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Learning Properties in Cyber-Physical Systems

» Continuous/Dynamic/Adaptive Process /Data
> Interpretation Observe
= Why and when doesn’t it work? Act
= Knowledge Representation and Reasoning
> Robustness Grow/ Learn
» Model uncertainty, overfitting, etc. Compau
® Transfer to real system? /
» Time and Memory Efficiency Knowledge

= Real-time?

= Processing/Communication bandwidth
= Hyperparameter-tuning

= Performance-Complexity Trade-off

= Progressive Learning?
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Key Take Away Points Bl

* Formally Analyze Learning as a Dynamic Process
of acquiring new understanding, knowledge, or skills

* Investigate Learning with Progressively Growing Knowledge Representations
for Decision-Making Systems

* Towards a Neuroscience-inspired Universal Learning Algorithm:
Hierarchical, Memory-based, Progressive, Interpretable, Robust

* Adaptive Space Aggregation for
Memory-Efficient Reinforcement Learning in Robot Control

* Progressive Graph Partitioning and Image Segmentation

\\!gRSIT},
N ) The )
18 56 Institute for
A Systems
LYW ¥ Research
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Outline

» Learning as a Dynamical System

» Towards Universal Learning Architectures
= Multi-resolution-group invariance, local learning

» Progressive Learning, On-Line
= Definition, Properties, Results

» Applications to CPS

= Robust Reinforcement Learning
= CPS Security
= Robotics & Multi-Agent Systems

> Future Research Directions
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Hierarchical Learning
Stochastic Optimization
Knowledge Representation
Interpretable ML

Risk-Sensitive RL
Explainable RL
Swarm Dynamics
CPS Security
Community Detection
Influence Graphs
Human-Robot Collaboration

12
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Multi-Resolution ODA (MNIST)

Qi=2@7). Gi=2@). & I=2().

Representations generated by the first two layers of a multi-resolution ODA algorithm for the MNIST dataset.
Input: low-resolution images from wavelet analysis (14x14 pixels). Accuracy: 97.2% (can go up to 100% in training data).
The neurons represent different deformations of each digit. The relationship between them can lead to the identification of
better features and invariances.
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object models

object parts
(combination
of edges)

edges
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Group-Invariant Representations

 Wavelet Transform

* Multi-Resolution Analysis
* Sparse, Stable, Translation Covariant

e Convolution on Groups
)= [ f@sty 2)arw)

where for a Lie Group G: gEG = g.f(z) = flg'z)

* Locally Invariant Representations

3

Repeat
* Build group-covariant representations (wavelets)

* Make them locally invariant (non-linearity + averaging)

15
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Early Hierarchical Feature
Sys ems

Models for Vision

# [Hubel & Wiesel 1962]:
» simple cells detect local features

» complex cells “pool” the outputs of simple
cells within a retinotopic neighborhood.

Us1 Ugq Us2

A
“

|

“Simple cells™

“Complex
cellg”

e

input

layer
contrast
extraction

recognition

pooling
layer Multiple subsampling
convolutions

masker
M layer
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Multistage Hubel-Wiesel System ""«mn@
o Convolutions w/ Pooling: Convs: Pooling: Convs: ; -
Local Divisive , Linear Object
Nomalization biter benk: 2xdd 10077 exéxd B0OXIXT esier  Categories / Postions

20x7x7 kernels kernels kemels kemels kernels

i 3 }at{)u.y)

bt (xy)

S2: 20¢123x123

Input Image Normalized Image p iy .
1x500x500 1x500x500 S4: 20x29x29

. e a[n,
Gl 2cint C3: 20117117 8 e

“Simple cells™ Ch: 200x23x23
“Complex cells”

# Training is supervised

# With stochastic gradient
descent
s LeC t al. 89
Multipl bsamplin eCun et al.
convgiuetions \ e 5/ [ ]

[LeCun et al. 98]
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Sy Multiresolution Preprocessor:

wE - Auditory Filtering (Shamma 2003) -
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Two auditory filters, motivated and designed according to acoustic
physiology and acoustic cortex models, were used to compute the

timbre spectrogram of one particular subframe in each frame

T1me Waveform

i -4
of -
I lo 120
4 g 3,
2r 11000
0 _'_‘__'I‘ ﬁ[ ‘ - Ei‘
2 log u logf T 150 &
! '-ll.'._ ¥ ]
o i _ =
o ‘ - = T = B k=Y
logf 115
0O 10 20 3 40 50 6 W 8 W 10

M 20 3D 40 S0 60 W & W L0
Time (ms) eardrum cochlea Basilar membrane Hair cell

. Time
filters stage

 The first filter mimics the action of the inner ear

« Computes the spectrogram of the sound sample, and performs various
nonlinear operations, which models the nonlinear

fluid-cilia couplings and ionic channels of conduction
( Wavelet Transform)

S. Shamma, IETE Journal of Research, Vol 49, No 2, March-April, 2003. 19
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Spectro-temporal Processing:
Slysltemls Multiresolution Preprocessor -- Auditory
Filtering
Multiresolution cortical filter outputs

" Fast Rate —| Slow Rate —| Slow Rate ; Fast Rate
Fine Scale Fine Scale Fine Scale Fine Scale
3 8 Tl = B igﬁ‘% iolEm fad T
Upward Moving Downward Moving
i Fast Rate | Slow Rate «w{ Slow Rate “ Fast Rate
Coarse Scale Coarse Scale Coarse Scale Coarse Scale

.4 f*‘qt—_.-;q.-.twu.a-

« The second filter models the multiscale processing of the
signal that happens in the auditory cortex

A Ripple Analysis Model, using a ripple filter bank, acts
on the output of the inner ear to give multiscale spectra of
the sound timbre (Wavelet Transform)

20



“One Learning Algorithm”
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Hypothesis
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Auditory Cortex

Auditory cortex learns to see

[Roe et al., 1992]

Somatosensory Cortex

xq //f

Somatosensory cortex learns to see
[Metin & Frost, 19849]
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The Man Behind the Google Brain: Andrew
Ng and the Quest for the New Al

THERE'S A THEORY that human intelligence stems from a single algorithm.

