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Main objective

ÅTo develop an artificial intelligence system that will analyze

all the captured data by SIMAR robotic systems to reduce

the inspector workload and stress.

Overview
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ÅInsulated Pipe RegionSegmentation

ÅDeveloped pipe segmentation algorithm: Pipe segmentation model.

ÅEnriched the pipe segmentation dataset.

ÅExtensive evaluation of the Pipe segmentation model.

ÅPipe Damage Detection/Classification

ÅDeveloped damage detection/classification algorithm: Lightweight DNN (Yolo, RT-

DETR) detectors and changes detection algorithm.

ÅEnriched damage detection/classification dataset.

ÅExtensive evaluation of the developed algorithms.

Overview
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Å3D Pipe Damage Localization

ÅDevelop algorithms for creating 3D models of pipes (cylinders) using a) 3D point

cloud, b) RGB video frames.

ÅProjecting the 2D detected pipe damages on the 3D point cloud/map.

ÅX-ray PipeDamageDetection

ÅDeveloped algorithms for damage/corrosion detection on X-Ray images.

ÅPECPipeDamageDetection

ÅAnalyze/pre-processPECdata.

ÅTestbaselinemethodsfor corrosionleveldetection.

Overview
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Pipe Region Segmentation

ÅCooperation of a CNN segmentation model [PAP2021] and Segment

Anything Model [KIR2023].

ÅThe CNN model produces masks of the pipes.

ÅA prompted SAM goal is used to refine the segmentation masks

produced by CNN model.

ÅSAM also runs on automatic mode to produce masks for all objects.

ÅThe final segmentation mask is produced by fusing the two

intermediate outputs.
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Pipe Region Segmentation
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Pipe Region Segmentation

ÅTraining dataset: 901 annotated RGB images collected from the

CHEVRON site (initial data collection)

ÅValidation dataset: 77 annotated RGB images collected from the AUTH

site

ÅTest Dataset: RGB images collected from CHEVRON on September

21st 2023 using UAV.

Validation dataset (AUTH 
site)
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Pipe Region Segmentation

ÅThe performance of the model was evaluated using the Intersection-

over-Union (IoU) metric.

D. Psarras, C. Papaioannidis, V. MygdalisΣ ŀƴŘ LΦ tƛǘŀǎΣ ά! ¦ƴƛŦƛŜŘ 5bb-.ŀǎŜŘ {ȅǎǘŜƳ ŦƻǊ LƴŘǳǎǘǊƛŀƭ tƛǇŜƭƛƴŜ {ŜƎƳŜƴǘŀǘƛƻƴέΣ ǎǳōƳƛǘǘŜŘ ŀǎ 
conference paper.
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Pipe Damage Detection

Pipe image segmentation.
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ÅDetection/classification:

ÅYOLO-based algorithm [CHU2022] :

ÅExtract features from CNN-based backbone.

ÅIntegrate features at multiple scales.

ÅRT-Detr-based algorithm [WEN2023] :

ÅTransformer based detector.

ÅChanges detection:

ÅDeep autoencoder model:

ÅLearns the distribution of non-damaged pipes.

ÅDetects the images/patches that differ from learned distribution (and possibly

contain damaged pipes).

Pipe Damage Detection
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Pipe Damage Detection

Pipe damage in a Greek factory.
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Pipe Damage Detection

Performance of damage 

detection/classification 

algorithms
Model Dataset

Mean Average 
Precision

Mean Average 
Recall

YOLO-NAS D2023-07-01 0.39 0.776

YOLOv6L6 D2023-07-01 0.519 0.705

YOLOv6L6+SAHI D2023-07-01 0.521 0.730

Rt-Detr D2023-07-01 0.472 0.77

Rt-Detr+SAHI D2023-07-01 0.45 0.54

YOLOv6L6 D2023-09-30 0.52 0.78

Rt-Detr D2023-09-30 0.45 0.77

Rt-Detr+YOLOv6-
Backbone

D2023-09-30 0.40 0.65

YOLOv6L6 D2023-10-20 0.52 0.82

Rt-Detr D2023-10-20 0.46 0.78

Methods Precision Recall 

Autoencod
ers

0.55 0.91

Autoencod
ers with 
one-class 

SVM

0.56 0.89

ResNet-50 
with Local 

Outlier 
Factor

0.36 0.86

Performance of changes 

detection algorithms
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Pipe Damage Detection

Overall pipe damage detection and visualization.
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3D Pipe Damage Localization

ÅDeveloped algorithm for 3D pipe model construction from 3D point

clouds.

ÅInput: 3D point cloud from simulation.

ÅPrincipal Component Analyses (PCA) to the 3D point cloud 

[BRO2014].

