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Intro

Predicting classifier accuracy

• Classifier Accuracy Prediction (CAP)
• Routinely performed via k-fold cross-validation (k-FCV)
• Reliable only when the training data T and the unlabelled data U are IID
• Still an open problem when T and U are not IID, i.e., when dataset shift (DS

– aka “dataset drift”) is present

• One of several tasks of interest that tackle DS, among which
• Estimating the type of DS at play
• Estimating the amount of DS at play
• Adapting classifiers to DS

• Useful
• “How is my old classifier going to perform on these new data?”
• “Should I obtain new labels for retraining?”
• Important for responsible use of AI

• QuAcc, a new method for CAP under DS
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Intro

Dataset Shift

• P1(X ,Y ): source distribution (from which the training data T are sampled)

• P2(X ,Y ): target distribution (from which the unlabelled data U are sampled)

Independently and
Identically Distributed Data Dataset Shift

P1(X ,Y ) = P2(X ,Y ) P1(X ,Y ) ̸= P2(X ,Y )
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Intro

Causes of Dataset Shift

• Variations in the environment that the data represent (real shift); i.e. the
environment is not stationary, and the operating (“test”) conditions were not
the same at training time;
• E.g., prevalence of terrorism-related news before or after 9/11;

• Misrepresentation of the environment on the part of the data (virtual shift):
i.e., the process of labelling training data may have introduced “sample
selection bias”:
• intentionally (e.g., when oversampling the minority class)
• unintentionally (e.g., if active learning is used)
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Intro

Factorizing the Joint Probability Distribution

• P(X ,Y ) can be written as P(Y |X )P(X )
• Factorization useful in “X → Y problems” (causal learning, i.e., inferring

phenomena Y from causes X )

• P(X ,Y ) can be written as P(X |Y )P(Y )
• Factorization useful in “Y → X problems” (anticausal learning, i.e., inferring

phenomena Y from symptoms X )

• Three major types of DS identified in the literature, depending on whether we
are in the presence of causal learning or anticausal learning
• Covariate shift (in X → Y problems)
• Prior probability shift (in Y → X problems)
• Concept shift (in both types of problems)

Schölkopf B., Janzing D., Peters J., Sgouritsa E., Zhang K., Mooij JM. On causal and anticausal
learning. In ICML 2012.
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Intro

Covariate Shift

• Context: “X → Y problems”
• Causal learning, i.e., inferring phenomena Y from causes X
• P(X ,Y ) decomposed as P(Y |X )P(X )

• E.g., weather forecasting, avalanche forecasting

• Covariate shift defined as
situation in which
• P1(Y |X ) = P2(Y |X )
• P1(X ) ̸= P2(X )

• E.g., forecasting for
different geographical
areas
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Intro

Prior Probability Shift

• Context: “Y → X problems”
• Anticausal learning, i.e., inferring phenomena Y from symptoms X
• P(X ,Y ) decomposed as P(X |Y )P(Y )

• E.g., handwritten digit recognition, authorship attribution, predicting illnesses
from symptoms

• Prior probability shift (aka
“label shift”) defined as
situation in which
• P1(X |Y ) = P2(X |Y )
• P1(Y ) ̸= P2(Y )

• E.g., digit recognition for
binary digits only
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Intro

Concept Shift

• Context: either “X → Y problems” or “Y → X problems”

• Concept shift defined as
situation in which one of
• P1(Y |X ) ̸= P2(Y |X )
• P1(X |Y ) ̸= P2(X |Y )

holds

• E.g., perception of what
counts as “positive”
changes
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Intro

Classifier Accuracy Prediction under DS

• A number of CAP methods emerged in the last few years, but SOTA still
unsatisfactory
• CAP error sometimes too high for practical applicability
• Experimentation sometimes not thorough enough
• Most methods devised for / tested on one CA measure only (vanilla accuracy)

Garg, S., Balakrishnan, S., Lipton, Z. C., Neyshabur, B., and Sedghi, H. (2022). Leveraging unlabeled
data to predict out-of-distribution performance. In ICLR 2022.

Goel, K., Sohoni, N. S., Poms, F., Fatahalian, K., and Ré, C. (2021b). Mandoline: Model evaluation
under distribution shift. In ICML 2021.