The idea arises from gxperiments suggesting that the portion of your brain dedicated to
processing sound from your ears could also handle sight for your eyes. This is possible only
while yvour brain is in the earliest stages of development, but it implies that the brain is -- at

its core - - a general-purpose machine that can be tuned to specific tasks.

About seven years ago, Stanford computer science professor Andrew Ng stumbled across this
theory. and it changed the course of his career, reigniting a passion for artificial intelligence,
or AL "For the first time in my life”" Ng says, "it made me feel like it might be possible to make

some progress on a small part of the Al dream within our lifetime”

"one algorithm" hypothesis, popularized by Jeff Hawkins
Google Brain

22
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» Arobust and interpretable alternative approach based on the same
principles?

a) multi-resolution analysis
b) group-invariant representation
c) hierarchical, knowledge-based decision-making

Learning with Feedback Loops

Decision
Output

Data
Input

Invariant
Representations

Multi-Resolution
Analysis

Hierarchical, Progressive,
Knowledge-based Learning

\W—/\w_/

Group-Invariant Progressive Learning
Representations

23
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Dynamic Learning

I. Neurons live in the data space

* Interpretability
* Robustness w.r.t. perturbations and adversarial attacks
* Vector Quantization?

Il. Progressively Growing

* Performance-Complexity Trade-off :
 No over-fitting Pt

lll. Annealing Optimization

* Robustness w.r.t. initial conditions
* No poor local minima
* Gradient-Free Stochastic Approximation

24
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Progressive Classification:
Universal Algorithms and Applications

John S. Baras

Electrical Engineering Department
and Institute for System Research
University of Maryland College Park

Visiting EECS and LIDS, MIT

LIDS Colloquium
March 10, 1998

26

26



%QR Progressive Classification

o Small amounts of information in the form of a coarse
approximation of the signal, are used first to provide partial
classification

o Progressively finer details are added until satisfactory
performance is obtained

0 Approach results in a scheme where:
— Small amounts of computation are used initially (at coarse level)
— Additional computations (more detailed) are performed as needed

o Approach leads to:
— Faster classification algorithms (faster search)
— Algorithms that preserve high fidelity in the search (the challenge)
— Easily parallelizable algorithms

27
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Successive Refinement of Information »
(Equitz and Cover (1991))

0 Successive refinement from a coarse description X, with distortion D,
to a finer description X, with distortion D, can be achieved iff the
conditional distributions P(% |x) and P(R,|x) , which achieve
1(X;X.)=R(D,), i=12, are Markov compatible: we can write

X, > X, > X

Minimize Average Squared Error from using a few bits to describe X~N(0,1)

Lol

1
0l 1
.98
0 0 210]1 1 1
0 111]0]0 1
1 ]0]1]0]1} O

-1.75 -1.05 -.50|.50 1.05 1.75

as a Markov chain

Conditions rarely satisfied;
examples where they are
satisfied:
Gaussian signals with
squared-error distortion
Finite alphabet signals with
Hamming distortion
Laplacian signals with
absolute-error distortion

28



% Multiresolution and Learning
ISR

Clustering

29

ﬁ Feedback

ﬁ

f Multiresolution
Preprocessor

Nonlinear
Features

Learning Clustering
Postprocessor

Class

o Address both the hierarchical organization of signal databases and

progressive classification:

— Combine a multiresolution preprocessor with

a learning clustering postprocessor

- Feedback is also an option

0 Resulting algorithms proved to have some “universal” qualities

o Found analogs of such algorithms in animals and humans:

- Hearing and sound classification

- Vision and identification of objects by humans

o0 Most promising mathematical formulation of the problem:

combined compression and classification for general signals

29



% Scale-Space Diagrams of ”
MR Radar Returns

10 ns pulse

250 - _ 100
150 _ 90 =
Sl a oarse
ol = - - = s — 70

350

Fine
10

e Uniform Localization

::: [ | BCIJO 10. 121
: * A different “fingerprint”
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% Wavelet Tree-Structured Vector -
ISR Quantization

First perform a
multiresolution wavelet
representation of the
signals

Consider each signal f at
different resolutions

Sf S'f ., SI'f

Proceed by partitioning
the signal space at various

Resolution 3

< § resolutions in
“ | Resolution 2 progressively finer cells

n» Layer intree [=]J*-m,
m the scale
‘ layer 0: coarsest)
‘ : Resolution 1 ( tOp y
%ﬂ | Cell labels: (layer, index)
y

or (scale, index)
31



% Multiresolution Aspect Graph: -
ISR Radar Data

Sphericzal Besolution
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%ER Learning Vector Quantization 3

o0 Data driven; uses past data directly in the classification scheme

0 Does not assume any models for underlying data
* Estimates the decision regions

directly

*Training phase and classification
phase

*Training phase:
Z = training data = {(y,.d, )}r':':1

Voronoi vectors =0 ={0,,0,, ..., 0,}

decisions = {dgl,dgz g, }
o Pick z;=(y;, dyj) from Z and find p - closest vector 0,

