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Progressive Decision 

Boundary

Initial random weights
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Present a training instance / adjust the weights

Decision Boundary (cont.)
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Present a training instance / adjust the weights

Decision Boundary (cont.)
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Present a training instance / adjust the weights

Decision Boundary (cont.)
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Present a training instance / adjust the weights

Decision Boundary (cont.)
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Eventually ….

Decision Boundary (cont.)
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Learning Properties in Cyber-Physical Systems

➢ Continuous/Dynamic/Adaptive Process

Observe

LearnGrow/
Compact

Act

Data

➢ Robustness
▪ Model uncertainty, overfitting, etc.
▪ Transfer to real system?

➢ Interpretation
▪ Why and when doesn’t it work?
▪ Knowledge Representation and Reasoning

Knowledge➢ Time and Memory Efficiency
▪ Real-time? 
▪ Processing/Communication bandwidth
▪ Hyperparameter-tuning
▪ Performance-Complexity Trade-off
▪ Progressive Learning?



Key Take Away Points
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• Formally Analyze Learning as a Dynamic Process 
of acquiring new understanding, knowledge, or skills

• Investigate Learning with Progressively Growing Knowledge Representations
for Decision-Making Systems

• Towards a Neuroscience-inspired Universal Learning Algorithm:

Hierarchical, Memory-based, Progressive, Interpretable, Robust

• Adaptive Space Aggregation for 

Memory-Efficient Reinforcement Learning in Robot Control

• Progressive Graph Partitioning and Image Segmentation
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Outline

➢ Learning as a Dynamical System

➢ Towards Universal Learning Architectures
▪ Multi-resolution-group invariance, local learning

➢ Progressive Learning, On-Line

▪ Definition, Properties, Results

➢ Applications to CPS

▪ Robust Reinforcement Learning
▪ CPS Security
▪ Robotics & Multi-Agent Systems

➢ Future Research Directions

Human-Robot Collaboration

Swarm Dynamics

Community Detection

Hierarchical Learning

Risk-Sensitive RL
Explainable RL

Stochastic Optimization

CPS Security

Influence Graphs

Interpretable ML
Knowledge Representation
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Multi-Resolution ODA (MNIST)

Representations generated by the first two layers of a multi-resolution ODA algorithm for the MNIST dataset. 
Input: low-resolution images from wavelet analysis (14x14 pixels). Accuracy: 97.2% (can go up to 100% in training data).

The neurons represent different deformations of each digit. The relationship between them can lead to the identification of 
better features and invariances.



Feature Hierarchies

pixels

edges

object parts

(combination 

of edges)

object models
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Group-Invariant Representations

• Wavelet Transform
• Multi-Resolution Analysis
• Sparse, Stable, Translation Covariant

• Convolution on Groups

where for a Lie Group G:

• Locally Invariant Representations

Repeat
• Build group-covariant representations (wavelets)
• Make them locally invariant (non-linearity + averaging)

W

j



Some Current Deep Architectures
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Early Hierarchical Feature 

Models for Vision
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The Convolutional Net Model
Multistage Hubel-Wiesel System
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Multiresolution Preprocessor: 
Auditory Filtering (Shamma 2003)

• The first filter mimics the action of the inner ear

• Computes the spectrogram of the sound sample, and performs various 
nonlinear operations, which models the nonlinear 

fluid-cilia couplings and ionic channels of conduction  

( Wavelet  Transform )

Two auditory filters, motivated and designed according to acoustic 

physiology and acoustic cortex models, were used to compute the 

timbre spectrogram of one particular subframe in each frame

eardrum
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u logf
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stage
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S. Shamma, IETE Journal of Research, Vol 49, No 2, March-April, 2003.
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• The second filter models the multiscale processing of the 

signal that happens in the auditory cortex

• A Ripple Analysis Model, using a ripple filter bank, acts 

on the output of the inner ear to give multiscale spectra of 

the sound timbre  (Wavelet Transform)

Spectro-temporal Processing: 

