformer (DETR)

Pipe defect detection.



Application in industrial inspection

• DETR has been applied for defect detection on pipes for

industrial inspection.

• Real Time DETR (RT-DETR) did not match YOLO

performance.
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Pipe defect detection results [MEN2024].
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SETR encoder

• An image 𝐗 ∈ ℝ𝐻𝑊×𝐶 is split into fixed-size patches 𝐱 ∈

ℝ𝑁2𝐶.

• Each patch gets linearly embedded as following:

𝐱𝑖
′ = 𝐖𝑒𝐱𝑖 , 𝑖 = 1, … , 𝐻𝑊

• 𝐖𝑒∈ ℝ𝑑𝑚×𝑁2𝐶:learnable parameter matrix.
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SETR encoder

• A 24 -layer pre-trained ViT [DOS2021] is employed to

generate a matrix of discriminative feature representations

on image patches, denoted by 𝐘 ∈ ℝ𝐿×𝑑𝑚 , where 𝐿 =
𝐻𝑊/𝑁2.

• In the pre-trained model, positional information is provided

through additive learnable positional encodings of the

same dimension 𝑑𝑚 as the input vectors 𝐳𝑖:

𝐳𝑖 = 𝐱𝑖
′ + 𝐩𝑖 .
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SETR encoder

• In SETR [ZHE2021], positional encoding employs a 2𝐷
interpolation on the pre-trained position embeddings,

according to their location in the original image for different

input size fine-tuning.

• Given 𝐘 ∈ ℝ𝐿×𝑑𝑚, a decoder is used to recover the original

image resolution. Crucially there is no down-sampling in

spatial resolution, but global context modeling at every

layer of the encoder transformer.
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SETR decoder

• The goal of SETR decoder is to generate the segmentation

results in the original 2𝐷 image space ℝ𝐻×𝑊×𝐶.

• The encoder features 𝐘 ∈ ℝ𝐿×𝑑𝑚 must be translated into a

3𝐷 feature map 𝑂 ∈ ℝ𝐻×𝑊×𝐶.

• Three different designs are explored: naïve, progressive

upsampling (UP) and multi-level feature aggregation (MLA).
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SETR naïve decoder

• A simple 2-layer network composed by 1 × 1 convolutions

with ReLU activation function in between is used.

• The output of this network, is simply bilinearly up sampled

to the original image resolution followed by a classification

layer with pixel-wise cross-entropy loss.
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SETR UP decoder

• Instead of one-step upscaling which may introduce noisy

predictions, a progressive upsampling strategy that

alternates convolutional layers and upsampling operations

is considered.

• To maximally mitigate the adversarial effect, each

upsampling is restricted to 2×.
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SETR MLA decoder

• Multi-level feature aggregation is employed in similar

spirit of feature pyramid networks.

• Intermediate feature representations 𝐘𝑙𝑒 , 𝑙𝑒 = 1, … , 𝐿𝑒 at the

encoder 𝑙𝑒
𝑡ℎ layer) share the same resolution.

• Multi-level feature aggregation is applied through sampling

feature representations 𝐘𝑚 from 𝑀 layers: 𝑚 ∈
𝐿𝑒

𝑀
, 2

𝐿𝑒

𝑀
, … , 𝑀

𝐿𝑒

𝑀
.
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SETR MLA decoder

• 𝑀 streams are deployed, with each focusing on one specific

encoder layer.

• Each 𝐘𝑚 ∈ ℝ𝐿×𝑑𝑚 is mapped to a 3D feature map 𝑌𝑚 ∈

ℝ
𝐻

𝑁
×

𝑊

𝐻
×𝑑𝑚.
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SETR MLA decoder

• A 3-layer (kernel sizes 1 × 1, 3 × 3, and 3 × 3) network is

applied with the feature channels halved at the first and

third layers respectively, and the spatial resolution upscaled

4 × by bilinear operation after the third layer.

• To enhance the interactions across different streams, a top-

down aggregation via element-wise addition after the first

layer is introduced.
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SETR MLA decoder

• An additional 3 × 3 convolutional layer is applied after the

element-wise feature sum.

• After the third layer, the fused feature from all the streams

via channel-wise concatenation is obtained which is the

bilinearly up-sampled 4 × to the full resolution.
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a) SETR architecture, b) UP decoder, c) MLA decoder [ZHE2021].
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Segment Anything Model (SAM) [KIR2023] stands as a

foundational model for object and image region

segmentation.

• It is designed to be prompt-responsive, accepting both:

• sparse prompts (including points, bounding boxes, and

text) and

• dense prompts (masks) alongside the input image.

• The main novelty of SAM is the prompt encoder.
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Model architecture
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SAM architecture [KIR2023]. 



SAM architecture

• Image encoder: A Masked Auto Encoding (MAE) pre-

trained Vision Transformer (ViT) encoder that embeds the

image and extracting its essential features.