0 Modify 6, as follows 6 (n+1) =6.(n)-0a,Vg4p (8.(n),y;) if dyj= dg,
ec(n+1) = 9c(n) -l_a'nV oP (ec(n)l y]) if dy] * dBC

o Continue until convergence
33



%QR LVQ

o Classification phase: for new observation x declare
d, = dgj if XeVy
o LVQ adjustment has the general form

i (n+1) =6,(n)+a,r(dy ,dg (n),X;,0,)V,0(6,(n), ¥n)
y(dy . dg (), ¥, 04) ==Ly v, 10la, g, } —Lia, »a, )

1 0,,=0,+a,H(0,,z,) ;stochastic approximation
Zy = (Yn, dyn)

o For appropriate conditions on o, H, z , ®_ approaches the

solution of the ODE

d __ _
4t 2 =h(e()

for appropriate h(©)

34
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Stochastic Approximation

Theorem. Almost surely, the sequence:
Tnt1 = Tn + a(n) [h(zn) + Mpya], n >0 (1)

converges to a (possibly sample path dependent) compact, connected, internally
chain transitive, invariant set of the o.d.e:

x(t) = h(z(t)), t =0, (2)
provided that: Exaninlec:
(A1) h:R? — R? is Lipschitz. W) —VJ(x), SGD
(A2) > a(n) =00, and >, a*(n) < o T = F(x) — z, Fixed-Point Iter.

(A3) {M,} is a martingale difference sequence
(A4) {x,} remain bounded a.s.

“Borkar, Stochastic approximation: a dynamical systems viewpoint, Springer, 2009

35



% Combined Compression and ”
ISR Classification

o Given a encoder-decoder pair y, d we associate the average distortion
D(7,0)=ELp(x,6(r(x)))]

o Associate the rate R(y,0) to a encoder-decoder pair y,6

o Given a classification rule d, the classification performance of the
overall scheme can be measured by the Bayes risk

L L
Jo(7,0)=2 X PA(r())=H;[x € H)P(H,)C;
i=1 j=
0 where C;; is the relative cost assigned to the decision that
d(y(x)) = H;, while the vector x comes from class H; (typically C; = 0)
o Encoder 6 does not affect the Bayes risk J;

o Incorporate Bayes risk into the average distortion measure minimized
by the design algorithm

o0 Resulting algorithm has complexity equivalent to that of an ordinary
VQ algorithm

36



%ER Analytical Framework 37

o Overall approach is non-parametric:
probability distributions for the data are not needed

0 Approach can be interpreted as using the training set to learn
the empirical distributions of the vectors and use them as if
they were true (like in LVQ)

o0 Combine the three criteria in one for some choice of the
weights Ay and A

J,(7,0,d)=D(y,0)+Ag R(y,0)+ g Jg(r,d),

0 Three step iterative optimization:
~ Step 1 Choose dt*) to minimize J, (y®, 81, dt+1))
~ Step 2 Choose 8t*) to minimize J, (y®, §¢+1, 4¢1))
~ Step 3 Choose ) to minimize J, (y®1, 81, 4t+1))
— The iterations continue until the desired stoping level for J, is met

37



Extension to LTSVQ and .
Interpretation

Progressive classification
» Saves memory
» Increases search speed

-4———Actual Bayes decision Suriace
.2 '1‘:\ Approximale Bayes decision Surface

[Z7] Higher Resolulion Cells

. 4:’_\r’;sxctual Bayes decision Surface
2 Approximate Bayes decision Surface

¥7] Highest Resolution Cells

Aclual Bayes decision Surface
ﬁApproximate Bayes declsion Surfacs

Extension of the LVQ approach to
Learning TSVQ

This step is needed for the full
analysis of WISVQ and its
application in progressive
classification within the framework
of combined compression and
classification

LTSVQ approximates directly the
optimal Bayes surface with
successive approximations and
variable (along the surface)
resolution

— Split cells where approximation is

not very good using finer resolution
information

— Akin to a multigrid numerical

computation of the Bayes surface38
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We have points x in the input space mapping to points I(x) in the output space:

iy Yy N Y i =y
F e ":r-"l ........ { _,.I' ....... E':I ....... q\..__ll I'H__} ........ |‘.\-J|
) eature 4 ; / / Iy £
4 e ) — - d |
| Con.tmucruls Map @ O—0 _'S _';_ (- (e (Y
High Dimensional — ) ) ) ) ) 7 / E
g S g WU, S g TR SR [ W g W f
- - P st e b
Input Space , i _ j S ) )
s e S e | S o S T o
.............. f;_j.b@b ) ::_)
S T o S o S o S o /
|‘U. ........ IL_ ........ }h ........ h () _'l-_-' f:] ........ .;:-II
ry _\-. .i—\‘l"..
T g S o S o, - O
Discrete

Low Dimensional
Output Space

Each point 7 in the output space will map to a corresponding point w(J) in the input space.

SOM can find the manifold on “manifold-localized” data (e.g. data on a sphere, or circle)
39
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Systems SOM followed by LVQ

Computation of the feature map can be viewed as the
first of two stages for adaptively solving a pattern
classification problem as shown below. The second
stage is provided by the learning vector quantization,
which provides a method for fine tuning of a feature
map. This is useful and typical for DNN

i
Input " . Class
Self-organising Learning vector-——
: , labels
feature map quantizer ,
s

|

Teacher

40
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Dissimilarity Measures: Bregman Divergences

b dy (1) = 6 (2) — 6 () — 22 () (2 — )

dy(x, y) -

k) + (Ve x -y
Euclidean distance, KL divergence, ...