ÅFit a circle ὼȟώȟὶ by projecting the 3D point cloud onto the plane

of the eigenvectors.

ÅCompute the orientation and height of cylinder.

ÅGoal: Improve accuracy of damage localization on the 3D point cloud.
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3D Pipe Damage Localization

PCA on the 3D point cloud2D projection of cylinder to 
compute orientation and height

Projection of the point cloud onto 
the plane of eigenvectors. The 

blue line is the circle fitted.
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3D Pipe Damage Localization

Å3D pipe model construction from RGB video frames.

ÅStructure from Motion software

ÅApply masks to point cloud mainly to reduce outliers.

ÅUtilizes segmentation masks + confidence masks.

ÅBetter cylinder parameter computation.

ÅReduced processing time.
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X-Ray Pipe Damage Detection

ÅTrained baseline models based on YOLO object detector [CHU2022].

YOLOv8 Results

Precision 0.97

Recall 0.96

mAP50 0.98

mAP50-95 0.71
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X-Ray Pipe Damage Detection

ÅEmploy image processing techniques to detect the edge of the pipe.

ÅDetect corrosion by measuring the distance from the corresponding

straight line that simulates a pipe without corrosion.

Corrosion

No 

Corrosion

Images 
taken from 

[QSA] 
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PEC Pipe Damage Detection

ÅA literature review is needed to identify deep learning methods and

baselines for analyzing PEC signals.
ÅA sample of demo data provided by USE:



Electrical Infrastructure 
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Infrastructure inspection 

applications

ÅAerial robots with different characteristics must be

integrated for:

1. Long range and local very accurate inspection of the

infrastructure.

2. Maintenance activities based on aerial manipulation

involving force interactions.

3. Aerial co-working safely and efficiently helping human

workers in inspection and maintenance.

31
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Technical objectives

ÅCognitive functionalities for aerial robots including perception based

on novel sensors such as event cameras and data fusion

techniques, learning, reactivity, fast on-line planning, and teaming.

ÅCognitive safe aerial robotic co-workers capable of physical

interaction with people.

ÅCognitive aerial manipulation capabilities, including manipulation

while flying, while holding with one limb, and while hanging or

perching to improve accuracy and develop greater forces.

ÅAerial platforms with morphing capabilities, including morphing

between flight configurations, and between flying and ground

locomotion, to save energy and perform a very accurate inspection.
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Long range inspection of 

power lines
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Safe local manipulation 

interventions

ÅExamples: 

ÅInstalling anti-birds 

systems.

ÅCleaning isolator in 

power lines.
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A lineman installs bird diverters from dizzying heights.mp4


Co-working activities
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400 KV transmissionline Poland..mp4
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Types of inspection

38

Thermography
3D mapping (LIDAR)

Camera & video



Thermography

ÅDetection of hot spots in the electrical tower: cramps and

connections

ÅTo perform thermography, the speed of a fixed wing UAV is

limited to 50-60 km/h.
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3D LIDAR

ÅPrecise 3D mapping (with cm level accuracy and precision)

ÅNo speed limitation on the manned helicopter

ÅA 3D map is constructed to:

ÅDetection of obstacles close to power lines.

ÅMeasurement of vegetation around power lines.

ÅChecking distance when crossing power lines.

ÅOnce the 3D map is obtained, a classifier algorithm (and also

checked and adjusted by a technician) is used.

ÅAfterwards, distances and other measurements are performed to

develop the inspection report.

40



3D VGA Time-of-Flight camera
ÅA camera for human gesture recognition, object avoidance in 

close distance, landing and taking-off. 

41
Indoor Tests, February 2021, Terabee facilities.



Event cameras -

motivation

42

Latency  & Motion blur. Dynamic Range.
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Research tasks

ÅSemantic 3D world

mapping.

ÅLearning methods for

object detection/tracking of

electric lines, rods, etc.

ÅHuman-drone interaction:

ÅGesture drone control.

ÅBody posture estimation.

ÅHuman action recognition.

ÅFacial pose estimation.

44



Learning methods for 

aerial inspection

ÅVisual detection.

ÅSemantic segmentation of power lines to enhance robot

behavior.

ÅObject detection for manipulation tasks.

ÅFocus in lightweight nets for online computing.

ÅGenerative adversarial networks (GAN) to improve

detection quality from previous learned experiences.

45



Semantic visual 

cognition

ÅDeep Neural Networks (DNNs) are the algorithm of choice

for 2D visual object detection/tracking tasks.

ÅThey require powerful GPU-equipped hardware platforms

for real-time execution.

ÅE.g.: Nvidia Xavier computing board for embedded/robotics

applications.

ÅSoftware execution environment: Linux + Python.

46



Fast 2D Convolutions

Å State-of-the-art neural network architectures for visual data use convolutional layers.

