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Introduction

• Deep learning-based algorithms allow the development

of advanced autonomous systems that can:

• understand their surrounding environment,

• make decisions,

• perform simple and complex tasks.

• Benefits for human workers:

• increased safety,

• increased efficiency,

• reduced workload and stress.

• Examples: industrial robots, autonomous UAVs (drones), etc.



Introduction

• Application example: inspection and maintenance of

large infrastructures via an aerial cognitive robotic

system.
Long range and 

local very accurate 
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Introduction

• EU: About 5 million km.

• Inspections performed by

crewed helicopters → risk of

workers.

• Cost: ~150€/km.

• Benefits:

• Safety of workers.

• Reduced cost and sustainability.

• Powerline infrastructure inspection and maintenance.



Introduction

• Oil & Gas facilities.

• Degradation of materials due to

environmental exposure and

mechanical demand.

• Benefits:

• Safety of workers.

• Reduced workload and stress.

• Pipeline infrastructure inspection.
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Multi-Layer Perceptron

• Perceptron:

• Simplest mathematical model

of a biological neuron.

• Real inputs 𝐱, 𝑥𝑖 ∈ [0, 1].

• Activation 𝛼 ∈ {0,1}.

• Activation function 𝜎(∙).

• Firing threshold: 𝐰𝑇𝐱 ≥ −𝑏.

• 𝛼 = 𝜎 𝑧 = 𝜎(𝐰𝑇𝐱 + 𝑏).

−𝑏 𝑧

𝐰𝐱

𝜎(𝑧)

𝛼



Multi-Layer Perceptron

• Multi-Layer Perceptron (MLP):

• Multiple layers 𝐿 , with multiple

neurons 𝑛𝑙 , 𝑙 = 1,… , 𝐿.

• The input layer (𝑙 = 0) has 𝑘 inputs.

𝑘: dimensionality of the input 𝐱.

• The 𝐿 − 1 hidden layers 𝑙 =
1,… , 𝐿 − 1 may have any number

of neurons.

• The output layer 𝑙 = 𝐿 = 4 should

match the dimensionality of the

desired final output 𝐲.

MLP with 𝐿 = 4 layers.



Convolutional Neural 
Networks
• RGB images cannot be processed by MLPs efficiently, due

to the increased number of input features: 𝑘 = 𝐻 × 𝑊 × 3.

• Convolutional Neural Networks (CNNs) → weight sharing.

Simple CNN architecture.



Convolutional Neural 
Networks

• 2D convolutional layers:

• Convolution operation.

• 3D kernels/filters.

Convolution with a single 3 × 3 × 2 kernel/filter. Convolution with two 3 × 3 × 2 kernels/filters.



Recurrent Neural 
Networks
• Recurrent neural networks (RNNs):

• Process sequential data (e.g., text, video).

• Utilize information from previous time steps.

• Advanced types of RNNs: Long Short-Term Memory networks 

(LSTMs), Gated Recurrent Units (GRUs), other.

RNN Is equivalent to: … RNNRNN RNN …

𝐱(𝑛)

𝐲(𝑛)
𝐬(𝑛)

𝐲(𝑛 − 1)

𝐱(𝑛 − 1)

𝐲(𝑛) 𝐲 𝑛 + 1

𝐱(𝑛 + 1)

𝐬(𝑛 − 1) 𝐬(𝑛) 𝐬(𝑛 + 1)

𝐱(𝑛)

Unfolding of an RNN with one recurrent layer  through time.



Encoder-decoder networks

• Encoder-decoder networks consists of two networks: the

encoder and the decoder.

• Encoder and decoder: any DNN type (MLPs, CNNs, other).

• Goal: extract rich input representations (code) or/and produce

high-dimensional outputs.

Simple denoising autoencoder.



Encoder-decoder networks

• If output 𝐲 is the same as the input 𝐱: autoencoder.

• Encoder-decoder networks can also be used for data

generation.

Image generation with an encoder-decoder.



Transformers

• Originally developed to replace

RNNs in machine translation

tasks (e.g., English-to-French).

• Mainly utilize MLPs and

attention blocks.

• Attention blocks use the

attention mechanism → matrix

multiplication.

Typical Transformer architecture [VAS2017].



Transformers

• Evolved to analyze almost

any type of inputs (text,

images, video, multimodal

data, etc.).

