
Attention and

Transformer Networks

in Computer Vision
N. M. Militsis, Prof. Ioannis Pitas

Aristotle University of Thessaloniki

pitas@csd.auth.gr

www.aiia.csd.auth.gr

Version 3.0

Transformers in Computer

Vision
• Motivation and related work

• Transformers

• Vision Transformer (ViT)

• Swin Transformer

• DEtection Transformer (DETR)

• SEgmentation TRansformer (SETR)

• Segment Anything Model (SAM)

• DINO

• Video ViT (ViViT)

2

Convolutional Neural Network limitations

• Convolutional Neural Networks (CNNs) at each layer

employ moving convolution kernel (2D filter) windows.

• 2D convolution kernels are learned feature detectors.

• They are local operators.

• CNNs cannot benefit from distant image patch correlations.

• CNN kernels are inefficient at modeling visual elements

with varying spatial distributions.

3

Motivation

CNN limitations

• CNN features do not consider important spatial hierarchies

between objects.

• Only local interactions are considered in each

convolutional layer.

• CNNs detect parts with no sense of the whole (Picasso

problem).

4

Motivation

CNN limitations

• Most CNN architectures leverage pooling for increasing the

receptive field of higher-level layers kernels, allowing them

to capture higher-level features on large image regions.

• Pooling may lead to severe information loss.

• Only local interactions are considered in each

convolutional layer.

5

Motivation

CNN inductive bias

• CNNs rely on the assumptions of locality and stationarity

governing the 2𝐷 image signal.

• Locality refers to the fact that neighboring pixel intensity

values tend to be more correlated than those of distant

ones.

• Stationarity denotes that image statistics do not vary

spatially (e.g., across image regions).

6

Motivation

Locally adaptive kernels

• Each CNN layer is static. That is, the same fixed

convolution kernel (CNN parameters) slides across different

image regions.

• Data-dependent locally-adaptive kernels can facilitate the

accurate cope with varying spatial image distributions.

• Such kernels (Bilateral filter [ELA2002], Non-local means

[BUA2005], LARK [TAK2007]) have widely been applied on

image denoising.

7

Motivation

Locally adaptive kernels

• Bilateral filter:

𝑘𝑖𝑗 = exp
− 𝑥𝑖 − 𝑥𝑗

2

𝑏𝑥
2 exp

− 𝐩𝑖 − 𝐩𝑗
2

𝑏𝑝
2 .

• 𝑘𝑖𝑗: similarity between image pixels 𝑖 and 𝑗.

• 𝑥𝑖: intensity of image pixel 𝑖 .

• 𝐩𝑖 ∈ ℝ2: image pixel 𝑖 position.

8

Motivation

Locally adaptive kernels

• Non-local means is a generalization of bilateral filter.

• It operates at image patch than at image pixel level:

𝑘𝑖𝑗 = exp
− 𝐱𝑖 − 𝐱𝑗

2

𝑏𝑥
2 exp

− 𝐩𝑖 − 𝐩𝑗
2

𝑏𝑝
2 .

• 𝑘𝑖𝑗: similarity between two image patches 𝑖 and 𝑗,

• 𝐱𝑖 ∈ ℝ𝑑: vector of patch 𝑖 pixel intensities.

• 𝐩𝑖 ∈ ℝ2: patch position on the image.

9

Motivation

Locally adaptive kernels

• Locally adaptive regression kernel (LARK) captures the

local data structure, by estimating the local geodesic

distance between nearby patches.
:

𝑘𝑖𝑗 = exp − 𝐱𝑖 − 𝐱𝑗
𝑇

𝐂𝑖𝑗 𝐱𝑖 − 𝐱𝑗 .

• 𝑘𝑖𝑗: similarity between two image patches 𝑖 and 𝑗,

• 𝐱𝑖 ∈ ℝ𝑑: vector of patch 𝑖 pixel intensities.

• 𝐂𝑖𝑗 ∈ ℝ𝑑×𝑑 : covariance matrix of the gradient of the

intensity values approximating the local geodetic distance.
10

Motivation

Locally adaptive kernels

• Scaled dot-product attention [VAS2017]:

𝑎𝑖𝑗 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥
𝐪𝑖

𝑇𝐤𝑗

𝑑𝑘

,

𝐪𝑖 = 𝐖𝑄 𝐱𝑖 + 𝐩𝑖 ∈ ℝ𝑑𝑘 ,

𝐤𝑗 = 𝐖𝐾 𝐱𝑗 + 𝐩𝑗 ∈ ℝ𝑑𝑘 .

• 𝑎𝑖𝑗 : similarity between the image patches 𝑖 and 𝑗

represented by feature vectors 𝐱𝑖∈ ℝ𝑑𝑚and 𝐱𝑗 ∈ ℝ𝑑𝑚,

• 𝐩𝑖 , 𝐩𝑗 ∈ ℝ𝑑𝑚 : patch positional encodings.

• 𝐖𝑄 ∈ ℝ𝑑𝑘×𝑑𝑚 , 𝐖𝐾 ∈ ℝ𝑑𝑘×𝑑𝑚 learnable parameter matrices. 11

Motivation

Augmenting CNNs with attention

• Scaled dot-product attention module of Self-Attention

Generative Adversarial Networks (SAGANs)

12

Related work

• Operator ⊗ denotes matrix multiplication.

• 𝐟 𝐱 , 𝐠 𝐱 , 𝐡 𝐱 can be considered as queries 𝐐, keys 𝐊 and values 𝐕, respectively.

• Softmax is performed row-wise [ZHA2018].

Augmenting CNNs with attention

13

Related work

Spatiotemporal non-local block.

⊗ and ⊕ denote matrix multiplication and

addition respectively [WAN2018].

Non-local neural networks
Output spatiotemporal feature

map 𝐙 ∈ ℝ𝑇𝐻𝑊×C′
is generated

from 𝐗 ∈ ℝ𝑇𝐻𝑊×𝐶:

𝐙 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝐗𝐖𝜃𝐖𝜑
𝑇𝐗𝑇 𝐗𝐖𝑔.

• 𝐖𝜃 , 𝐖𝜑, 𝐖𝑔 ∈ ℝ𝐶×𝐶′
∶ learnable

parameter matrices.

• 𝑇 and 𝐻, 𝑊 are the temporal

and spatial dimensions.

Augmenting CNNs with attention

• Non-local neural networks

14

Related work

Correlations captured by non-local blocks [WAN2018].

Replacing convolution with (local) attention

• Stand-Alone Self-Attention in Vision Models (SASA)

15

Related work

Spatial local attention layer [RAM2019].

• Attention can used as stand-

alone primitive for vision

models instead of serving just

as augmentation on top of

convolutions.

• Attention kernel slides accross

different image regions.

Augmenting CNNs with attention

16

Related work

The local relation layer [HU2019].

Local Relation Networks

A local relation layer adaptively

determines the aggregation

weights based on the

compositional relationship of local

pixel pairs.