• Prompt encoder: Lightweight prompt encoder designed to

transform user prompts into embedding vectors in real time.

• Mask decoder: Lightweight decoder dedicated to predicting

segmentation masks, by integrating both the image and

prompt embeddings.
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Image Encoder is any network with the following input and

output:

• Input: Image 𝐗 ∈ ℝ𝐻0×𝑊0×𝐶0, typically rescaled and padded

to an analysis of 1024 × 1024 × 3.

• Output: Image embedding 𝐘 ∈ ℝ𝐻×𝑊×𝐶 , typically with size

64 × 64 × 256.

• SAM image encoder is the MAE pre-trained Vision

Transformer (ViT).
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Prompt Encoder

• Input: 𝑁𝑡 sparse prompts (points, bounding boxes and text).

• Output: 𝑁𝑡 vectorial embeddings (one per prompt).

• Point: Sum of positional encoding of points location 𝐩𝑖 ∈
ℝ256 and a learned embedding 𝐱𝑖 ∈ ℝ256.

• Bounding box: Embedding pair of upper left and lower right

corner 𝐱𝑖𝑢 ∈ ℝ256, 𝐱𝑖𝑙 ∈ ℝ256.

• Text: Text prompts are fed into the CLIP text encoder,

generating an output embedding 𝐱𝑖 ∈ ℝ256 which serves as

the input for the prompt encoder.
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Mask prompt Encoder

Dense prompts (masks) are embedded using 1 × 1 and 2 × 2
convolutions to produce 𝐘𝑚 ∈ ℝ𝐻×𝑊×𝐶.

• Typically, one segmentation mask is provided.

• The mask and image embeddings 𝐘, 𝐘𝑚 are added element-

wise:

𝐘′ = 𝐘 + 𝐘𝑚.

• If there is no dense prompt, then a default learned

embedding 𝐘𝑜 ∈ ℝ𝐻×𝑊×𝐶 is added to the image embedding.
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Mask Decoder (modified Transformer decoder) maps the

image embedding 𝐘′ and a set of prompt embeddings 𝐱𝑖 , 𝑖 =
1, … , 𝑁𝑡 to output masks 𝐘𝑜 ∈ ℝ𝐻×𝑊×3.
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SAM mask decoder [KIR2023]. 



Mask Decoder layer has 4 steps:

• Self-attention on the prompt embeddings.

• Cross-attention from prompt embeddings (as queries) to

the image embedding.

• Point-wise MLP to update the prompt embeddings.

• Cross-attention from image embeddings (as queries) to

the prompt embedding.
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Mask Decoder

• 3 learned output token embeddings are inserted in the set of

prompt embeddings.

• A small MLP head estimates the IoU between each

predicted mask and the object it covers, ranking the

predicted masks.
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SAM loss functions

• SAM loss is the sum of a mask loss and an IoU loss.

• The mask loss, the loss in the supervised mask prediction,

is a linear combination of focal loss and dice loss in a 20: 1
focal loss to dice loss ratio.

• The IoU loss, for the IoU prediction head, is the mean-

square-error loss between the IoU prediction and the

predicted mask IoU with the ground truth mask.

• The IoU loss is added to the mask loss with a constant

scaling factor of 1.0.
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Industrial Inspection Applications

SAM has been applied to real-world use cases, such as pipe

region segmentation.

• A CNN model and SAM were combined in order to produce

masks of pipes in the image.
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Pipe Image Segmentation Architecture [PSA2024].
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Pipe Image Segmentation
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DINO [CAR2021] is a self-supervised ViT trained in a self-

DIstillation with NO labels fashion.

• DINO is used in:

• Image feature extraction

• Image classification.

• Feature representations extracted from DINO contain

explicit information about the semantic segmentation of

an image and they are excellent k-NN classifiers

(78.3% top-1 accuracy on ImageNet).
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DINO architecture

• Two different random transformations of an input image are

passed through two different versions of the same ViT.

• The two versions of ViT are called student and teacher

network and they are denoted by 𝑔𝑠(∙ ; 𝐖𝑠) and

𝑔𝑡(; 𝐖𝑡)respectively.

• Both student and teacher have the same architecture.

• The teacher parameters are updated with an exponential

moving average of the student ones.
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DINO architecture

• The output of the teacher network is centered with a mean

computed over the batch.

• Each network outputs a 𝐾 dimensional feature that is

normalized with a temperature Softmax over the feature

dimension.

• Their similarity is measured with a cross-entropy loss.
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DINO architecture

• Given an input image 𝐗 ∈ ℝ𝐶×𝐻𝑊 both networks output

probability distributions denoted by 𝑝𝑠 𝐗 , 𝑝𝑡 𝐗 ∈ ℝ𝐾.

