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❑ Some features about floods and context

❑ Inundation key features : types, characteristics, impacts

❑ Reasoning of the flash flood selection for our study

❑ Objectives of the study

❑ Methodology

❑ Scenarii of use

❑ Conclusion

Agenda
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❑ For our use case point of view, inundations may be separated in 2 main 
types: plain versus flash flood

❑ Main characteristics (rough classification) :

Main flood types & characteristics

characteristics plain flash

Event cinematic Slow (days to week), Minutes (water rising up)  - days 
(for duration)

occurrence very progressive brutal

Morphological 
environment

Plain, smooth topography Relief (in mountains), streets, 
buildings (in urban)

extension Large  (province) Small (few km²)

Required data precision low precision High level of details
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What makes flash floods specific and difficult to model

flash floods occur mainly in mountainous and in urban areas

❑ Urban flash flood specificities are mainly due to:  

▪ brutal occurrence of the flooding event

▪ It often concerns populated area 

▪ And many human activities (industry, services ..)

➔ impact is very often dramatic as human and economic cost

❑ Therefore there is a strong need for modelling the event and elaborate reliable forecast 

▪ To anticipate (resiliency approach, feedback, long term infrastructures planning)  

▪ To trigger actions at the right time, (population alert, restricted zones …)

▪ To decrease/avoid  the consequences

Flash flood specific features
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Considering the flash flood characteristics, their modelling must cope with specific performances 

❖ Constraints on model

❑ Traditional hydrological modelling tend to be based on all physical parameters influencing the event

❑ Data are numerous, heterogenic, sometimes difficult to acquire or totally missing (see later)

➔ very few places/organizations can acquire these data in the real life/conditions  

❑ The model tuning is difficult and fastidious since all parameters are interacting

❑ The model execution is usually time and CPU consuming

❖ Operational needs to use the models in crisis conditions

because events occurrences are extremely rapid and versatile 

It should be possible to re-execute the model rapidly to take into account the most recent data (ex : 15 
minutes) : precipitation amount, wind direction, water level in river etc …

➔ Short execution time and low CPU consumption 

Challenges for flash flood modelling
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Project global objective :

❖ Use of AI models along with and/or as a replacement of hydrodynamical models 

❖ to reduce the difficulties/complexity of flash flood modelling in urban areas 
to make it more accessible in operation

❖ to be able to model flash floods and predict their evolution as fast as possible

❖ Potentially, to simulate more easily unknown event/conditions 

2 main axis to make it more accessible :

❑ Reducing the constraints on required input data 

❖ Less data (type, density of measure, lower frequency, missing data in series …)

❖ Lower precision

❑ Making the execution time acceptable with operational conditions 

❖ Simple operation (non specialists) (task automation)

❖ Short execution time 

Using IA modelling requires :

❖ Representative data for the training phase (amount, various conditions, space, time..)

❖ Result verification : thanks to existing records, other way to model 

Objective : flash flood modelling using IA approach
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❑ Geographic localisation : 

• close to Mediterranean sea and backed by 
mountains (Cevennes) 

• contrasted mediterranean climate

➔ Meteorological events : in autumn large 
amount of warm H²O available from the sea 
are blocked by relief

➔ Old city flash flood events with surface runoff

❑ City characteristics 

• Old city with narrow streets in downtown district

• 150 000 residents

• Stress of urbanization, ground imperviousness, 
runoff increase

• Natural drainage channels partly obstructed

Use case : city of Nîmes (France)
Very representative case with major consequences (destruction, human casualties..)
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❑ Existing modelling system

• Operationnal modelisation & forecasting, sensors

• Studies, archived data of all major events since 1988 

• Difficulties : evolution of hydro infrastructures  to reduce flooding impact (reservoir, surge tank…)

• ➔ hydraulic conditions changed

❑ Data,  documentation available

➔ Acceptable conditions of experimentation 

▪ To train an IA model

▪ To validate it versus validated existing data

Use case : city of Nîmes
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❑ 1° To set up a hydrodynamic 
model  (as a reference)

• Based on physical parameters, 
that we can fully 
control/parameter/exploit

• To produce many reference 
outputs in various run conditions 
to validate the future AI model 
(simulated events)

❑ 2° To set up the AI model

• To train it with existing field and 
simulated data

• to validate AI results against a set 
of hydrodynamic model outputs

General methodology for AI model set up  
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Data Complexity

Complexity due to use of data variability  [space, time, sampling frequency, formats] 

▪ Various types and Formats (raster, vector, grid, time series csv, etc ….)

▪ Spatial resolution

▪ Registration (geographically stacking)

▪ Temporal registration (need for data interpolation)

▪ Need to be “cleaned”  (not adapted for model, artefacts)

➔ Intensive use of GIS (PostGIS) and  libraries

❑ Some are massive (long time series ) , grid data (rain radar, HR lidar)

▪ Splitting the area of interest in small triangles (< 50m) 

▪ All data must have a value for each triangle as for all output calculation 
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Hydrodynamic Model Setup

HR DEM
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Buildings
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Holes

Structures

+

+

2D Mesh
2D Mesh

+ Topography

Catchment

boundaries

Inflows

(Hydro/1D)
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Model setup

2D HR Hydro

Shallow water 
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Automated process precipitation
Mainly manual
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2D HR Hydro 

Shallow water 

Model (REF)

ML Experiments – scenario type 1 

to replace/complete/improve input data
2D HR 

Shallow water 

ModelSR DEM

Streets

Buildings

Structures

HR DEM
Deep 

Learning
Model setup

Classifier

Classifier

Classifier
Validation

+

Increasing DEM resolution by Deep Learning 

and improving object/structure extraction then 

evaluation of the model sensitivity 
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ML Experiments – scenario 2 surrogate model 

2D HR Hydro 

Shallow water 

Model (REF)

DEM

IA

modelAncillary data

(TBD)

hydro model for N-1 state

ML model output for state N 

Hydro model 
output for state N

Loss function
• Substituing hydro by IA model

to calculate prevision 

• Evaluating the quality of IA 

prevision % hydro prevision
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Conclusion

❑A very challenging objectives due to data complexity and variability

❑Work in progress : automatization of the workflow in order for the non-
specialist user, to try/test/evaluate various sets of input data

❑Model sensitivity evaluation 

❑When successful, it will ease the flash flood modelling

❖ Example : To evaluate potential impact of changes in the city (ex : new road, building, 
infrastructure etc …) even if data are partially missing

❖ Potential use in country with few/no sensors/data  to model the flood
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