Augmenting CNNs with attention

• Local Relation Networks

Local relation layer:

ω = Softmax Φ 𝑓𝜃𝑞
𝐱𝑖 , 𝑓𝜃𝑘

𝐱𝑗 + 𝑓𝜃𝑘
𝐩𝑖 − 𝐩𝑗 .

• Φ 𝑓𝜃𝑞
𝐱𝑖 , 𝑓𝜃𝑘

𝐱𝑗 is a measure of similarity between

the target pixel 𝐱𝑖 and a pixel 𝐱𝑗 within its position scope.

• 𝑓𝜃𝑞
and 𝑓𝜃𝑘

: pixel transformation functions.
17

Related work

Augmenting CNNs with attention

• Local Relation Networks

• 𝐩𝑖 ∈ ℝ2: position of pixel 𝑖.

• 𝑓𝜃𝑘
𝐩𝑖 − 𝐩𝑗 : it defines the similarity of a pixel pair (𝑖, 𝑗)

based on a geometric prior.

• The geometric term adopts the relative position as input

and is translationally invariant.

• It is encoded by a small network consisting of two channel

transformation layers, with a ReLU activation in between.

18

Related work

Transformers in Computer

Vision
• Motivation and related work

• Transformers

• Vision Transformer (ViT)

• Swin Transformer

• DEtection Transformer (DETR)

• SEgmentation TRansformer (SETR)

• Segment Anything Model (SAM)

• DINO

• Video ViT (ViViT)

19

• An image 𝐗 ∈ ℝ𝐻𝑊×𝐶 is split into

fixed-size patches 𝐱 ∈ ℝ𝑁2𝐶.

• Each patch gets linearly embedded

as following:

𝐱𝑖
′ = 𝐖𝑒𝐱𝑖 , 𝑖 = 1, … , 𝐻𝑊

• 𝐖𝑒∈ ℝ𝑑𝑚×𝑁2𝐶:learnable parameter

matrix.

20

Transformer architecture

Image patches.

• Positional information is provided through additive

learnable positional encodings of the same dimension 𝑑𝑚

as the input vectors 𝐳𝑖:

𝐳𝑖 = 𝐱𝑖
′ + 𝐩𝑖 .

• At initialization, the positional encodings carry no

information about the 2𝐷 positions of the patches.

• All spatial relations between the patches are learned during

training.

• The matrix of input embeddings 𝐙 ∈ ℝ𝐿×𝑑𝑚 , 𝐿 = 𝐻𝑊/𝑁2 is

imported in the Transformer encoder.

21

Transformer architecture

22

Transformer was originally designed

for neural sequence transduction.

It has an encoder-decoder structure

followed by one or more task

specific branches.

General Transformer architecture.

Transformer architecture

23

Transformer architecture

Encoder

• The encoder consists of a stack of 𝑁 identical blocks.

• Each block has two sub-layers:

• A multi-head self-attention module.

• A position-wise fully connected feed-forward network.

• Residual connection [HE2016] is employed around each

sub-layer followed by layer normalization [BA2016].

Transformer architecture

24

Decoder

• The decoder also consists of a stack of 𝑁 identical blocks.

• Each block has three sub-layers.

• A (causal) multi-head self-attention module. Optionally a mask is

employed to prevent current data point from attending subsequent

ones.

• A multi-head cross-attention module between encoder and

decoder sequences.

• A position-wise fully connected feed-forward network.

• Again, residual connection and layer normalization are

applied around each sub-layer.

Scaled dot-product attention

Three new matrices 𝐐 ∈ ℝ𝐿×𝑑𝑘 (queries), 𝐊 ∈ ℝ𝐿′×𝑑𝑘(keys),

𝐕 ∈ ℝ𝐿′×𝑑𝑣 (values) are generated:

𝐐 = 𝐙𝐖𝑄 + 𝟏𝐿×1𝐛𝑄 , 𝐖𝑄 ∈ ℝ𝑑𝑚×𝑑𝑘 , 𝐛𝑄 ∈ ℝ𝑑𝑘 ,

𝐊 = 𝐙′𝐖𝐾 + 𝟏𝐿′×1𝐛𝐾 , 𝐖𝐾 ∈ ℝ𝑑𝑚×𝑑𝑘 , 𝐛𝐾 ∈ ℝ𝑑𝑘 ,

𝐕 = 𝐙′𝐖𝑉 + 𝟏𝐿′×1𝐛𝑉 , 𝐖𝑉 ∈ ℝ𝑑𝑚×𝑑𝑣 , 𝐛𝑉 ∈ ℝ𝑑𝑣 ,

by linearly transforming two matrices 𝐙 ∈ ℝ𝐿×𝑑 and 𝐙′ ∈ ℝ𝐿′×𝑑,

where 𝐿 ≠ 𝐿′,

• Learnable parameters: 𝐖𝑄 , 𝐖𝐾 𝐖𝑉 , 𝐛𝑄 , 𝐛𝐾 , 𝐛𝑉 .

• In the original model, it is arbitrarily chosen that 𝑑𝑘= 𝑑𝑣. 25

Transformer architecture

Scaled dot-product attention

Using the terminology in [GRAV2014], attention is an averaging

of values, associated to keys matching to specific queries.

In cross-attention each data point of sequence 𝐗𝑒
′ attends to all

data points of sequence 𝐙′ in order to compute a new

representation of sequence 𝐙:

𝐘 =𝑆𝑜𝑓𝑡𝑚𝑎𝑥
𝐐𝐊𝑇

𝑑𝑘
𝐕.

The row-wise Softmax operator renders a probability

distribution, representing the normalized correlation scores of

each query to all the keys.
26

Transformer architecture

Transformers

• They can have multiple heads, facilitating both parallelization

and attention to different regions.

• Transformer encoder and decoder can have multiple layers.

27

Transformer architecture

Transformers in Computer

Vision
• Motivation and related work

• Transformers

• Vision Transformer (ViT)

• Swin Transformer

• DEtection Transformer (DETR)

• SEgmentation TRansformer (SETR)

• Segment Anything Model (SAM)

• DINO

• Video ViT (ViViT)

28

In ViT [DOS2021] an image is split into non overlapping

patches. The sequence of linear embeddings of these

patches is provided as input to a Transformer encoder.

The model is trained on image classification task in

supervised fashion.

29

Vision Transformer (ViT)

ViT architecture

• An image 𝐗 ∈ ℝ𝐻𝑊×𝐶 is split into

fixed-size patches 𝐱 ∈ ℝ𝑁2𝐶.

• Each patch gets linearly embedded

as following:

𝐱𝑖
′ = 𝐖𝑒𝐱𝑖 , 𝑖 = 1, … , 𝐻𝑊

• 𝐖𝑒∈ ℝ𝑑𝑚×𝑁2𝐶:learnable parameter

matrix.
30

Vision Transformer (ViT)

ViT overview [DOS2021].

ViT architecture

• Positional information is provided through additive

learnable positional encodings of the same dimension 𝑑𝑚

as the input vectors 𝐳𝑖:

𝐳𝑖 = 𝐱𝑖
′ + 𝐩𝑖 .