} Theorem. Let X : Q2 — S be a random variable defined in the probability space
(Q,F,P) such that E[X] € ri(S), and let a distortion measure d : S x ri(S) —
[0,00), where 1i(S) denotes the relative interior of S. Then

p:=E[X] € argminE [d (X, s)]
seri(S)

is the unique minimizer of B [d (X, s)] in ri(S), if and only if d is a Bregman
divergence for any function ¢ that satisfies the definition.

QERSIpy
3
18 56
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Problem 1. Ler X : Q — S be a random variable defined in
the probability space (,J,IP), and dy : S x ri(S) — [0,00) be
a Bregman divergence with properly defined function ¢. Let
VE{s, }ﬁzl be a Voronoi partition of S with respect 10 dy and
M= {‘uh}ﬁ:l, such that w, € ri(Sy,), h€ K, K= {1. ...k}, and
define the quantizer Q= S — S such thar Q(X) = Y5 _, w1 XeS,)-

Then the problem is formulated as
min J(Q) £ Ey [dy (X.Q(X))]

k

< min J(Q) = Y Ex [do (X, 1) Uixes,)] »
{tnth=1 h=1

“ZH My +or) (_]l{xr+]e.§;}+‘}) Vi, dg (Xis1,147) B

3) = —Ex [Lxes, Vi do (X. 1ta) ]
S;f { } heK

Xes: h—arcmm d¢(X uy) L'L(I)ZQ(#(I)) t >0

O(u) =—-VuJ(u)

Theorem 3. The sequence {U'} generated by the stochastic

vector quantization algorithm (3) converges almost surely to a

local solution U™ of Problem 1, as long as the function ¢ satisfies

Assumption 1, the stepsizes satisfy ¥, ot(t) = oo, ¥, a*(t) < oo,

and W' visits a compact subset of the domain of attraction D* of
* infinitely often, u" € D*.

O (i) = im E [ (1" X411}

C. N. Mavridis and J. S. Baras, Convergence of Stochastic Vector Quantization and Learning Vector Quant. with Bregman Divergences, 2019 45
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Problem 2. Ler {X,c} € § x {0,1} defined in a probabil-

ity space (Q,F,P), X : Q — S be a random variable, and
c: S —{0,1} its associated decision variable, such that ¢ rep-
resents the actual class of X. Let V = {Sh}ﬁ:] be a Voronoi
partition of S with respect to dy and M 2 {uh}ﬁ s My €1i(Sh),
and define C,, = {Cuh}h ey, €10,1  he K, K={1,....k},
such that cy, represents the class of wy, for all hek. Define the
quantizer Q : S — {0, 1} such that Q(X) = Y4 _, ey Lixes,)-

The minimum-error classification problem is then formulated as

m-ii!] Jp(Q) 2 Z[P’[ X €Syl +m ZPO X € 5]
{4p =1 Hp H;

_ar,+z P [X € Sp] — mP; [X € 5))

where m; = Plc =i],P;{-} = P{:|c =i}, and H; is defined as
Hi={he{l,....k}:cy, = 1}1]6{01}174]

#Jrfl uj, + a(1)O, (1. Cpy . X1 1)V, do (Xr+11y,’?)

(13)
Sl = {XGS h = argmin d, (X, ,LLE)} h=1,... .k
'?:—1 ..... k

O (U, Cu X, C) _( ]I[XES;J) (]l[( (ﬂh} ]l[ “Fop ])Vﬂhd‘p (X, [JJ;)

C. N. Mavridis and J. S. Baras, Convergence of Stochastic Vector Quantization and Learning Vector Quant. with Bregman Divergences, 2019 46
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u(f) — 0 (,u (f)) , 1 >0, and Jz (1) = Y5 Ju(u), where it is easy to show that
k

JL="Y 8y, (m0Bo [Lixes,do (X. )] —mEy [Lyes, do (X 1)])
h=1

O(1) =—V,Jr(u) =J(0) =274, (©)

with J(Q) =Y E [dy (X, ) Lyes,| | being the quantization
error, and

1y (Q) = m1 Y By [dy (X, 1tn) Tixes,)] + %0 ) o [do (X, 1n) Tixes,)]
Hy H)

being the minimum risk error associated with the risk function

Theorem 4. The sequence {U'} generated by the learning
vector quantization algorithm (13) converges almost surely
to a solution W* of Problem 2, as k = k; — oo, provided
that 1im; e k7228 — 0, ¥, a(r) = oo, ¥, 0% (1) < oo, u' visits
a compact subset of the domain of attraction D* of L* infinitely
often, u° € D*, sup, ||u'|| < e« a.s., and the function ¢ satisfies
Assumption 1.

C. N. Mavridis and J. S. Baras, Convergence of Stochastic Vector Quantization and Learning Vector Quant. with Bregman Divergences, 2019 47
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Progressive Learning for Cyber-Physical Systems

* optimal control

* motion planning

» function approximation
* reinforcement learning
* game policies

* clustering/classification

> Goal: Hierarchically Approximate Optimal Solutions

Simple Problem
Fast Solution
Coarse Approximation
Complex Problem
Slow to Solve
Detailed Approximation

48
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Progressive Learning for Cyber-Physical Systems

» Divide and Conquer
= Partition the space and use local models

fi/(X, 91/)

min [E

min E [d (/(X), /(X,0))] (500

Z Lixes,d <f(X)a filX, 91))]

49
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Progressive Learning for Cyber-Physical Systems

» Divide and Conquer
= Partition the space and use local models

~ - fi/ Xaei/
f(X,0) L 00)

min [E

min E [d (/(X), /(X,0))] (500

Z Lixes,d (f(X)a filX, 91))]

o How many regions?
» Start with few and add as needed?
» Questions? o Optimal parameters?
* Local minima? Gradients?
o Simultaneously learn local models?