Guillory, D., Shankar, V., Ebrahimi, S., Darrell, T., and Schmidt, L. (2021). Predicting with confidence
on unseen distributions. In ICCV 2021.

Elsahar, H. and Gallé, M. (2019). To annotate or not? Predicting performance drop under domain shift.
In EMNLP-IJCNLP 2019.
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A new CAP method for DS

QuAcc: A New Method for CAP under DS

• QuAcc: “Quantification for Accuracy Prediction”
• Independent of the learning algorithm used for training the classifier
• Independent of the CA measure chosen

• Standard setting for CAP:
• Domain X of items, set Y = {y1, ..., yn} of classes
• Training set T ∼ P1(X ,Y ) assumed unavailable
• Validation set V ∼ P1(X ,Y ) available
• Unlabelled set U ∼ P2(X ,Y ) available
• P1(X ,Y ) ̸= P2(X ,Y )
• Goal: predict the accuracy that a classifier h : X → Y trained on T will have

on U, according to an accuracy measure A

• Equivalently, one may assume that no validation set V is available but the
original training set T is still available
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A new CAP method for DS

QuAcc: A New Method for CAP under DS

• Observation #1: Any CA measure A(h,U) can be computed from the
contingency table CU obtained by applying h to U, so we only need to
estimate the values cUij of each cell in CU

Predicted class
y1 . . . yi . . . yn

T
ru
e
cl
as
s y1 c11 . . . c1j . . . c1n

. . . . . . . . . . . . . . . . . .
yi ci1 . . . cij . . . cin
. . . . . . . . . . . . . . . . . .
yn cn1 . . . cnj . . . cnn
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A new CAP method for DS

QuAcc: A New Method for CAP under DS

• ⇒ Idea #1:

1 View the cells of the contingency table CU as classes

2 Train on V a model that estimates the values cUij

3 Use the estimates ĉUij to predict A(h,U)

• For Step 2 we represent the datapoints as pairs (ẍ, ÿ), where
• ẍ is a vector

ẍ = (x,Pr(y1|x), ...,Pr(yn|x))
which incorporates

• the original representation x that classifier h has used
• the posterior probabilities Pr(yi |x) that h has returned for x

• ÿ is a label that ranges not on Y but on CU

• For datapoints in V , ÿ encodes the pair (y , h(x)) consisting of (i) the true
class of x and (ii) the class that h has predicted for it

• For datapoints in U, ÿ is unknown, since we know h(x) but not y
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A new CAP method for DS

QuAcc: A New Method for CAP under DS

• Observation #2: We don’t strictly need to predict the cell where each
datapoint will end, we only need to predict the counts (or the frequencies) of
datapoints that will end in each cell

• ⇒ Idea #2: Use quantification methods to estimate these frequencies
• Quantifiers:

• predictors of the fractions of datapoints that belong to each class
• robust to DS “by design”

• Goal: improving over simplistic “classify and count” via special-purpose
learning techniques
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A new CAP method for DS

QuAcc: A New Method for CAP under DS

• Focus of the present work:
• Predicting the accuracy of binary classifiers
• Prior probability shift
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A new CAP method for DS

1st QuAcc variant: The 1×4 method

• The 1×4 method is based on training on V a single multiclass (4 classes)
quantifier q that estimates the frequencies of the four cells

Pred
⊕ ⊖

T
ru
e ⊕ TP FP

⊖ FN TN

• Basic process:

1 Classify instances of V using h, to obtain V̈ = {(ẍi , ÿi ) | (xi , yi ) ∈ V }
2 Classify instances of U using h, to obtain Ü = {ẍi | xi ∈ U}
3 Train a multiclass (4 classes) quantifier q on V̈

4 Apply q to Ü to obtain p̂U(TP) p̂U(FP)

p̂U(FN) p̂U(TN)

• Multiclass version: the 1×n2 method
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A new CAP method for DS

2nd QuAcc variant: The 2×2 method

• Observation: sets TP∪FN and TN∪FP are known

• The 2×2 method is based on training on V two binary quantifiers, i.e.,
• one that discriminates between classes TP and FN
• one that discriminates between classes TN and FP