Multiresolution Preprocessor -- Auditory 

Filtering     

Upward Moving Downward Moving

Slow Rate
Coarse Scale

Slow Rate
Fine Scale

Fast Rate
Coarse Scale

Fast Rate
Fine Scale

Slow Rate
Coarse Scale

Slow Rate
Fine Scale

Fast Rate
Coarse Scale

Fast Rate
Fine Scale

Multiresolution cortical filter outputs
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“One Learning Algorithm” 

Hypothesis  

21



Andrew Ng – Google Brain
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Towards a Universal Learning 

Architecture
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• A robust and interpretable alternative approach based on the same 

principles?

a) multi-resolution analysis 

b) group-invariant representation

c) hierarchical, knowledge-based decision-making 

Invariant

Representations

Hierarchical, Progressive, 

Knowledge-based Learning

Decision

Output

Learning with Feedback Loops

Group-Invariant 

Representations

Progressive Learning

Multi-Resolution

Analysis

Data

Input



Dynamic Learning 

I. Neurons live in the data space

• Interpretability
• Robustness w.r.t. perturbations and adversarial attacks
• Vector Quantization?

II. Progressively Growing

• Performance-Complexity Trade-off
• No over-fitting 

III. Annealing Optimization 

• Robustness w.r.t. initial conditions
• No poor local minima
• Gradient-Free Stochastic Approximation

Towards a Universal Learning 

Architecture (cont.)
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Let’s Go Back in Time
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Progressive Classification:
Universal Algorithms and Applications

John S. Baras

Electrical Engineering Department 

and Institute for System Research 

University of Maryland College Park

Visiting EECS and LIDS, MIT

LIDS Colloquium

March 10, 1998

INSTITUTE FOR SYSTEMS RESEARCH
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Progressive Classification

Small amounts of information in the form of a coarse 
approximation of the signal, are used first to provide partial 
classification

Progressively finer details are added until satisfactory 
performance is obtained

Approach results in a scheme where:
– Small amounts of computation are used initially (at coarse level) 

– Additional computations (more detailed) are performed as needed

Approach leads to:
– Faster classification algorithms (faster search)

– Algorithms that preserve high fidelity in the search (the challenge)

– Easily parallelizable algorithms

27
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Successive refinement from a coarse description        with distortion  D1

to a finer  description          with distortion  D2 can  be achieved  iff  the

conditional  distributions                and                ,  which  achieve

are  Markov  compatible:   we can write

as a Markov chain

1X̂

2X̂

)|ˆ( 1 xxP )|ˆ( 2 xxP

,2,1),()ˆ;( == iDRXXI ii

XXX →→ 21
ˆˆ

• Conditions  rarely  satisfied;  

examples  where  they  are

satisfied:

• Gaussian signals with 

squared-error distortion

• Finite alphabet signals with 

Hamming distortion

• Laplacian signals with 

absolute-error distortion

Minimize  Average  Squared  Error  from using a few bits to describe  X~N(0,1)
28

Successive Refinement of Information 
(Equitz and Cover (1991))



29Multiresolution and Learning 

Clustering

Address both the hierarchical organization of signal databases and 
progressive classification:

– Combine a multiresolution preprocessor with 

a learning clustering postprocessor

– Feedback is also an option

Resulting algorithms proved to have some “universal” qualities

Found analogs of such algorithms in animals and humans: 

– Hearing  and  sound  classification

– Vision and  identification  of  objects  by  humans

Most promising mathematical formulation of the problem: 

combined compression and classification for general signals

Multiresolution
Preprocessor

Nonlinear
Features

Learning Clustering
Postprocessor

f

Feedback
Class

29



30Scale-Space Diagrams of 

Radar Returns

•Uniform Localization

•A different “fingerprint” 
of the ship

30



31Wavelet Tree-Structured Vector 

Quantization

First perform a 
multiresolution wavelet 
representation of the 
signals

Consider each signal f at 
different resolutions 

S0 f,  S1 f, …,  SJ* f

Proceed by partitioning 
the signal space at various 
resolutions in 
progressively finer cells