50
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Online Deterministic Annealing TRy

N
e Observations: XN .= {xi}z‘:lﬂ x; € S realizations ofarv. X €8

*  Codevectors: [I = {Ml}f\ila Wi € S domainofarv. Q €S

defined by:  p(pi;|x) = P[Q = p;| X = 7]
Dissimilarity: d: S x S — [0, OO)
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Online Deterministic Annealing

N
e Observations: XN .= {xi}z‘:lﬂ x; € S realizations ofarv. X €8

M
*  Codevectors: [I = {ui}izb Wi € S domainofarv. Q €S
defined by:  p(pi;|x) = P[Q = p;| X = 7]

Dissimilarity: d: S x S — [0, OO)

Problem Formulation

Solve: Min FT := D — T'H for decreasing values of T.

m

where  Distortion:  D(X,Q) 1= E[d (X, Q)] = / p() Y plale)do () d
Entropy:  H(X, Q) := E[—log P(X, Q)] ZH(ZX)—/p(:v)Zp(uﬂx) log p(pilx) dz

Lagrange Coefficient: T' controls Tradeoff
Simulates Annealing Optimization
Triggers Bifurcation (finds number of codevectors)

Mavridis, Baras, Online Deterministic Annealing for Classification and Clustering, IEEE TNNLS 2022.

Mavridis, Baras, Annealing Optimization for Progressive Learning with Stochastic Approximation, IEEE TAC 2022.
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Online Deterministic Annealing (Il)

Solving the Optimization Problem  minFr:=D —TH

» Lemma. The solution to F*(,LL) (= min{p(wx)} F(,LL)
s.t. > p(pilz) =1, is given by the Gibbs distributions
_d(m,ui)
p*(pilr) = —*—amy, Vo € S.
Sye A

» Theorem. The solution to minﬂ F* (,LL) 18 given by

,uz|x) dz

ifd:=dg is a Bregman divergence. (sufficient condition)

\

e.g., squared Euclidean distance, KL divergence, ...

QERSI

18

47 ~
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S
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Online Deterministic Annealing (I11)

Solving the Optimization Problem  minFr:=D —TH

» Theorem. The recursive training rule

{mn +1) = pi(n) + a(n) [p(uilza) — pi(n)]

oi(n+1) = oi(n) + a(n) [tnp(milzn) — 0i(n)]

where the quaptities p(p;|zy,) and pi(n) are recursively updated as follows:

pi(n)e- dn ey (1)
(ilzn) = : ~d(zn.pui(n)
> pi(n)e T
i(n)
pi(n) = :
pi(n)

convgrges almost surely to a possibly sample path dependent solution of the op-
imtzation min,, F* (1), as n — oco.

Stochastic Approximation: Gradient-Free !

QERSIpy
3

N
§
18 56
LSS
ARy LAS
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Online Deterministic Annealing (IV)

Bifurcation and the number of codevectors

» Sequentially solve: minFr_ =D T H
min Fr, := D —ToH , I; <141 :Decreasing Temperature
» Remark. AsT — oo, we get u; = E[f(X)], Vi, i.e., one unique pseudo-input.

» Remark. As T is lowered below a critical value, a bifurcation phenomenon
occurs, and the number of pseudo-inputs increases.

Err.: 0.085 Err.: 0.008
e
& ‘. & Vi e,
Ny A * e o4l
* 5 o * L
at §t . ‘ho " . p
4 i L =
LA ‘ >
* o A et i N & ™
* : = * . :‘ : e —{® : e
Ty e e re *ee,
B i3 B = . F ol T OYETE
i b iy - Ale
#, "“ "“ Pyt s
[nhs.: 0040, T = .0900, K = 001] [ohs.: 0614, T = .0094, K = c-os] [nhs_; 1248, T = .0030, K = 010] [nhs.: 3201, T=.0012,K = 041]

»
»

> performance-Complexity Trade-off

ERS[T}

5\\ X, 2,
18 56
“’7 éQ

RYLb
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Algorithmic Implementation 141 * 00,0
13 .

Algorithm 1 Online Deterministic Annealing Spllt .. I.II. ®
Initialize 127 ™ Hm
while Termination Criterion do Fix T 111 . L

Perturb pf + {ui+5,/ﬁ'7(5},w X Spll al mm
repeat Perturb {p;} 107 il ”:',3”
Observe (z,¢) 0ol ® u . 8‘.
fori=1,...,K do Observe f(x) 0e ] ¢ xR, dahy
s =1L .= ' 0900000090, 00
Update: s 0.09 0.009 0.003
v (u)e 2o (D) Update all p; ' '
p(u'l) + 5
\ T
p(i) = P\ + an [s'p(p' ) — p(p)]
a(u') + o(u)\F an [s'zp(u'lz) — o(p')]
pi e g (N)
p(pt) Wi Converged:
end for 1en Lonverged:
until Convergence Detect Bifurcation
Keep effective codevectors
Remove idle codevectors
Lower temperature T < T v Lower T

end while

Al

Detect Bifurcation by perturbing the codevectors

*  Will merge or separate — Critical Temperatures

58
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Online Deterministic Annealing (V1) R