Å The convolution operation takes up most of the total inference and training time.

Å Reducing the computational complexity of convolutions would render networks for

e.g., target detection or target tracking much more efficient for deployment on

embedded GPUs.
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Experimental Results

Algorithm Computation time (ms)

Winograd-6 (cuDNNWinograd linear 
convolution )

0.9165

GEMM-0 (fastest cuDNNconvolution) 0.3858

Ours 0.0809

ÅWe developed a fast convolution algorithm which

splits cyclic convolution into smaller products.

Å In this algorithm, cyclic convolution takes the

following form:

ὁ ἍἋὀṧἌἰȢ

Å Thus, the problem is reduced to finding matrices

ἋȟἌandἍ.



Semantic 3D World 

Mapping

Geometric modeling of the 3D world. 

48



Semantic 3D World 

Mapping
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ÅSemantic image

segmentation:

ÅSegment low/high

vegetation regions,

roads.



Semantic 3D World 

Mapping

ÅSemantic image

segmentation:

ÅCrowd detection and

localization.

50



Semantic Segmentation
ÅMultitask CNN for semantic segmentation and self-supervised depth 

estimation.

ÅNovel consistency loss function to regularize segmentation output.

ÅñDo not form semantic edges, if there are no depth edgesò.
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Method MeanIoU Inference(ms)

Yu et al. 39.557% 6.2

Klingneret al. 34.318% 6.4

Novoselet al. 37.683% 8.3

Chen et al. 
(pretrained)

39.610% 6.2

Chen et al. 
(multitask)

38.153% 9

Ours 40.597% 6.2

Semantic Image Segmentation Guided by Scene Geometry [PAPAD2021].



Semantic Segmentation
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Semantic 3D World Mapping
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Å Raw reprojection

After step2 Final

Å Semantic segmentation output



Semantic 3D World Mapping
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Object detection and 

tracking

Deep learning for power line detection and tracking.
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Object detection and 

tracking
Å ENDESA dataset (17K images, insulators, dumpers, towers).

Å SoA detector evaluation (Single-Shot-MultiBox-Detector (SSD), You-Only-Look-

Once v4 (YOLOv4), Detection-Transformer (DETR).

Å Proposed approach: Content-specific image queries (based on DETR).

56

Model
FPS

2080 / Jetson ὃὖ ὃὖ

YOLO v4 CSPDarknet53 ωφȾςφ τρȢφ ψσȢυ

SSD Mobilenet v2 ρςφȾρχ υπȢρ ψςȢρ

SSD Inception v2 ψτȾρσ τψȢχ ψπȢπ

SSD Resnet50 τπȾω υςȢσ χωȢψ

DETR Resnet50 συȾψ υςȢτ ψσȢρ

OursResnet50 συȾψ Ȣ Ȣ



Robustness 2D Visual 

Object Tracking 
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Object detection and 

tracking

ÅRequirements similar to 2D visual detection/tracking:

ÅMethod: Embedded DNNs.

ÅHardware: GP-GPU equipped computing boards (e.g.,

Xavier).

ÅSoftware: Linux + Python.

ÅTraining: Massive, annotated, domain-specific datasets.
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Simulations
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Human posture estimation
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a) Original image; b) Body joints heatmap; c) Human posture estimation.



Human-drone interaction

ÅGoals: The UAV/Aerial Co-Worker:

ÅCan verify that the technician follows pre-set safety rules at all

times.

ÅMay perceive the technicianôscurrent activity (e.g., climbing a pole)

in order to get into suitable position for assisting him.

ÅIs able to interact visually with the technician by interpreting pre-

defined communication hand gestures.

ÅAUTH may also potentially employ semantic image/instance

segmentation for assisting in the above tasks and for augmenting

algorithm performance.
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Human posture estimation

62
Human posture estimation.



Human posture ï

gesture recognition
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Gesture-based control

64



Coordination of a 

Heterogeneous Team of ACWs 
Å3 main ACW activities:

ÅSafety-ACW - equipped with a

surveillance camera (blue).

ÅInspection-ACW ï inspection

sensor (red).

ÅPhysical-ACW - equipped with

a manipulator to provide tools

required by workers

65
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Autonomous perching

ÅSensor fusion to exploit synergies:

ÅPerching steps:

ÅPreparation

ÅMulti-sensor detection & tracking of perching candidates

ÅLIDAR

ÅFast approach to perching zone

ÅMulti-sensor Visual Servoing:

Åevent cameras

ÅShort distance approach & perching

ÅMulti-sensor Visual Servoing.
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End-effectors for 

holding/grabbing 

ÅBio-inspired actuators for compliant co-working and close

range inspection.

68



Manipulation while 

holding/perching
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