Layer  in tree  l = J* - m,  

m the scale 

( top layer 0: coarsest)

Cell labels: (layer, index)

or  (scale, index)
31



32Multiresolution  Aspect  Graph: 

Radar Data

32
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Learning Vector Quantization

Data  driven; uses past data directly in the classification scheme

Does not assume any models for underlying data

Pick zj=(yj, dyj
) from Z and find  - closest vector  c

Modify  c as  follows  c(n+1) = c(n) - n    (c(n), yj)  if  dyj
= dc

c(n+1) = c(n) +n   (c(n), yj)  if dyj 
 dc

Continue until convergence

•Estimates the decision regions  

directly

•Training phase and classification 

phase

•Training phase:  

Z = training data =

Voronoi vectors   = Q = {1, 2, ..., k}

decisions = { 
k

ddd  ,,,
21


N
nyn n

dy 1)},{( =
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LVQ

Classification phase:  for new observation x declare

if

LVQ  adjustment  has the general form

; stochastic approximation

For appropriate conditions on n, H, zn, Qn approaches the 
solution of  the  ODE

for appropriate h(Q)

j
ddx =

j
Vx 

)),((),),(,()()1( ninnynii ynxnddnn
in

  Q+=+

{  {  { )11(1),),(,(
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),(
nynn dyz =
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Stochastic Approximation

*Borkar, Stochastic approximation: a dynamical systems viewpoint, Springer, 2009

Examples:
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Given a encoder-decoder pair ,  we associate the average distortion

Associate the rate  R(,)  to a encoder-decoder pair ,

Given a classification rule d, the classification performance of the 
overall scheme can be measured by the Bayes risk

where Cij is the relative cost assigned to the decision that 

d( (x)) = Hj ,  while the vector x comes from class Hi (typically Cij = 0)

Encoder  does  not  affect  the  Bayes  risk  JB

Incorporate Bayes risk into the average distortion measure minimized  

by  the  design algorithm

Resulting  algorithm  has complexity equivalent to that of an ordinary  

VQ  algorithm

)))]((,([),( xxED  =

ijii

L

i

L

j
jB CHPHxHxdPdJ )()))(((),(

1 1

  ==
= =



Combined  Compression and  
Classification

36
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Analytical Framework

Overall approach is non-parametric:

probability distributions for the data are not needed 

Approach can be interpreted as using the training set to learn 
the empirical distributions of the vectors and use them as if 
they were true (like in LVQ)

Combine the three criteria in one for some choice of the 
weights R and B

Three step iterative optimization:

– Step 1 Choose d(t+l) to minimize J ((t), (t), d(t+1) )

– Step 2 Choose (t+l) to minimize J ((t), (t+1), d(t+1) )

– Step 3 Choose (t+l) to minimize J ((t+1), (t+1), d(t+1) )

– The iterations continue until the desired stoping level for J is met

,),(),(),(),,( dJRDdJ BBR  ++=

37



38Extension to LTSVQ and 

Interpretation

Extension of the LVQ approach to 
Learning TSVQ

This step is needed for the full 
analysis of WTSVQ and its 
application in progressive 
classification within the framework 
of combined compression and 
classification

LTSVQ approximates directly the 
optimal Bayes surface with 
successive approximations and  
variable (along the surface) 
resolution

– Split cells where approximation is 
not very good using finer resolution 
information

– Akin to a multigrid numerical 
computation of the Bayes surface

38



SOM -- Kohonen Mapping

39

SOM can find the manifold on “manifold-localized” data (e.g. data on a sphere, or circle)



SOM followed by LVQ

Computation of the feature map can be viewed as the 
first of two stages for adaptively solving a pattern 
classification problem as shown below. The second 
stage is provided by the learning vector quantization, 
which provides a method for fine tuning of a feature 
map. This is useful and typical for DNN

40
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Dissimilarity Measures: Bregman Divergences

• Euclidean distance, KL divergence, …



Recent Proofs: Stochastic VQ

C. N. Mavridis and J. S. Baras, Convergence of Stochastic Vector Quantization and Learning Vector Quant. with Bregman Divergences, 2019 45