Training Local Models: Two-Timescale Stochastic Approximation

Algorithm 1 Online Deterministic Annealing )
Initialize Onr = 0n + a(n) [f(en’ 'un) M"+1}
while Termination Criterion do Fix T ()

Perturb pi® « {p' + 6, pu* — 8}, Vi % Pnt1 = fn + B(n) |:g(0m n) + Mn+lj|
repeat Perturb {p;} B(n)
Observe (z,c) n
fori=1,...,K do Observe f(x) a(n) —0
Si = ]l[c i:C]
Update: )
iy, delor) Update all p;
i p e T i
T R A ——
. e~ T . . .
; Zlip(u : o ; Slow SA Function Approximation
p(p') = (') + an [s'p(u'|z) = p(p')] :
; ; ; ; ; Q-Learning
o(1') o) + an [s'ap(la) — o(u)]
pi e g (NL)
end for p() When Converged: Af = _6 Vgg(sc 0 N')
until Convergence Detect Bifurcation " A
Keep effective codevectors
Remove idle codevectors Change your model
Lower temperature T« 4T v Lower T

end while

Mavridis, Baras, et al., Gaussian Process Regression using Progressively Growing Learning Representations, IEEE CDC 2022.
Mavridis, Baras, Annealing Optimization for Progressive Learning with Stochastic Approximation, IEEE TAC 2022.
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Training Local Models: Two-Timescale Stochastic Approximation

Algorithm 1 Online Deterministic Annealing

_ (6)
Initialize Ont1=0n + a(n) [f(em :U“n) + Mn+1}
while Termination Criterion do .
Perturb pi® « {p' + 6, pu* — 8}, Vi Fix T Pnt1 = fn + B(n) {g(@n,,un) + M:llj_)l}
repeat Perturb {;} B(n)
Observe (z,c) n
fori=1,...,K do Observe f(x) a(n) — 0
Si = ]l[c i:C]
Update:
e : p(ui)e™ 2 (o) Update all y;
p(u'l) + . hean
i Ziip(u N iT ; ; Slow SA Function Approximation
p(u) = p(p') + an [s'p(p' ) — p(p)] Q-Learning
a(u') = a(u') + an [s'zp(u’lz) — o(p')]
pi e g (NL)
pi) When Converged: AO = 0. 1
end for . . - _6nv99(xa 7,“1)
until Convergence Detect Bifurcation
Keep effective codevectors
Remove idle codevectors Change your model
Lower temperature T« 4T v Lower T
end while

> https://github.com/MavridisChristos/OnlineDeterministicAnnealing
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Multi-Resolution Hierarchical Learning

Example: Group-convolution Wavelets
Low _L*[R)

Resolution

» Constructive (Structured Representation)

» Provably Consistent

fijre(X, 0o > Localization

. o Emphasis on regions with high error
High

. » Asynchronous/Parallel Computation
Resolution v / P

» Reduced Complexity

Mavridis, Baras, Multi-Resolution Online Deterministic Annealing: A Hierarchical and Progressive Learning Architecture [under review].
Mavridis, Baras, Towards the One Learning Algorithm Hypothesis: A System-theoretic Approach [under review].
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Bifurcation and the number of Codevectors

» Theorem. Bifurcation occurs under the following condition

82¢(yn)

oy2 =Y

Jy, s.t. p(yn) >0 and det [ —T C,

lyn

where Cyy, = E [(x —yn)(x — yn)T|yn} .

Proof. From variational calculus and the gecond order condition:

» I, dependson:
* The Bregman divergence
* The data space

QERSI
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Online Deterministic Annealing (ODA)

Algorithmic Implementation & Open-Source Code

Algorithm 1 Online Deterministic Annealing
Initialize
while Termination Criterion do
Perturb pi' « {p' + 6, 4" — 6}, Vi g

repeat TT—
Ohbs T, e 5 . .
forﬁfrlels..?f( do " Detect Bifurcation by perturbing the set of models
=1 -
;p dap = *  Will merge or separate - Critical Temperatures
dgiz,p')
plule) - DT
_ Zg?(ﬂ“)f— T .
p(u) & p(u') + oy, [s'p(u'|z) — p(u')]
ar(,ui] — 0'(;1‘-) + g [s‘lmp(pﬂx) — c:r(,ui)]
i o)
TP
end for

until Convergence

Keep effective codevectors

Remove idle codevectors

Lower temperature T + ~T
end while

» https://eithub.com/MavridisChristos/OnlineDeterministicAnnealing

46
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Why Maximum Entropy? g

» Bifurcation: Progressively grow set of models

» Jayne’s Maximum Entropy Principle
* Most “Unbiased” estimator: each sub-problem induces “good” initial conditions for the next

* Duality (Legendre-type) and Regularization:

1 . 1
_IOgEPM [eﬂZ} = - gﬁ})f(ﬂ) {Epy [Z] — EDKL(PV’PH)}7 b8 <0

B ’
L’ min Fr ~ minllogE[eﬁD] ﬁ:_l
T X 5 , 7

Risk-Sensitivity L’ 1 B
2

5 logE [e’/] =E[J] + =

* Robustness w.r.t. initial conditions, input perturbations.