• At initialization, the positional encodings carry no

information about the 2𝐷 positions of the patches.

• All spatial relations between the patches are learned during

training.

31

Vision Transformer (ViT)

ViT architecture

• The matrix of input embeddings 𝐙 ∈ ℝ𝐿×𝑑𝑚 , 𝐿 = 𝐻𝑊/𝑁2 is

imported in the Transformer encoder.

• Similar to BERT [class] token, an extra learnable

embedding vector 𝐳𝑠 ∈ ℝ𝑑𝑚 is appended at the start of 𝐙

leading to 𝐙′ ∈ ℝ(𝐿+1)×𝑑𝑚

• The state of 𝐳𝑠 at the encoders output serves as the final

image representation 𝐲𝑠 ∈ ℝ𝑑𝑚 .

32

Vision Transformer (ViT)

ViT architecture

• The final image representation 𝐲𝑠 ∈ ℝ𝑑𝑚 is fed to a single

linear layer parameterized by 𝐖 ∈ ℝ𝑑𝑚×𝐾 (for 𝐾 classes)

followed by a Softmax activation function to produce the

final class probability distribution.

• Typically, ViT is pre-trained on large datasets and fine-tuned

on downstream tasks.

33

Vision Transformer (ViT)

ViT architecture

• Neighboring image patches tend

to have similar position

embeddings.

• Patches in the same

row/column have similar

embeddings.

• Positional encoding pairwise

similarities exhibit row-column

structure.

34

Vision Transformer (ViT)

Positional encodings pairwise similarities

[DOS2021].

Remarks

• For extracting the distribution of

class probabilities, the output

token 𝐲𝑠 ∈ ℝ𝑑𝑚 attends to

semantically relevant image

regions.

35

Vision Transformer (ViT)

Attention of the output token to the input

space [DOS2021].

Remarks

• The attention distance

increases with network depth.

• It can be considered bo be

analogous to the receptive field

in CNNs.

• Globally, the ViT model attends

to image regions that are

semantically similar for

classification.

36

Vision Transformer (ViT)

Distance of attended area by head and layer

[DOS2021].

Remarks

• ViT attention distances shift

from local to global when

moving deeper in the network.

• ResNet effective receptive fields

are highly local and grow

gradually, when moving deeper

in the CNN network.

37

Vision Transformer (ViT)

ViT attention distance vs ResNet receptive

field [RAG2022].

Remarks

• When trained on large datasets,

multi-headed ViT attention

flattens the loss function,

leading to better performance

and generalization.

38

Vision Transformer (ViT)

Negative log likelihood loss + ℓ2

regularization [PAR2022].

Remarks

• When trained on small datasets, multi-headed ViT attention

allows negative Hessian eigenvalues, leading to non-

convex loss function forms.

39

Vision Transformer (ViT)

Negative Hessian eigenvalues and amplitude of positive Hessian eigenvalues for

ImageNET. The dotted line corresponds to the 6% of the dataset [PAR2022].

Remarks

• Fourier analysis of feature maps can

show that Multi-headed Self-

Attention (MSA) modules dampen

high signal frequencies, while

convolutional kernels tend to amplify

them.

• Thus, MSA layers are

homogeneous region-biased, while

convolutional ones are texture-

biased.
40

Vision Transformer (ViT)

Relative log amplitudes of Fourier transformed

feature map. ∆ log amplitude of high-frequency

signals is the difference between the log

amplitude at normalized frequency 0.0𝜋 and at

1.0𝜋 [PAR2022].

Hybrid ViT architecture

• The ViT input sequence can be formed from CNN feature

maps of image patches.

• The input embedding projection using 𝐖𝑒 ∈ ℝ𝑑𝑚×𝑁2𝐶 is

applied to patches extracted from a CNN feature map.

• As a special case, the patches can have spatial size 1 × 1,

which means that the input sequence is obtained by simply

flattening the spatial dimensions of the feature map.
41

Vision Transformer (ViT)

Transformers in Computer

Vision
• Motivation and related work

• Transformers

• Vision Transformer (ViT)

• Swin Transformer

• DEtection Transformer (DETR)

• SEgmentation TRansformer (SETR)

• Segment Anything Model (SAM)

• DINO

• Video ViT (ViViT)

42

• Unlike the word tokens in Natural Language Processing

(NLP), visual elements can vary substantially in scale.

• This issue is important in vision tasks, such as object

detection.

• Visual input embeddings of fixed scale are unsuitable for

most vision applications.

43

Swin Transformer

Swin Transformer [LIU2021]

constructs hierarchical feature

maps by merging image

patches in deeper layers.

• Self-attention is computed

locally within non-overlapping

local windows (in red)

consisting of 𝑀 × 𝑀 patches.

• Linear computation

complexity.

44

Swin Transformer

Hierarchical and fixed resolution feature maps of

patches (in grey) [LIU2021].

• A hierarchical image representation is constructed by

starting from small-sized patches and gradually merging

neighboring ones in deeper layers.

• The Swin Transformer employs these hierarchical feature

maps to leverage advanced techniques for dense

prediction, such as feature pyramid networks (FPN)

[LIN2017] or U-Net [RON2015].

45

Swin Transformer

• To introduce cross-window

connections while maintaining

computational efficiency, a

cyclically shifted window

(Swin) approach is utilized

between layers.

• Computation of self-attention in

layer 𝑙 + 1 crosses the

boundaries of windows in layer 𝑙.

46

Swin Transformer

Shifted window approach [LIU2021] .

• The window is shifted cyclically, as it is typically done in

cyclic convolutions.

• Assuming that the feature map is repeated periodically in

both spatial dimensions, the window is shifted from top-left

to bottom-right.

• Masks are employed to prevent the computation of self-

attention between patches that are not adjacent in the

original image.

47

Swin Transformer

Cyclic shift of windows [LIU2021] .

Positional information in injected to the model, by including a

learnable relative position bias 𝐁 ∈ ℝ𝑀2×𝑀2
to each head of

local self attention within a window consisting of 𝑀2 patches:

𝐗𝑤
ℎ = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥

𝐐𝑤
ℎ (𝐊𝑤

ℎ)𝑇

𝐷𝑘

+ 𝐁ℎ 𝐕𝑤
ℎ .

• 𝐐𝑤
ℎ , 𝐊𝑤

ℎ ∈ ℝ𝑀2×𝑑𝑘 , 𝐕𝑤
ℎ ∈ ℝ𝑀2×𝑑𝑣 : queries, keys and values

corresponding to window 𝑤 and head ℎ.

48

Swin Transformer

Swin Transformer architecture
• Shifted window configuration is utilized between consecutive blocks in each

stage [LIU2021].

49

Swin Transformer

Transformers in Computer

Vision
• Motivation and related work

• Transformers

• Vision Transformer (ViT)

• Swin Transformer

• DEtection Transformer (DETR)

• SEgmentation TRansformer (SETR)

• Segment Anything Model (SAM)

• DINO

• Video ViT (ViViT)

50

• DETR [CAR2020] object detection employs neither hand-

crafted components, such as Non-Maximum Suppression

(NMS) nor anchor boxes that encode prior knowledge

about the task.