• Large Language Models

(LLMs), for example ChatGPT,

typically utilize Transformers.

Transformer for image analysis [DOS2020].



DNN training

• All types of DNNs have trainable parameters.

• Trainable parameters are adjusted during training.

• Training:

• Data (+ annotations).

• Loss function (quantifies performance).

• Optimizer (adjusts parameters based on loss function value).

• Resources!
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2D object detection

• 2D object detection: classification + 2D localization.

• Find what is in an image and where it is.

• Input: RGB image.

• Output: 2D bounding boxes + class IDs.



2D object detection

• Faster-RCNN [REN2015]: Utilizes

a Region Proposal Network

(RPN) to produce proposals

based on a predicted objectness

score.

• The proposals are extracted by a

RoI pooling layer and are fed to

an MLP for classification.

• Computation depends on the

number of proposals.



2D object detection

• Single Shot Detector (SSD) [LIU2016]: Fully convolutional network

that utilizes anchors and multiple resolution features.

• Example: The cat has 2 anchors matched in the 8 × 8 feature map, none

matches the dog. In the 4 × 4 feature map one anchor matches the dog.



2D object detection

• YOLO [RED2016]: Divides input

image into an 𝑆 × 𝑆 grid.

• For each grid cell, a class

probability map is predicted.

• Also, using each grid cell as

center, 𝑁 bounding boxes are

predicted along with the

corresponding confidence scores.

• Final output is obtain using Non-

Maximum Suppression (NMS).



2D object detection

• DETR [CAR2020]: Utilize Transformers for 2D object detection.

• No need for anchors or NMS algorithm.

• Used on top of CNNs (features extracted by a CNN).



2D object tracking

• 2D object tracking: associates each detected bounding

box in the current video frame with one in the next video

frame.

• SiamFC [BER2016]: CNN with 2D convolutional layers in

Siamese configuration.

1st frame 6th frame 11th frame 16th frame
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Semantic image 
segmentation
• Semantic image segmentation: classify each pixel of the

input image to an object class.

• Input: RGB image.

• Output: 2D segmentation map.



Semantic image 
segmentation
• Most simple approach: Replace final MLP layers of typical CNNs

with convolutional ones.

• Output class heatmaps.

• Add “decoding” convolutional layers → encoder-decoder.



Semantic image 
segmentation
• Encoder radically reduces image resolution → coarse segmentation

maps.

• Skip network connections between encoder and decoder.

• Improved segmentation performance.



Semantic image 
segmentation

• U-Net [RON2015]: Symmetric

encoder-decoder with skip

connections.

• Decoder capacity was expanded.

• Early features that preserve

spatial information are enriched

with semantic information →

accurate results.

• Many variations: V-Net, U-Net++,

ResUnet, U2-Net, more.



Semantic image 
segmentation
• Spatial Pyramid Pooling (SPP) [HE2015]:

• Multi-scale features.

• Can be slow.

• DeepLabV3+ [CHE2018]: Atrous Spatial

Pyramid Pooling (ASPP) module.

• Larger field of view, same computations.

• ViT-Adapter [CHE2022]: Vision

Transformer-based.

• Huge number of trainable parameters

(up to ~350M).



Semantic image 
segmentation

• I2I-CNN [PAP2021]: Real-time

semantic image segmentation.

• Complex architecture.

• Goal: Remove “decoding” CNN.

• Utilizes Generative Adversarial

Networks (GANs) and Image-to-

Image Translation (I2I).

• Suitable for embedded execution.

• Robots, UAVs, etc.
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Visual anomaly detection

• Visual anomaly detection: identify unusual/unexpected

patterns in the input image.

• Identify (unknown) anomalies and optionally localize them.

• Input: RGB image.

• Output: Binary label (+ 2D bounding box/2D heatmap).

[NVDA] [MATH]



Visual anomaly detection
• Training: Learn a DNN model using a large number of anomaly-

free images only (+ artificial images with anomalies).

• Testing: Images with anomalies + anomaly-free images → detect

deviations from learned model as anomalies.

• DNN types: CNNs, Autoencoders, Transformers.

• Excellent anomaly identification results in public datasets: >98%.

Training

Testing

[BER2019].



Visual anomaly detection
• Representation-based methods:

• Rely on DNN extracted features.