Mavridis, Baras, et al., Risk Sensitivity and Entropy Regularization in Prototype-based Learning, IEEE MED 2022.
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Online Deterministic Annealing (ODA)

Clustering
250| 1 l DA
5 | va
(=]
'gZUU 1 i Kk-means
150 . ODA
= d e |
$100| i
2 i
22
g 50 ® |
S J’ g
ol Has Nt i a
0.0 05 i 40 60

Running time (s)

*  “Progressively” finds number of clusters
*  Much fewer samples than k-means
*  Online!

s+ Complexity
O(N,(2K)?d)

PRSP IS
n=0

n=0

Np < K < min

5 13

1.0- e————
z DATA SET ODA SVM NN RF
Zos GAUSSIAN  98.9:00 79.5:00 98.6:00 98.700
o WBCD 907400  85.61400 92 7+00  94.6+00
< 3 ol (CREDIT(F1) 95.6+00 69.lio: 58.9:01 62.8+0)
] — PIMA N\ 70.5t00 629:00 163500 74420

e DDA i
0460 05 10 15 20 Unbalanced Dataset

Running time (s) .
Other models cannot generalize

Regression

154 === fix) 151 === f{x)
— ;C(X)(EMSE=0‘02) e x(M=14T=1.30)

10 101 — f(x) (ewse =0.39)
X 95%
[y
5 5
0 0
-0 -5 0 5 10 15 2 -10 -5 0 5 0 15 20
X X

Piece-wise constant approximation Sparse Gaussian Processes
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Hierarchical Multi-Resolution Learning

4 Low :
[ 4% I 6% ] Resolution r COﬂStIUCtIVB

» Provably Consistent

o Speed depends on probability density

» Localization

o Emphasis on regions with high error

» Asynchronous/Parallel Computa,tion

) € O(K?)

» Complexity:

» Non-binary Tree: |C gl K <logy K
-— High N . X
Resolution » Online Observations!
p(x) r\A

o Mavridis, Baras, Multi-Resolution Online Deterministic Annealing: A Hierarchical and Progressive Learning
Architecture [under review].

?
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Hierarchical Multi-Resolution Learning

4% 6% < Low
Resolution

h 4 A hd

5% 25% |1% |2%

High
H l:D:| - Resolution

o Mavridis, Baras, Towards the One Learning Algorithm Hypothesis: A System-theoretic Approach [arXiv:2112.02256] 62

P(x)

Th:is Approaeh
with Group-Convolutional Wavelets

F
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Online Deterministic
Annealing

*
ey S
% d ;
2 | '3 A,
.& g z‘ . ”'v-'.j? R f
L N M S
b oy ¢ Ty Y
, ‘kf ?Ar' &
I { RO R g Y Tonpy ST o
* ;', - ) W A X ."’:" «
g Ty §.545% ol Ll
W ems Weg T:]_.ﬁ IS o S 0“
P af b, 124
=X 4 : ;af: t ;
Ten 74 o) A
Zo,‘ ?"‘_*- . ""' '3‘
0 LT )
i it R
"W -
‘4 - L9
¢+ =.006

Toy Example. Evolution in 2D.

*Mavridis and Baras, Online Deterministic Annealing for Classification and Clustering, arXiv 2021 (IEEE TNNLS™)

DATA SET ODA SVM NN RF
GAUSSIAN 98.9+00 79.5+00 98.6+00 98.7+00
WBCD 90.7+00 85.6+00 92.7+00 94.6+00
| CREDIT (F1) 95.64+00 69.1+02 589401 62.8+01 \ Unbalanced Dataset
PIMA 70.5£00 62.9:00 76.3100 T4.4100 Other models cannot generalize

Classification accuracies in 5-fold cross-validation for 4 datasets”.
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Multi-Resolution ODA in 2D

* Toy Exampl
oy Examples
.
*,
ot bt TR 0%
* *0 IR J
W Wy,
PR FhES SRS . 4 o0 * *, sliode o0, ‘3 - )
1 o FL ot . L A 2 .
5 . s PR o L. . g LA N pens o AN L34S
R e w® T * PR . « 0}0 "
b . o od . 4% * .
o A > oo D oo,
o P * . - * \I *
. - S0
sEp v sip sz P R A4 o QN .
ﬁ". & 0&9. e * . LY .
. > T $lete
Acc.: 0.577, Obs.: 11, T = 16.529, K = 002 Acc.: 0.910, Obs.: 155, T = 0.054, K = 003 Acc.: 0.977, Obs.: 173, T = 0.043, K = 005 Acc.: 0.977, Obs.: 766, T = 0.002, K = 015 Acc.: 0.990, Obs.: 1876, T = 0.001, K = 053 Acc.: 1.000, Obs.: 3927, T = 0.000, K = 144

Evolution of ODA in 2D.

.
. . o
" 7 XS N o
¥, N o le,® MO AR IR
. . . . . oing @ L2 o
p % e by il o vt R o",{ wotsobe Wt B S
o ' 4y .o L . ¢ gouy PR A A K
L e * % . {8 . Ty g % s o .?
* . » POt 22N P Paia’an O” o
. ¥is s AR . P O
£y - i *%e £ %% + *e” o
® & e .
. ¢ e . * ad
. .0 %
Acc.: 0.731, Obs.: 14, T = 7.049, K = 002 Acc.: 0.783, Obs.: 153, T = 0.009, K = 003 Acc.: 0,973, Obs.: 172, T = 0.003, K = 014 Acc.: 0.965, Obs.: 263, T = 0.002, K = 030 Acc.: 0,981, Obs.: 351, T = 0.001, K = 075 Acc.: 0.992, Obs.: 1476, T = 0.000, K = 148

Evolution of multi-resolution ODA in 1D (first principal component) and 2D.
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Algorithm 2 Multi-Resolution ODA Algorithm