• DETR employs the conjunction of a bipartite matching

loss and a parallel decoding transformer (non auto-

regressive).

51

DEtection TRanformer (DETR)

52

DEtection TRanformer (DETR)

DETR architecture [CAR2020].

DETR architecture

• Given an input image 𝐗 ∈ ℝ𝐶0×𝐻0𝑊0 DETR uses a

conventional CNN backbone to learn a lower resolution

feature map 𝐗′ ∈ ℝ𝐶×𝐻𝑊.

• Typical values:

𝐶 = 2048, 𝐻 = Τ𝐻0 32 , Τ𝑊 = 𝑊0 32.

• The channel dimension 𝐶 is reduced through an 1 × 1
convolution creating a new feature map 𝐗′′ ∈ ℝ𝑑𝑚×𝐻𝑊.

53

DEtection TRanformer (DETR)

DETR architecture

• Positional information is provided through additive fixed

vectors of the same dimension 𝑑𝑚 as the input embeddings:

𝐳𝑖 = 𝐱𝑖
′′ + 𝐩𝑖 , 𝑖 = 1, … , 𝐻𝑊

• The elements of 𝐩𝑖 are computed through sinusoids, as in

the original transformers [VAS2017].

54

DEtection TRanformer (DETR)

DETR architecture

• The final sequence is imported to a standard Transformer

encoder consisting of 𝑁 blocks.

• A matrix 𝐎 ∈ ℝ𝑑𝑚×𝐿𝑜 of 𝐿𝑜 learned vectors, namely object

queries, is imported to a standard Transformer decoder

which decodes them in parallel.

• 𝐾: the maximum number of objects in an image.

• 𝐿𝑜: hyperparameter obeying the restriction 𝐿𝑜 > 𝐾.

55

DEtection TRanformer (DETR)

DETR architecture

• The decoder outputs a matrix 𝐘 ∈ ℝ𝑑𝑚×𝐿𝑜. Each vector 𝐲𝑖 ∈
ℝ𝑑𝑚 , 𝑖 = 1, … , 𝐿𝑜 passes through two different branches.

• One branch outputs distribution of class probabilities

(classification task), while the other one regresses

bounding box coordinates (regression task).

• Overall, the model produces 𝐿𝑜 final predictions.

56

DEtection TRanformer (DETR)

DETR architecture

• The classification branch consists of a linear projection

layer followed by a Softmax activation function.

• The regression branch consists of a 3-layer perceptron

with ReLU activation function.

• It predicts the normalized center coordinates, height and

width of the bounding box with respect to the input image.

57

DEtection TRanformer (DETR)

DETR architecture

• The DETR model predicts a set of 𝐿𝑜 bounding boxes,

where 𝐿𝑜 is usually much larger than the actual number of

objects in an image.

• An additional special class label ∅ is used to represent

that no object is detected within a slot.

• The class ∅ plays a similar role to the "background" class

in the standard object detection approaches.

58

DEtection TRanformer (DETR)

Bipartite matching loss

• Since the number of 𝐿𝑜 predictions is much larger than the

actual number of objects in an image, a special loss

function is needed.

• The loss function must produce an optimal bipartite

matching between predicted and ground truth objects, and

afterwards optimize object-specific (bounding box)

losses.

59

DEtection TRanformer (DETR)

Bipartite matching loss

• Given an image the set of ground-truth is denoted by 𝐘 =

{𝐲𝑖}𝑖=1
𝑁𝑜 where 𝑁𝑜 is the number of objects.

• 𝐲𝑖 ∈ ℝ𝐾+4, where 𝐾 denotes the number of classes and 4
stands for the bounding box coordinates.

• The set of model predictions in denoted by ෡𝐘 = {ො𝐲𝑖}𝑖=1
𝐿𝑜

where ො𝐲 ∈ ℝ𝐾+4.

• Since 𝐿𝑜 > 𝑁𝑜 the set 𝐘 must be padded with ∅ before

finding a bipartite matching between ground-truth and

predictions.
60

DEtection TRanformer (DETR)

Bipartite matching loss

• Bipartite matching is accomplished by finding a permutation

of 𝐿𝑜 elements, 𝜎 ∈ 𝔖𝐿𝑜
 with the lowest cost:

ො𝜎 = 𝑎𝑟𝑔 min
𝜎∈𝔖𝐿𝑜

෍

𝑖=1

𝐿𝑜

ℒ𝑚 𝐲𝑖 , ො𝐲𝜎 𝑖 .

• ℒ𝑚(𝐲𝑖 , ො𝐲𝜎(𝑖)) is a pair-wise matching cost between

ground truth 𝐲𝑖 and a prediction with index 𝜎(𝑖).

61

DEtection TRanformer (DETR)

Bipartite matching loss

• The pair-wise matching cost between ground truth 𝒚𝑖 and a

prediction with index 𝜎(𝑖) is computed as follows:

ℒ𝑚 𝐲𝑖 , ො𝐲𝜎 𝑖 = −𝟙 𝑘𝑖≠∅ Ƹ𝑝𝜎 𝑖 𝑘𝑖 + 𝟙 𝑘𝑖≠∅ ℒ𝑏 𝐛𝑖 , መ𝐛𝜎 𝑖 .

• 𝑘𝑖 is the ground truth class label.

• 𝒃𝑖𝜖 0,1 4 is a vector that defines the normalized ground

truth bounding-box coordinates, height and width.

• Ƹ𝑝𝜎 𝑖 is the predicted probability distribution corresponding to

the ground-truth.
62

DEtection TRanformer (DETR)

Bipartite matching loss

• The regression loss ℒ𝑏(𝐛𝑖 , መ𝐛𝜎 𝑖) is a linear combination of

the 𝐿1 loss and the generalized IoU loss:

ℒ𝑏 𝐛𝑖 , መ𝐛𝜎 𝑖 = 𝜆𝑖𝑜𝑢ℒ𝑖𝑜𝑢 𝐛𝑖 , መ𝐛𝜎 𝑖 + 𝜆𝐿1
𝐛𝑖 − መ𝐛𝜎 𝑖 1

.

• 𝜆𝑖𝑜𝑢, 𝜆𝐿1
∈ ℝ: hyperparameters.

• Both terms are normalized by the number of objects inside

the batch of images used during loss computation.

63

DEtection TRanformer (DETR)

Bipartite matching loss

• A Hungarian loss is computed for all the pairs matched in

the previous step:

ℒ𝐻 𝐘, ෡𝐘 = ෍

𝑖=1

𝐿𝑜

−𝑙𝑜𝑔 Ƹ𝑝ෝ𝜎 𝑖 + 𝟙 𝑘𝑖≠∅ ℒ𝑏(𝐛𝑖 , መ𝐛ෝ𝜎 𝑖) .