• Advantageous over the 1×4 method since
• Exploits additional knowledge
• Implements “divide et impera”

• Multiclass version: the n × n method
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A new CAP method for DS

3rd QuAcc variant: The 1×3 method

• Observation: The FP’s and the
FN’s tend to lie in two regions
that both flank (from opposite
sides) the separating surface

• Since they are contiguous, they
may be viewed as a single
region FP∪FN

• The 1×3 method is based on training on V a single multiclass (3 classes)
quantifier q that discriminates among TP, TN, and FP∪FN

• Caveat: Can only be used for CA measures that do not differentiate between
FP and FN. E.g.,
• Yes: vanilla accuracy, F1

• No: cost-sensitive CA measures
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A new CAP method for DS

QuAcc: Additional covariates

• One can add to the ẍ = (x,Pr(y1|x), ...,Pr(yn|x)) vector a number of
covariates that make explicit information only implicitly present in the vector

• The vector thus becomes

ẍ = (x,Pr(y1|x), ...,Pr(yn|x),MC(p),NE(p),MIS(p))

with

MaxConf MC(p) = max
yi∈Y

Pr(yi |x)

NegEnt NE(p) =
∑
yi∈Y

Pr(yi |x) log Pr(yi |x)

Max Inverse Softmax MIS(p) = max
yi∈Y

[
log Pr(yi |x)−

1

|Y|
∑
yj∈Y

log Pr(yj |x)

]
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Experimental Setup

A few experiments

• Experiments aimed at simulating PPS by using the APP protocol
• Meant to be a “stress test” for robustness to PPS, since it simulates a wide

variety of amounts
• of training data imbalance
• of test data imbalance
• of PPS

• APP extracts from a dataset Ω
• training samples
• validation samples
• test samples

with class frequencies lying on a pre-specified grid
• Implements the P1(Y ) ̸= P2(Y ) and P1(X |Y ) = P2(X |Y ) conditions

• Experiments using two multiclass quantification methods (SLD and KDEy)
that are SOTA for addressing PPS

Saerens, M., Latinne, P., and Decaestecker, C. Adjusting the outputs of a classifier to new a priori
probabilities: A simple procedure. Neural Computation, 2002.

Moreo, A., González, P., and del Coz, J. J. Kernel density estimation for multiclass quantification.
arXiv:2401.00490 [cs.LG], 2023.
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Experimental Setup

Experimental Setup

Datasets • IMDB, CCAT, GCAT, MCAT

Classifier h • Logistic Regression

Quantifier q • (CC,) SLD, KDEy

T ∼ P1(X ,Y )
• For training classifier h
• Training samples extracted according to 9-point grid

of class frequencies

V ∼ P1(X ,Y )
• For training quantifier q
• Validation samples with same frequencies

as training samples

U ∼ P2(X ,Y )

• Test samples extracted according to 21-point grid
of class frequencies

• 100 samples per frequency
• Samples of 1000 datapoints each
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Experimental Setup

Experimental Setup

• Baselines: we use all CAP methods published in the last 5 years that make
their code available, i.e.,
• ATC (Garg et al., ICLR 2022)
• DoC (Guillory et al., ICCV 2021)
• Mandoline (Chen et al., ICML 2021)
• RCA and RCA* (Elsahar and Gallé, EMNLP-IJCNLP 2019)

• Classifier accuracy measure: we use
• vanilla accuracy
• F1

• CAP error measure: we use

Err(A(h,U), Â(h,U)) = |A(h,U)− Â(h,U)|
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Experimental Setup

Optimisation

• Optimised QuAcc obtained via model selection

• Via grid search over set of hyperparameters
• By minimising Err(A(h,V ), Â(h,V ))

• Optimise 1×4 method, 2×2 method, and 1×3 method, by exploring

• C , rebalance ← classifier underlying quantification method
• recalibrate (via BCTS) ← SLD
• bandwidth ← KDEy

• Additional model selection to choose best optimised method
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Experimental Setup