Recent Proofs:  LVQ

C. N. Mavridis and J. S. Baras, Convergence of Stochastic Vector Quantization and Learning Vector Quant. with Bregman Divergences, 2019 46



Recent Proofs:  LVQ

C. N. Mavridis and J. S. Baras, Convergence of Stochastic Vector Quantization and Learning Vector Quant. with Bregman Divergences, 2019 47
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Progressive Learning for Cyber-Physical Systems

Goal: Hierarchically Approximate Optimal Solutions

Simple Problem
Fast Solution

Coarse Approximation

Complex Problem
Slow to Solve

Detailed Approximation

• optimal control 
• motion planning 
• function approximation
• reinforcement learning 
• game policies 
• clustering/classification 
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Progressive Learning for Cyber-Physical Systems

➢ Divide and Conquer 
▪ Partition the space and use local models
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Progressive Learning for Cyber-Physical Systems

o How many regions?
• Start with few and add as needed?

o Optimal parameters?
• Local minima? Gradients?

o Simultaneously learn local models?

➢ Divide and Conquer 
▪ Partition the space and use local models

➢ Questions?
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Online Deterministic Annealing

• Observations: realizations of a r.v.

• Codevectors:

defined by:

domain of a r.v.

• Dissimilarity:
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Online Deterministic Annealing

• Observations: realizations of a r.v.

• Codevectors:

defined by:

domain of a r.v.

• Dissimilarity:
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Online Deterministic Annealing

• Observations: realizations of a r.v.

• Codevectors:

defined by:

domain of a r.v.

• Dissimilarity:
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Online Deterministic Annealing

• Observations: realizations of a r.v.

• Codevectors:

defined by:

domain of a r.v.

Solve:

where Distortion:

Entropy:

for decreasing values of T.

Lagrange Coefficient:             Controls Tradeoff
Simulates Annealing Optimization
Triggers Bifurcation (finds number of codevectors)

Problem Formulation

• Dissimilarity:

Mavridis, Baras, Online Deterministic Annealing for Classification and Clustering, IEEE TNNLS 2022. 

Mavridis, Baras, Annealing Optimization for Progressive Learning with Stochastic Approximation, IEEE TAC 2022. 
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Online Deterministic Annealing (II)

Solving the Optimization Problem

(sufficient condition)

e.g., squared Euclidean distance, KL divergence, …



56

Online Deterministic Annealing (III)

Solving the Optimization Problem

Stochastic Approximation: Gradient-Free !
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Online Deterministic Annealing (IV)

Bifurcation and the number of codevectors

…
Sequentially solve:

, : Decreasing Temperature

Performance-Complexity Trade-off



58

Online Deterministic Annealing (V)

Algorithmic Implementation

Detect Bifurcation by perturbing the codevectors

• Will merge or separate → Critical Temperatures

split

split
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Online Deterministic Annealing (VI)

Training Local Models: Two-Timescale Stochastic Approximation

Fast SA
Function Approximation
Q-Learning

Slow SA

Change your model

Train your model

Mavridis, Baras, et al., Gaussian Process Regression using Progressively Growing Learning Representations, IEEE CDC 2022.
Mavridis, Baras, Annealing Optimization for Progressive Learning with Stochastic Approximation, IEEE TAC 2022. 
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Online Deterministic Annealing (VI)

Training Local Models: Two-Timescale Stochastic Approximation

Fast SA
Function Approximation
Q-Learning

Slow SA

Change your model

Train your model

➢ https://github.com/MavridisChristos/OnlineDeterministicAnnealing

https://github.com/MavridisChristos/OnlineDeterministicAnnealing
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Online Deterministic Annealing (VII)

Multi-Resolution Hierarchical Learning

Low
Resolution

High
Resolution

𝑉𝑗

𝑉𝑗−1

𝑉𝑗−2

W

j

Example: Group-convolution Wavelets

➢ Constructive (Structured Representation)

➢ Provably Consistent

➢ Localization

o Emphasis on regions with high error

➢ Asynchronous/Parallel Computation

➢ Reduced Complexity

Mavridis, Baras, Multi-Resolution Online Deterministic Annealing: A Hierarchical and Progressive Learning Architecture [under review]. 