• ො𝜎 is the optimal assignment computed in the previous step.

64

DEtection TRanformer (DETR)

Object queries

• Each object query learns to specialize on certain areas

and box sizes.

65

DEtection TRanformer (DETR)

Visualization of all box predictions on all images from COCO 2017 val set for 20 out of total 𝐿𝑜 =
100 prediction slots in DETR decoder. Each box prediction is represented as a point with the

coordinates of its center in the 1-by-1 square normalized by each image size. The points are

color-coded so that green color corresponds to small boxes, red to large horizontal boxes and

blue to large vertical boxes.[CAR2020].

66

DEtection TRanformer (DETR)

Encoder self-attention for a set of reference points. The encoder is able to separate individual

instances. Predictions are made with baseline DETR model on a validation set image

[CAR2020].

DETR for panoptic segmentation

• DETR can be naturally extended by adding a segmentation

branch on top of the decoder outputs.

67

DEtection TRanformer (DETR)

DETR with panoptic head. A binary mask is generated in parallel for each detected object, then the masks

are merged using pixel-wise argmax [CAR2020].

68

DEtection TRanformer (DETR)

Real Time Detection Transformer (RT-DETR) for forest fire detection.

69

DEtection TRanformer (DETR)

Pipe defect detection.

Application in industrial inspection

• DETR has been applied for defect detection on pipes for

industrial inspection.

• Real Time DETR (RT-DETR) did not match YOLO

performance.

70

DEtection TRanformer (DETR)

Pipe defect detection results [MEN2024].

Transformers in Computer

Vision
• Motivation and related work

• Transformers

• Vision Transformer (ViT)

• Swin Transformer

• DEtection Transformer (DETR)

• SEgmentation TRansformer (SETR)

• Segment Anything Model (SAM)

• DINO

• Video ViT (ViViT)

71

SETR encoder

• An image 𝐗 ∈ ℝ𝐻𝑊×𝐶 is split into fixed-size patches 𝐱 ∈

ℝ𝑁2𝐶.

• Each patch gets linearly embedded as following:

𝐱𝑖
′ = 𝐖𝑒𝐱𝑖 , 𝑖 = 1, … , 𝐻𝑊

• 𝐖𝑒∈ ℝ𝑑𝑚×𝑁2𝐶:learnable parameter matrix.

72

SEgmentation TRansformer

SETR encoder

• A 24 -layer pre-trained ViT [DOS2021] is employed to

generate a matrix of discriminative feature representations

on image patches, denoted by 𝐘 ∈ ℝ𝐿×𝑑𝑚 , where 𝐿 =
𝐻𝑊/𝑁2.

• In the pre-trained model, positional information is provided

through additive learnable positional encodings of the

same dimension 𝑑𝑚 as the input vectors 𝐳𝑖:

𝐳𝑖 = 𝐱𝑖
′ + 𝐩𝑖 .

73

SEgmentation TRansformer

SETR encoder

• In SETR [ZHE2021], positional encoding employs a 2𝐷
interpolation on the pre-trained position embeddings,

according to their location in the original image for different

input size fine-tuning.

• Given 𝐘 ∈ ℝ𝐿×𝑑𝑚, a decoder is used to recover the original

image resolution. Crucially there is no down-sampling in

spatial resolution, but global context modeling at every

layer of the encoder transformer.

74

SEgmentation TRansformer

SETR decoder

• The goal of SETR decoder is to generate the segmentation

results in the original 2𝐷 image space ℝ𝐻×𝑊×𝐶.

• The encoder features 𝐘 ∈ ℝ𝐿×𝑑𝑚 must be translated into a

3𝐷 feature map 𝑂 ∈ ℝ𝐻×𝑊×𝐶.

• Three different designs are explored: naïve, progressive

upsampling (UP) and multi-level feature aggregation (MLA).

75

SEgmentation TRansformer

SETR naïve decoder

• A simple 2-layer network composed by 1 × 1 convolutions

with ReLU activation function in between is used.

• The output of this network, is simply bilinearly up sampled

to the original image resolution followed by a classification

layer with pixel-wise cross-entropy loss.

76

SEgmentation TRansformer

SETR UP decoder

• Instead of one-step upscaling which may introduce noisy

predictions, a progressive upsampling strategy that

alternates convolutional layers and upsampling operations

is considered.

• To maximally mitigate the adversarial effect, each

upsampling is restricted to 2×.

77

SEgmentation TRansformer

SETR MLA decoder

• Multi-level feature aggregation is employed in similar

spirit of feature pyramid networks.

• Intermediate feature representations 𝐘𝑙𝑒 , 𝑙𝑒 = 1, … , 𝐿𝑒 at the

encoder 𝑙𝑒
𝑡ℎ layer) share the same resolution.

• Multi-level feature aggregation is applied through sampling

feature representations 𝐘𝑚 from 𝑀 layers: 𝑚 ∈
𝐿𝑒

𝑀
, 2

𝐿𝑒

𝑀
, … , 𝑀

𝐿𝑒

𝑀
.

78

SEgmentation TRansformer

SETR MLA decoder

• 𝑀 streams are deployed, with each focusing on one specific

encoder layer.

• Each 𝐘𝑚 ∈ ℝ𝐿×𝑑𝑚 is mapped to a 3D feature map 𝑌𝑚 ∈

ℝ
𝐻

𝑁
×

𝑊

𝐻
×𝑑𝑚.

79

SEgmentation TRansformer

SETR MLA decoder

• A 3-layer (kernel sizes 1 × 1, 3 × 3, and 3 × 3) network is

applied with the feature channels halved at the first and

third layers respectively, and the spatial resolution upscaled

4 × by bilinear operation after the third layer.

• To enhance the interactions across different streams, a top-

down aggregation via element-wise addition after the first

layer is introduced.

80

SEgmentation TRansformer

SETR MLA decoder

• An additional 3 × 3 convolutional layer is applied after the

element-wise feature sum.

• After the third layer, the fused feature from all the streams

via channel-wise concatenation is obtained which is the

bilinearly up-sampled 4 × to the full resolution.

81

SEgmentation TRansformer

82

SEgmentation TRansformer

a) SETR architecture, b) UP decoder, c) MLA decoder [ZHE2021].

Transformers in Computer

Vision
• Motivation and related work

• Transformers

• Vision Transformer (ViT)

• Swin Transformer

• DEtection Transformer (DETR)

• SEgmentation TRansformer (SETR)

• Segment Anything Model (SAM)

• DINO

• Video ViT (ViViT)

83

Segment Anything Model (SAM) [KIR2023] stands as a

foundational model for object and image region

segmentation.

• It is designed to be prompt-responsive, accepting both:

• sparse prompts (including points, bounding boxes, and

text) and

• dense prompts (masks) alongside the input image.

• The main novelty of SAM is the prompt encoder.

84

Segment Anything Model (SAM)

Model architecture

85

Segment Anything Model (SAM)

SAM architecture [KIR2023].