Overall Results for Vanilla Accuracy

IMDB CCAT GCAT MCAT

B
as
el
in
es

Näıve .1799 ± .208 .1274 ± .165 .1071 ± .150 .1183 ± .164
RCA .1085 ± .116 .0493 ± .056 .0519 ± .051 .0618 ± .076
RCA* .1099 ± .118 .0564 ± .073 .0504 ± .049 .0610 ± .076
Mandoline .3616 ± .280 .1920 ± .176 .1581 ± .161 .3599 ± .346
DoC .0226 ± .020 .0145 ± .013‡ .0112 ± .010 .0199 ± .022†

ATC .0613 ± .078 .0292 ± .036 .0151 ± .017 .0230 ± .030

Q
u
A
cc QuAcc(CC) .0474 ± .038 .0297 ± .024 .0201 ± .015 .0313 ± .042

QuAcc(SLD) .0162 ± .013 .0151 ± .014 .0097 ± .007 .0136 ± .010
QuAcc(KDEy) .0167 ± .018 .0137 ± .012 .0090 ± .008 .0143 ± .013‡

Error reduction +28.32% +5.52% +19.64% +31.66%

• Each figure is the average value of E across the 9×21×100=18,900
combinations of a training sample Ti and a test sample Uj .
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Experimental Setup

Overall Results for F1

IMDB CCAT GCAT MCAT

B
as
el
in
es

Näıve .1512 ± .226 .1327 ± .229 .1288 ± .225 .1300 ± .223
RCA .1204 ± .148 .1008 ± .134 .1058 ± .147 .1147 ± .151
RCA* .2085 ± .237 .2593 ± .284 .2347 ± .238 .2486 ± .250
Mandoline — — — —
DoC .0809 ± .096 .0951 ± .109 .0947 ± .126 .0911 ± .123
ATC .1015 ± .133 .0798 ± .116 .0918 ± .141 .0765 ± .124

Q
u
A
cc QuAcc(CC) .0640 ± .091 .0499 ± .082 .0470 ± .094 .0492 ± .092

QuAcc(SLD) .0259 ± .038 .0199 ± .032 .0221 ± .051 .0227 ± .055
QuAcc(KDEy) .0292 ± .066 .0201 ± .051 .0240 ± .067 .0302 ± .080

Error reduction +67.99% +75.06% +75.93% +75.08%

• Each figure is the average value of E across the 9×21×100=18,900
combinations of a training sample Ti and a test sample Uj .
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Experimental Setup

Vanilla Accuracy on IMDB (as a function of PPS)
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Experimental Setup

F1 on IMDB (as a function of test prevalence)
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Experimental Setup

Vanilla Accuracy on IMDB: Naive

‘
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Experimental Setup

Vanilla Accuracy on IMDB: RCA
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Experimental Setup

Vanilla Accuracy on IMDB: ATC
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Experimental Setup

Vanilla Accuracy on IMDB: DoC
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Experimental Setup

Vanilla Accuracy on IMDB: QuAcc(CC)
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Experimental Setup

Vanilla Accuracy on IMDB: QuAcc(SLD)
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Experimental Setup

Vanilla Accuracy on IMDB: QuAcc(KDEy)
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Conclusions

Lessons learned

• QuAcc always outperforms all the baselines
• Large error reduction with Acc, very large error reduction with F1

• Robust to a “difficult” accuracy measure such as F1

• Even the simplistic QuAcc(CC) gives good results
• ⇒ Viewing contingency table cells as classes is a good idea

• Best performance obtained by QuAcc(SLD) or QuAcc(KDEy)
• ⇒ Using PPS-robust quantification algorithms for predicting the values of

these cells is a good idea

• CAP under PPS can be performed reasonably well, with average CAP error
• < 2% for Acc
• < 3% for F1
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Conclusions

What remains to be done

• New variants
• Generate ensemble out of the 3 variants via stacking

• Testing QuAcc on different classifier-learning techniques
• E.g., deep learning methods

• Testing QuAcc on multiclass classification
• Devise analogues of the 1×3 method

• Adapting QuAcc to PPS between training data and validation data

• Testing QuAcc on other types of dataset shift
• Involves choosing quantification methods robust to DS types other than PPS
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Conclusions

Thank you!

Email: fabrizio.sebastiani@isti.cnr.it
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