Mavridis, Baras, Towards the One Learning Algorithm Hypothesis: A System-theoretic Approach [under review]. 
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Bifurcation and the number of Codevectors

depends on:
• The Bregman divergence
• The data space
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Why Maximum Entropy?

➢ Jayne’s Maximum Entropy Principle
• Most “Unbiased” estimator: each sub-problem induces “good” initial conditions for the next

• Duality (Legendre-type) and Regularization:

Risk-Sensitivity 

• Robustness w.r.t. initial conditions, input perturbations.

➢ Bifurcation: Progressively grow set of models

Mavridis, Baras, et al., Risk Sensitivity and Entropy Regularization in Prototype-based Learning, IEEE MED 2022. 
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Online Deterministic Annealing (ODA)

• “Progressively” finds number of clusters
• Much fewer samples than k-means
• Online!

Unbalanced Dataset
Other models cannot generalize

Clustering Classification

Regression

Piece-wise constant approximation Sparse Gaussian Processes

❖ Complexity
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Online Deterministic 

Annealing

68

Toy Example. Evolution in 2D.

Unbalanced Dataset

Other models cannot generalize

Classification accuracies in 5-fold cross-validation for 4 datasets*. 

*Mavridis and Baras, Online Deterministic Annealing for Classification and Clustering, arXiv 2021 (IEEE TNNLS+)



Multi-Resolution ODA in 2D
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Evolution of ODA in 2D.

Evolution of multi-resolution ODA in 1D (first principal component) and 2D.

• Toy Examples
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Multi Resolution ODA

71

Competitive-Learning NN
Interpretable 
Robust
Topology-Preserving
Sparse in Memory

Progressively Growing in Size
Performance/Complexity Trade-off
Avoids Poor Local Minima

Works in Vector Spaces & Modules

Online Learning Rule
Needs Fewer Samples

Hierarchical Invariant Representations

Vector
Quantization

Deterministic
Annealing

Bregman
Divergences

Stochastic
Approximation

Wavelets & 
Tree
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A Universal Learning Architecture (revisited)

*Mavridis and Baras, Towards the One Learning Algorithm Hypothesis: A System-theoretic Approach, SIMODS+
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Deep Convolutional Network

Scattering Convolutional Network

(Lecun et al.)

(Mallat et al.)

Our Approach

A Deep Learning Architecture?



Applications
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• Robust ML – against missing data, noise, attacks
• Face recognition
• Simultaneous sound direction of arrival, instrument paying, note 

playing (or person speaking, vowel identification)
• Robust Reinforcement Learning
• CPS Security
• Robotics & Multi-Agent Systems
• Learning with Progressively Growing Knowledge Representations 

for Decision-Making Systems
• Towards a Neuroscience-inspired Universal Learning Algorithm:

Hierarchical, Memory-based, Progressive, Interpretable, Robust
• Adaptive Space Aggregation for 

Memory-Efficient Reinforcement Learning in Robot Control
• Progressive Graph Partitioning and Image Segmentation
• Community detection on graphs
• Hardware implementation via hybrid (digital and 

neuromorphic) chips
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Explainable Reinforcement Learning

Optimal Control Problem: Given an MDP                                         ,

solve:

• Q-Learning
• Assumes Discrete Space
• Is a stochastic approximation algorithm

• Ad hoc discretization→ Adaptive State/Action Aggregation with ODA
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Explainable Reinforcement Learning

Optimal Control Problem: Given an MDP                                         ,

solve:

• Q-Learning
• Assumes Discrete Space
• Is a stochastic approximation algorithm

• Stochastic Approximation in Two Timescales

• Fast Component: Q-Learning
• Slow Component: ODA

• Ad hoc discretization→ Adaptive State/Action Aggregation with ODA

Mavridis, Baras, Annealing Optimization for Progressive Learning with Stochastic Approximation, IEEE TAC 2022. 