• The temperature Softmax for the student is computed by:

𝑝𝑠
𝑗

𝐗𝑖 =
exp( ൗ𝒈𝑠

𝑗
(𝐗 ; 𝐖𝑠) 𝜏𝑠)

σ𝑘=1
𝐾 exp( ൗ𝒈𝑡

𝑗
(𝐗 ; 𝐖𝑡) 𝜏𝑠)

.

• 𝜏𝑠 is the temperature parameter controlling the sharpness of

distribution.
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DINO architecture

• Each input image 𝐗 ∈ ℝ𝐶×𝐻×𝑊 is randomly cropped multiple

times forming 𝟐 global crops at resolution covering 50% of

the original image and several local crops covering less

than 50% of the original image.

• All crops are passed through the student network, while

only the global ones are passed through the teacher one.

• For a specific image, the network is self-trained based on all

pairs of random crops.
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DINO architecture

• A stop-gradient (sg) operator is

applied on the teacher network to

propagate gradients only through

the student one.

• Centering prevents one dimension

to dominate, but encourages

collapse to the uniform distribution.

• Softmax temperature compensates

for this.
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DINO architecture [CAR2021].



104

DINO

• Different heads focus on

different objects or parts.

• This is visualized using

different colors.

• Attention is plotted for the

query corresponding to the

extra learnable embedding.

Self-attention per head on the last DINO layer 

[CAR2021].
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Self-attention on the last DINO layer for a set of reference points [CAR2021].
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ViViT [ARN2021] extracts spatio-temporal tokens from input

video and encodes them through a series of Transformer

encoder layers.

• ViViT is used in:

• video feature extraction

• video classification.
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Four different ViViT variants factorize different components of

the transformer encoder over the spatial and temporal

dimensions:

• Spatio-temporal attention.

• Factorized encoder.

• Factorized self-attention (each single head is factorized).

• Factorized multi-headed attention (factorization across heads).
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ViViT architecture

• A video 𝐕 ∈ ℝ𝑇𝐻𝑊×𝐶 is mapped into a sequence of spatio-

temporal fixed-size patches 𝐯𝑝 ∈ ℝ𝑁𝑇𝑁𝐻𝑁𝑊𝐶.

• This can be done through uniform frame sampling or

tubelet embedding.

• Each patch gets linearly embedded as following:

𝐯𝑝
′ = 𝐖𝑒𝐯𝑝 ∈ ℝ𝑑𝑚 .

• 𝐖𝑒∈ ℝ𝑑𝑚×𝑁𝑇𝑁𝐻𝑁𝑊𝐶 is learnable.
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ViViT architecture

• In tubelet embedding, spatio-temporal patches of

dimensions 𝑁𝑇 × 𝑁𝐻 × 𝑁𝑊 are extracted.
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Tubelet embedding [ARN2021].



ViViT architecture

• Positional information is provided through additive

learnable positional encodings of the same dimension 𝑑𝑚

as the input embeddings:

𝐳𝑝𝑖 = 𝐯𝑝𝑖
′ + 𝐩𝑖 .

• The video model processes 𝑁𝑇 times more tokens than the

one pre-trained on images.

• Thus, as an initialization step, the positional encodings

pre-trained on images are repeated temporally to all

frames. Then they are fine-tuned on video.
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Spatio-temporal attention

• All spatio-temporal tokens are simply forwarded through the

Transformer encoder.
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Tubelet embedding [ARN2021].



Factorized ViViT architecture

• In uniform frame sampling, 𝑁𝑇 video frames are uniformly

sampled and each 2𝐷 frame is split into patches of

dimensions 𝑁𝐻 × 𝑁𝑊.
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Uniform video frame sampling [ARN2021].



Factorized encoder
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Factorized encoder [ARN2021].

• The model consists of two

separate encoders in

series, a spatial and a

temporal one.

• It corresponds to a late

fusion of spatial and

temporal information.



Factorized encoder

• The spatial encoder captures correlations between tokens

extracted from the same video frame, to produce a latent

representation per frame.

• Like ViT, an extra learnable embedding is appended to

the beginning of the spatial sequence.

• Its state at the spatial encoder output serves as the latent

frame representation 𝐡𝑡 ∈ ℝ𝑑𝑚 where 𝑡 denotes time.
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Factorized encoder

• The temporal encoder models interactions between latent

representations at different time instances.

• Again, an extra learnable embedding is appended to the

beginning of the temporal sequence.

• Its state at the temporal encoder output serves as the final

video representation 𝐲 ∈ ℝ𝑑𝑚.
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Factorized self-attention

• Within each transformer block, the multi-headed self-

attention operation is factorized into two operations that first

only compute self-attention spatially, and then temporally.
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Factorized self-attention [ARN2021].



Factorized multi-headed attention

• Half of the heads compute self-attention over the spatial axis,

while the other half compute self-attention over the temporal

axis.
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Factorized multi-headed attention [ARN2021].
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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