SAM architecture

• Image encoder: A Masked Auto Encoding (MAE) pre-

trained Vision Transformer (ViT) encoder that embeds the

image and extracting its essential features.

• Prompt encoder: Lightweight prompt encoder designed to

transform user prompts into embedding vectors in real time.

• Mask decoder: Lightweight decoder dedicated to predicting

segmentation masks, by integrating both the image and

prompt embeddings.

86

Segment Anything Model (SAM)

Image Encoder is any network with the following input and

output:

• Input: Image 𝐗 ∈ ℝ𝐻0×𝑊0×𝐶0, typically rescaled and padded

to an analysis of 1024 × 1024 × 3.

• Output: Image embedding 𝐘 ∈ ℝ𝐻×𝑊×𝐶 , typically with size

64 × 64 × 256.

• SAM image encoder is the MAE pre-trained Vision

Transformer (ViT).

87

Segment Anything Model (SAM)

Prompt Encoder

• Input: 𝑁𝑡 sparse prompts (points, bounding boxes and text).

• Output: 𝑁𝑡 vectorial embeddings (one per prompt).

• Point: Sum of positional encoding of points location 𝐩𝑖 ∈
ℝ256 and a learned embedding 𝐱𝑖 ∈ ℝ256.

• Bounding box: Embedding pair of upper left and lower right

corner 𝐱𝑖𝑢 ∈ ℝ256, 𝐱𝑖𝑙 ∈ ℝ256.

• Text: Text prompts are fed into the CLIP text encoder,

generating an output embedding 𝐱𝑖 ∈ ℝ256 which serves as

the input for the prompt encoder.

88

Segment Anything Model (SAM)

Mask prompt Encoder

Dense prompts (masks) are embedded using 1 × 1 and 2 × 2
convolutions to produce 𝐘𝑚 ∈ ℝ𝐻×𝑊×𝐶.

• Typically, one segmentation mask is provided.

• The mask and image embeddings 𝐘, 𝐘𝑚 are added element-

wise:

𝐘′ = 𝐘 + 𝐘𝑚.

• If there is no dense prompt, then a default learned

embedding 𝐘𝑜 ∈ ℝ𝐻×𝑊×𝐶 is added to the image embedding.
89

Segment Anything Model (SAM)

Mask Decoder (modified Transformer decoder) maps the

image embedding 𝐘′ and a set of prompt embeddings 𝐱𝑖 , 𝑖 =
1, … , 𝑁𝑡 to output masks 𝐘𝑜 ∈ ℝ𝐻×𝑊×3.

90

Segment Anything Model (SAM)

SAM mask decoder [KIR2023].

Mask Decoder layer has 4 steps:

• Self-attention on the prompt embeddings.

• Cross-attention from prompt embeddings (as queries) to

the image embedding.

• Point-wise MLP to update the prompt embeddings.

• Cross-attention from image embeddings (as queries) to

the prompt embedding.

91

Segment Anything Model (SAM)

Mask Decoder

• 3 learned output token embeddings are inserted in the set of

prompt embeddings.

• A small MLP head estimates the IoU between each

predicted mask and the object it covers, ranking the

predicted masks.

92

Segment Anything Model (SAM)

SAM loss functions

• SAM loss is the sum of a mask loss and an IoU loss.

• The mask loss, the loss in the supervised mask prediction,

is a linear combination of focal loss and dice loss in a 20: 1
focal loss to dice loss ratio.

• The IoU loss, for the IoU prediction head, is the mean-

square-error loss between the IoU prediction and the

predicted mask IoU with the ground truth mask.

• The IoU loss is added to the mask loss with a constant

scaling factor of 1.0.

93

Segment Anything Model (SAM)

Industrial Inspection Applications

SAM has been applied to real-world use cases, such as pipe

region segmentation.

• A CNN model and SAM were combined in order to produce

masks of pipes in the image.

94

Segment Anything Model (SAM)

95

Segment Anything Model (SAM)

Pipe Image Segmentation Architecture [PSA2024].

96

Segment Anything Model (SAM)

Pipe Image Segmentation

Transformers in Computer

Vision
• Motivation and related work

• Transformers

• Vision Transformer (ViT)

• Swin Transformer

• DEtection Transformer (DETR)

• SEgmentation TRansformer (SETR)

• Segment Anything Model (SAM)

• DINO

• Video ViT (ViViT)

97

DINO [CAR2021] is a self-supervised ViT trained in a self-

DIstillation with NO labels fashion.

• DINO is used in:

• Image feature extraction

• Image classification.

• Feature representations extracted from DINO contain

explicit information about the semantic segmentation of

an image and they are excellent k-NN classifiers

(78.3% top-1 accuracy on ImageNet).
98

DINO

DINO architecture

• Two different random transformations of an input image are

passed through two different versions of the same ViT.

• The two versions of ViT are called student and teacher

network and they are denoted by 𝑔𝑠(∙ ; 𝐖𝑠) and

𝑔𝑡(; 𝐖𝑡)respectively.

• Both student and teacher have the same architecture.

• The teacher parameters are updated with an exponential

moving average of the student ones.

99

DINO

DINO architecture

• The output of the teacher network is centered with a mean

computed over the batch.

• Each network outputs a 𝐾 dimensional feature that is

normalized with a temperature Softmax over the feature

dimension.

• Their similarity is measured with a cross-entropy loss.

100

DINO

DINO architecture

• Given an input image 𝐗 ∈ ℝ𝐶×𝐻𝑊 both networks output

probability distributions denoted by 𝑝𝑠 𝐗 , 𝑝𝑡 𝐗 ∈ ℝ𝐾.

• The temperature Softmax for the student is computed by:

𝑝𝑠
𝑗

𝐗𝑖 =
exp(ൗ𝒈𝑠

𝑗
(𝐗 ; 𝐖𝑠) 𝜏𝑠)

σ𝑘=1
𝐾 exp(ൗ𝒈𝑡

𝑗
(𝐗 ; 𝐖𝑡) 𝜏𝑠)

.

• 𝜏𝑠 is the temperature parameter controlling the sharpness of

distribution.
101

DINO

DINO architecture

• Each input image 𝐗 ∈ ℝ𝐶×𝐻×𝑊 is randomly cropped multiple

times forming 𝟐 global crops at resolution covering 50% of

the original image and several local crops covering less

than 50% of the original image.

• All crops are passed through the student network, while

only the global ones are passed through the teacher one.

• For a specific image, the network is self-trained based on all

pairs of random crops.
102

DINO

DINO architecture

• A stop-gradient (sg) operator is

applied on the teacher network to

propagate gradients only through

the student one.

• Centering prevents one dimension

to dominate, but encourages

collapse to the uniform distribution.

• Softmax temperature compensates

for this.

103

DINO

DINO architecture [CAR2021].

104

DINO

• Different heads focus on

different objects or parts.

• This is visualized using

different colors.

• Attention is plotted for the

query corresponding to the

extra learnable embedding.

Self-attention per head on the last DINO layer

[CAR2021].

105

DINO

Self-attention on the last DINO layer for a set of reference points [CAR2021].