• Anomaly detection by measuring

feature similarity.

• Reconstruction-based methods:

• Learn to generate anomaly-free

images.

• Anomaly detection by comparing

input image with generated

anomaly-free image.

[LIU2023].
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Human pose estimation

• Human pose estimation (HPE): Estimate the configuration

of the human body parts.

• Human body joint recognition and 2D/3D localization.

• Input: RGB image.

• Output: 2D/3D location of each human body joint.



Human pose estimation

• Single-person HPE: Estimate pose of a single person that

appears in an image/video.

• Multi-person HPE: Estimate pose of multiple persons.

• Top-down approach: a) Detect each person. b) Estimate pose of

each person.

• Bottom-up approach: a) Detect all body joints. b) Grouping.



Human pose estimation

• 2D human pose estimation: Body

joint locations in pixel coordinates.

• Direct regression methods: Directly

predict body joint locations.

• Simple, lack accuracy.

• Heatmap-based methods: a) Predict

2D body joint heatmaps. b) Obtain

pixel coordinates by processing

heatmaps.

• Very accurate, heatmap resolution

may affect accuracy.

[LI2021].

[PAP2022].



Human pose estimation

• 3D human pose estimation: Body

joint locations in 3D world

coordinates.

• Monocular: Estimate human pose

from single image/video.

• Simple, lack accuracy.

• Multi-view: Estimate human pose

from multiple images/videos

captured from different viewpoints.

• Accurate, multi-view data are not

easy to obtain.
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Human pose estimation

• DNN architectures:

• Simple CNNs (direct regression).

• Encoder-decoder CNNs (heatmap-based).

• Transformers (direct regression, heatmap-based).

• Input sensors:

• RGB cameras.

• Depth sensors.

• Inertial measurement units (IMUs).

• Radio frequency devices.

[TER]

[HAC]

[ZHA2018]
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Action/gesture recognition

• Human action/gesture recognition: Identify the

action/gesture performed by a human.

• Input: RGB video.

• Output: Action/gesture ID.

Action/gesture ID



Action/gesture recognition

• LSTM-based:

• Process input video with LSTMs.

• 3D CNN-based:

• CNNs with 3D convolution layers.

• Encode spatio-temporal information.

• Transformer-based:

• Exploit powerful Transformer

architectures for action/gesture

recognition.

• Effective training without labels

(reconstruction).

[CAR2017].

[WAN2023].



Action/gesture recognition

• Skeleton-based: Predict action/gesture ID by processing a

sequence of 2D/3D skeletons → extracted using 2D/3D HPE.

• Two-step approach.

• Increased execution speed, high accuracy.

• Action/gesture recognition DNNs: LSTMs, CNNs, Transformers, Graph

Convolution Networks (GCNs).

2D/3D 

human pose 

estimation 

network

Action/gesture 

recognition 

network 
ID

[PAP2021b].
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Applications
• Powerline elements detection and tracking.

• Autonomous powerline elements inspection with UAVs.

• 2D object detection + tracking.

[PAT2022]. [ALA2023].



Applications
• Pipe damage detection in X-Ray images.

• Autonomous pipeline inspection with UAVs.

• 2D object detection + tracking.



Applications
• Pipe corrosion detection in X-Ray images.

• Autonomous pipeline inspection with UAVs.

• Anomaly detection.



Applications
• Surrounding environment detection.

• Autonomous powerline infrastructure inspection with UAVs.

• 2D object detection + tracking + segmentation.

[PAP2022b].



Applications
• Pipe segmentation and damage detection.

• Autonomous pipeline infrastructure inspection with UAVs.

• 2D object detection + tracking + segmentation.

[PSA2024].



Applications
• Human crowd detection and avoidance.

• Autonomous inspection with UAVs.

• Image segmentation.

[PAP2021].



Applications
• Human worker state estimation.

• Autonomous monitoring of human worker for safety.

• Person detection + human pose/head pose estimation.



Applications
• Gesture recognition for human worker-UAV cooperation.

• UAV formation control with gestures.

• Person detection + human pose estimation + gesture recognition.

[SIL2023].



Applications
• Gesture recognition for human worker-UAV cooperation.

• UAV control with gestures.

• Person detection + human pose estimation + gesture recognition.



Q & A

Thank you very much for your attention!

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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