Mavridis, Baras, Maximum-Entropy Progressive State Aggregation for Reinforcement Learning, IEEE CDC 2021. 
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Risk-Sensitive Reinforcement Learning

Optimal Control Problem: Given an MDP                                         ,

solve:

• Multiplicative Bellman equation:

Noorani , Baras,  et al., Risk-Sensitive Policy-Gradient Reinforcement Learning with Exponential Criteria [under review]. 

Noorani, Baras,  et al., Risk-Sensitive Reinforcement Learning for Coordination Games [under review]. 



78

Application in Robotics & Multi-Agent Systems

• Application: Defense against adversarial UAV swarm attacks

One leader

Multiple leaders

Mavridis , Baras, et al., Learning Swarm Interaction Dynamics from Density Evolution, IEEE TCNS. 

Mavridis , Baras, et al., Detection of Dynamically Changing Leaders in Complex Swarms from Observed Dynamic Data, Springer 2020.

Swarm Coordination Laws and Leader Detection
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Application in Robotics & Multi-Agent Systems

▪ Adaptive Spectral Clustering

• ODA on spectral clustering features

• Distributed approximation of spectral clustering features 

Community Detection on Graphs

Mavridis, Baras, Progressive Graph Partitioning Based on Information Diffusion, IEEE CDC 2021. 

Cyber-Physical Security: Attack Identification in Dynamic Games

Mavridis, Baras,  et al., Attack Identification for Cyber-Physical Security in Dynamic Games under Cognitive Hierarchy [under review].

Tractable Solution: Bounded Rationality + Attack Identification 



Application in Graph Partitioning
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• Distributed approximation of spectral clustering features 
• Simulated heat diffusion on graphs

• Adaptive Spectral Clustering using ODA
• Progressively growing model (adjusts number of clusters)
• Online Learning (no need for graph knowledge a priori)
• Avoids poor local minima 

• Spectral Clustering → Graph Cuts, Image Segmentation

*Mavridis and Baras, Progressive Graph Partitioning Based on Information Diffusion, CDC 2021
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Information Diffusion on Graphs

• Discretized Heat equation on graphs:

Solution:

where

→

Learning features
for Spectral ClusteringWeighted sum of

eigenvectors



• Rigorous Mathematics for Deep Networks – Universal 

Architecture emerging

• Non von-Neumann computing – do not separate CPU form 

Memory – Synaptic NN, in-memory processing

• Universal ML -- Integrate Deep NN and Synaptic NN

• Knowledge Representation and Reasoning: Integrate Knowledge 

Graphs and Semantic Vector Spaces

• Progressive Learning, Knowledge Compacting

• Link Machine Learning with Knowledge Representation and 

Reasoning

Future Directions: Advancing AI 

and ML – our Approach 

82
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Future Directions
➢ Hierarchical and Safe Decision-Making

o Progressively transition from fast sub-optimal to optimal solutions
o Constructing hierarchical and invariant data representations

➢ Risk-Sensitive & Explainable Reinforcement Learning
o Connection to Robust Control
o Explainable Policies → Error Correction
o Partially-Observable Systems using the “information state”

➢ Network Dynamics and Structure
o Importance of Leaders and Self-Organization
o Heterogeneous Graph Consensus / Decentralized Auctions (Traffic Control)
o Distributed Learning

➢ Coordination Games
o Risk-Sensitivity and Trust in Coordination Game Equilibria
o Signaling (Implicit Communication) and Optimal Control

1

4

2

3

➢ Intelligent Transportation
o Mixed-Traffic Control
o Real-time Communication-based CAV Consensus for optimal decisions

➢ Augment Human Decision Makers with Machine Intelligence
o Interpretable Learning models
o Knowledge Representation and Reasoning
o Situational awareness, e.g., assistive robotics, battlefield applications

➢ Human-Robot Interaction (& Collaboration)
o Safety, Real-time Adaptation
o Learning from Human Demonstration

6
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