Transformers in Computer

Vision
• Motivation and related work

• Transformers

• Vision Transformer (ViT)

• Swin Transformer

• DEtection Transformer (DETR)

• SEgmentation TRansformer (SETR)

• Segment Anything Model (SAM)

• DINO

• Video ViT (ViViT)

106

ViViT [ARN2021] extracts spatio-temporal tokens from input

video and encodes them through a series of Transformer

encoder layers.

• ViViT is used in:

• video feature extraction

• video classification.

107

Video ViT (ViViT)

Four different ViViT variants factorize different components of

the transformer encoder over the spatial and temporal

dimensions:

• Spatio-temporal attention.

• Factorized encoder.

• Factorized self-attention (each single head is factorized).

• Factorized multi-headed attention (factorization across heads).

108

Video ViT (ViViT)

ViViT architecture

• A video 𝐕 ∈ ℝ𝑇𝐻𝑊×𝐶 is mapped into a sequence of spatio-

temporal fixed-size patches 𝐯𝑝 ∈ ℝ𝑁𝑇𝑁𝐻𝑁𝑊𝐶.

• This can be done through uniform frame sampling or

tubelet embedding.

• Each patch gets linearly embedded as following:

𝐯𝑝
′ = 𝐖𝑒𝐯𝑝 ∈ ℝ𝑑𝑚 .

• 𝐖𝑒∈ ℝ𝑑𝑚×𝑁𝑇𝑁𝐻𝑁𝑊𝐶 is learnable.

109

Video ViT (ViViT)

ViViT architecture

• In tubelet embedding, spatio-temporal patches of

dimensions 𝑁𝑇 × 𝑁𝐻 × 𝑁𝑊 are extracted.

110

Video ViT (ViViT)

Tubelet embedding [ARN2021].

ViViT architecture

• Positional information is provided through additive

learnable positional encodings of the same dimension 𝑑𝑚

as the input embeddings:

𝐳𝑝𝑖 = 𝐯𝑝𝑖
′ + 𝐩𝑖 .

• The video model processes 𝑁𝑇 times more tokens than the

one pre-trained on images.

• Thus, as an initialization step, the positional encodings

pre-trained on images are repeated temporally to all

frames. Then they are fine-tuned on video.
111

Video ViT (ViViT)

Spatio-temporal attention

• All spatio-temporal tokens are simply forwarded through the

Transformer encoder.

112

Video ViT (ViViT)

Tubelet embedding [ARN2021].

Factorized ViViT architecture

• In uniform frame sampling, 𝑁𝑇 video frames are uniformly

sampled and each 2𝐷 frame is split into patches of

dimensions 𝑁𝐻 × 𝑁𝑊.

113

Video ViT (ViViT)

Uniform video frame sampling [ARN2021].

Factorized encoder

114

Video ViT (ViViT)

Factorized encoder [ARN2021].

• The model consists of two

separate encoders in

series, a spatial and a

temporal one.

• It corresponds to a late

fusion of spatial and

temporal information.

Factorized encoder

• The spatial encoder captures correlations between tokens

extracted from the same video frame, to produce a latent

representation per frame.

• Like ViT, an extra learnable embedding is appended to

the beginning of the spatial sequence.

• Its state at the spatial encoder output serves as the latent

frame representation 𝐡𝑡 ∈ ℝ𝑑𝑚 where 𝑡 denotes time.

115

Video ViT (ViViT)

Factorized encoder

• The temporal encoder models interactions between latent

representations at different time instances.

• Again, an extra learnable embedding is appended to the

beginning of the temporal sequence.

• Its state at the temporal encoder output serves as the final

video representation 𝐲 ∈ ℝ𝑑𝑚.

116

Video ViT (ViViT)

Factorized self-attention

• Within each transformer block, the multi-headed self-

attention operation is factorized into two operations that first

only compute self-attention spatially, and then temporally.

117

Video ViT (ViViT)

Factorized self-attention [ARN2021].

Factorized multi-headed attention

• Half of the heads compute self-attention over the spatial axis,

while the other half compute self-attention over the temporal

axis.

118

Video ViT (ViViT)

Factorized multi-headed attention [ARN2021].

Bibliography
[ELA2002] M. Elad, "On the origin of the bilateral filter and ways to improve it", IEEE Transactions

on Image Processing, vol. 11, issue 10, pp. 1141-1151, 2002

[BUA2005] A. Buades, B. Coll, J.M. Morel, "A Review of Image Denoising Algorithms, with a New

One", Multiscale Modelling & Simulation, vol. 4, issue 2, pp. 490-530, 2005

[TAK2007] H. Takeda, S. Farsiu, P. Milanfar, Kernel regression for image processing and

reconstruction, IEEE Transactions on Image Processing, vol. 16, issue 2, pp. 349-366, 2007

[VAS2017] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, I.

Polosukhin, "Attention Is All You Need", Advances in Neural Information Processing Systems

(NIPS), 2017.

[GRAV2014] A. Graves, G. Wayne, I. Danihelka, Neural Turing Machines, arxiv preprint

arXiv:1410.5401, 2014

[ZHA2018] H. Zhang, I. Goodfellow, D. Metaxas, A. Odena, "Self-Attention Generative Adversarial

Networks", arxiv preprint arXiv:1805.08318, 2018

[WAN2018] X. Wang, R. Girshick, A. Gupta, K. He, "Non-local Neural Networks", Conference on

Computer Vision and Pattern Recognition (CVPR), 2018

119

https://arxiv.org/abs/1410.5401
https://arxiv.org/abs/1805.08318

Bibliography
[RAM2019] P. Ramachandran, N. Parmar, A. Vaswani, I. Bello, A. Levskaya, J. Shlens, "Stand-

Alone Self-Attention in Vision Models", Advances in Neural Information Processing Systems

(NeurIPS), 2019

[HU2019] H. Hu, Z. Zhang, Z. Xie, S. Lin, "Local Relation Networks for Image Recognition",

International Conference on Computer Vision (ICCV) 2019

[RAD2018] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, "Improving Language

Understanding by Generative Pre-Training", OpenAI Blog, 2018.

[RAD2018] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, "Improving Language

Understanding by Generative Pre-Training", OpenAI Blog, 2018.

[DEV2018] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, "BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding", arxiv preprint arXiv:1810.04805, 2018.

[DOS2021] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M.

Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. Houlsby, "An Image is Worth 16 × 16
Words: Transformers for Image Recognition at Scale", International Conference on Learning

Representations (ICLR), 2021

120

https://arxiv.org/abs/1810.04805

Bibliography
[PAR2022] N. Park, S. Kim, "How do vision transformers work?", International Conference on

Learning Representations (ICLR), 2022

[RAG2022] M. Raghu, T. Unterthiner, S. Kornblith, C. Zhang, A. Dosovitskiy, "Do Vision

Transformers See Like Convolutional Neural Networks?", Neural Information Processing Systems

(NeuIPS), 2022

[LIU2021] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, "Swin Transformer:

Hierarchical Vision Transformer using Shifted Windows", International Conference on Computer

Vision (ICCV), 2021

[LIN2017] T.Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, S. Belongie, "Feature Pyramid

Networks for Object Detection", Conference on Computer Vision and Pattern Recognition (CVPR),

2017

[RON2015] O. Ronneberger, P. Fischer, T. Brox, "U-net: Convolutional networks for biomedical

image segmentation", International Conference on Medical image computing and computer-assisted

intervention, 2015

[CAR2020] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, S. Zagoruyko, "End-to-End

Object Detection with Transformers", European Conference on Computer Vision (ECCV), 2020

121

Bibliography
[ARN2021] A. Arnab, M. Dehghani, G. Heigold, C. Sun, M. Lučić, C. Schmid, "ViViT: A Video Vision

Transformer", arxiv preprint arXiv:2103.15691, 2021

[CAR2021] M. Caron, H. Touvron, I. Misra, H. Jegou, J. Mairal, P. Bojanowski, A. Joulin, "Emerging

Properties in Self-Supervised Vision Transformers", International Conference on Computer Vision

(ICCV), 2021

[ZHE2021] S. Zheng, J. Lu, H. Zao, X. Zhu, Z. Luo, Y. Wang, Y. Fu, J. Feng, T. Xiang, P.H.S. Torr,

L. Zhang, "Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with

Transformers", Conference on Computer Vision and Pattern Recognition (CVPR) 2021

122

https://arxiv.org/abs/2103.15691

Q & A

Thank you very much for your attention!

More material in

http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas

pitas@csd.auth.gr

123

	Slide 1: Attention and Transformer Networks in Computer Vision
	Slide 2: Transformers in Computer Vision
	Slide 3: Motivation
	Slide 4: Motivation
	Slide 5: Motivation
	Slide 6: Motivation
	Slide 7: Motivation
	Slide 8: Motivation
	Slide 9: Motivation
	Slide 10: Motivation
	Slide 11: Motivation
	Slide 12: Related work
	Slide 13: Related work
	Slide 14: Related work
	Slide 15: Related work
	Slide 16: Related work
	Slide 17: Related work
	Slide 18: Related work
	Slide 19: Transformers in Computer Vision
	Slide 20: Transformer architecture
	Slide 21: Transformer architecture
	Slide 22: Transformer architecture
	Slide 23: Transformer architecture
	Slide 24: Transformer architecture
	Slide 25: Transformer architecture
	Slide 26: Transformer architecture
	Slide 27: Transformer architecture
	Slide 28: Transformers in Computer Vision
	Slide 29: Vision Transformer (ViT)
	Slide 30: Vision Transformer (ViT)
	Slide 31: Vision Transformer (ViT)
	Slide 32: Vision Transformer (ViT)
	Slide 33: Vision Transformer (ViT)
	Slide 34: Vision Transformer (ViT)
	Slide 35: Vision Transformer (ViT)
	Slide 36: Vision Transformer (ViT)
	Slide 37: Vision Transformer (ViT)
	Slide 38: Vision Transformer (ViT)
	Slide 39: Vision Transformer (ViT)
	Slide 40: Vision Transformer (ViT)
	Slide 41: Vision Transformer (ViT)
	Slide 42: Transformers in Computer Vision
	Slide 43: Swin Transformer
	Slide 44: Swin Transformer
	Slide 45: Swin Transformer
	Slide 46: Swin Transformer
	Slide 47: Swin Transformer
	Slide 48: Swin Transformer
	Slide 49: Swin Transformer
	Slide 50: Transformers in Computer Vision
	Slide 51: DEtection TRanformer (DETR)
	Slide 52: DEtection TRanformer (DETR)
	Slide 53: DEtection TRanformer (DETR)
	Slide 54: DEtection TRanformer (DETR)
	Slide 55: DEtection TRanformer (DETR)
	Slide 56: DEtection TRanformer (DETR)
	Slide 57: DEtection TRanformer (DETR)
	Slide 58: DEtection TRanformer (DETR)
	Slide 59: DEtection TRanformer (DETR)
	Slide 60: DEtection TRanformer (DETR)
	Slide 61: DEtection TRanformer (DETR)
	Slide 62: DEtection TRanformer (DETR)
	Slide 63: DEtection TRanformer (DETR)
	Slide 64: DEtection TRanformer (DETR)
	Slide 65: DEtection TRanformer (DETR)
	Slide 66: DEtection TRanformer (DETR)
	Slide 67: DEtection TRanformer (DETR)
	Slide 68: DEtection TRanformer (DETR)
	Slide 69: DEtection TRanformer (DETR)
	Slide 70: DEtection TRanformer (DETR)
	Slide 71: Transformers in Computer Vision
	Slide 72: SEgmentation TRansformer
	Slide 73: SEgmentation TRansformer
	Slide 74: SEgmentation TRansformer
	Slide 75: SEgmentation TRansformer
	Slide 76: SEgmentation TRansformer
	Slide 77: SEgmentation TRansformer
	Slide 78: SEgmentation TRansformer
	Slide 79: SEgmentation TRansformer
	Slide 80: SEgmentation TRansformer
	Slide 81: SEgmentation TRansformer
	Slide 82: SEgmentation TRansformer
	Slide 83: Transformers in Computer Vision
	Slide 84: Segment Anything Model (SAM)
	Slide 85: Segment Anything Model (SAM)
	Slide 86: Segment Anything Model (SAM)
	Slide 87: Segment Anything Model (SAM)
	Slide 88: Segment Anything Model (SAM)
	Slide 89: Segment Anything Model (SAM)
	Slide 90: Segment Anything Model (SAM)
	Slide 91: Segment Anything Model (SAM)
	Slide 92: Segment Anything Model (SAM)
	Slide 93: Segment Anything Model (SAM)
	Slide 94: Segment Anything Model (SAM)
	Slide 95: Segment Anything Model (SAM)
	Slide 96: Segment Anything Model (SAM)
	Slide 97: Transformers in Computer Vision
	Slide 98: DINO
	Slide 99: DINO
	Slide 100: DINO
	Slide 101: DINO
	Slide 102: DINO
	Slide 103: DINO
	Slide 104: DINO
	Slide 105: DINO
	Slide 106: Transformers in Computer Vision
	Slide 107: Video ViT (ViViT)
	Slide 108: Video ViT (ViViT)
	Slide 109: Video ViT (ViViT)
	Slide 110: Video ViT (ViViT)
	Slide 111: Video ViT (ViViT)
	Slide 112: Video ViT (ViViT)
	Slide 113: Video ViT (ViViT)
	Slide 114: Video ViT (ViViT)
	Slide 115: Video ViT (ViViT)
	Slide 116: Video ViT (ViViT)
	Slide 117: Video ViT (ViViT)
	Slide 118: Video ViT (ViViT)
	Slide 119: Bibliography
	Slide 120: Bibliography
	Slide 121: Bibliography
	Slide 122: Bibliography
	Slide 123: Q & A