Set temperature schedule: T = {Tf, Tf_l, . ,To}, T =
{ZE Ay IO}
Initialize /"), M, . V.
repeat
Observe data point (X, ¢)
w=ro, =1, r = X;
while C'(w) # 0 do
w = v € C(w) such that = € 5,
[=1—-1
r = X
end while
Update M, using Alg. 1 1n .S, with (T},42 = Tr. Tonin =
T) W
if ODA in 5, converged and [ < [ then
Split w to C'(w) with respect to V4,
end if
until Convergence
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Competitive-Learning NN
Vector Interpretable
Quantization ) Robust
Topology-Preserving

. Sparse in Memory

Deterministic Progressively Growing 'in Size
Annealing Performance/Complexity Trade-off
Avoids Poor Local Minima

Bregman

Divergences Works in Vector Spaces & Modules

Stochastic
Approximation

Online Learning Rule
Needs Fewer Samples

Wavelets &

Tree Hierarchical Invariant Representations
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Sensor

—
Input Wavelet .
Decomposition

\Q,?»P‘S[T;,

5\@%
18 56
L

Feedback#3: Optimal Bases Selection

Low

Resolution | |

Feedback#2: Learning Nonlinear Mappings

'

resolution

Multi-Resolution
Analysis

*Mavridis and Baras, Towards the One Learning Algorithm Hypothesis: A System-theoretic Approach, SIMODS*

High

Feedback#1: Supervised Learning

//’

N

Group-Invariant
Features

.....

(r N

Group-Invariant
Features

Invariant
Representations

oni}—
| W
ODA
Progressively Growing .
Hierarchical Knowledge-Based |, -
,// Learning ,j/’t

IRyLN
Clustering/
Classification
The
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¥ Research
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(Lecun et al.)

e_eo {0::1@:130130 - ‘1:?:10

Our Approach
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Applications R

* Robust ML - against missing data, noise, attacks
* Face recognition
e Simultaneous sound direction of arrival, instrument paying, note
playing (or person speaking, vowel identification)
* Robust Reinforcement Learning
* CPS Security
* Robotics & Multi-Agent Systems
* Learning with Progressively Growing Knowledge Representations
for Decision-Making Systems
* Towards a Neuroscience-inspired Universal Learning Algorithm:
Hierarchical, Memory-based, Progressive, Interpretable, Robust
* Adaptive Space Aggregation for
Memory-Efficient Reinforcement Learning in Robot Control
* Progressive Graph Partitioning and Image Segmentation
 Community detection on graphs
o%&’a * Hardware implementation via hybrid (digital and The

Institute for

A neuromorphic) chips bys&gﬁg‘gﬁﬂ

hf
IRy
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Explainable Reinforcement Learning

Optimal Control Problem: Givenan MDP (X, U,P,0) X x U € RIX™
Zle(xl,ul)]
=

* Q-learning  Qj1(z,v) = Q;(w,u') + o [C(z,u') + ymin Q; (2, u) — Q;(w,u')]
* Assumes Discrete Space
* Is a stochastic approximation algorithm

= Qs uy)

7=0 7=0

solve: mgn J(u):=E

» Ad-hecdiseretization — Adaptive State/Action Aggregation with ODA
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Explainable Reinforcement Learning

Optimal Control Problem: GivenanMDP  (X,U,P,C) X x U € RI*™
Z’)’ xlvul ]

* Q-learning  Qj1(z,v) = Q;(w,u') + o [C(z,u') + ymin Q; (2, u) — Q;(w,u')]
* Assumes Discrete Space
* Is a stochastic approximation algorithm

= Q((ET, U’T)

7=0 7=0

solve: mln J(u

» Ad-hecdiscretization — Adaptive State/Action Aggregation with ODA

1000

a =m= None -
0 q . q . i —— SOM 7
* Stochastic Approximation in Two Timescales £ % - oDA 7
“; 600 Vi /
+ Fast Component: Q-Learning Py =+ a(n) [£(n,yn) + M2 B g £ w0 AR
* Slow Component: ODA Yns1 = Yo + B() [9(an, ya) + M| 7 @) 8 20 .___1 _:: ______ .
E

0 .—.—--.n.nn.’

125 150 175 2.00 225 250 275

Number of aggregate states (log1g)

Mavridis, Baras, Maximum-Entropy Progressive State Aggregation for Reinforcement Learning, IEEE CDC 2021.
Mavridis, Baras, Annealing Optimization for Progressive Learning with Stochastic Approximation, IEEE TAC 2022.
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Risk-Sensitive Reinforcement Learning

TRYLN

Optimal Control Problem: GivenanMDP  (X,U,P,C) X x U € RI*™

> O, uz)]
=

solve: Irgn J(u):=E

= Q((ET, U’T)

7=0

7=0
sup Ep, [J] - $Dx1(Py P}, B> 0
minllog]E [e?7] = min< PVET(Q){ 7] 1/3 ( w)
u f v |infp ep) {EP, [J] — BDKL(PWP/L)}v p<0

Multiplicative Bellman equation: Vﬁ* (xx) = min g { ePC @R ur) [eﬁvvﬁ*(““) | {17]{| }
u

= Risk-Neutral

= Risk-Sensitive f = 0.01

0 200 400 600 800 1000 1200 1400 0 0 200 400 600 800 1000 1200 1400
# Episodes # Episodes

Noorani, Baras, et al., Risk-Sensitive Policy-Gradient Reinforcement Learning with Exponential Criteria [under review]
Noorani, Baras, et al., Risk-Sensitive Reinforcement Learning for Coordination Games [under review]
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Application in Robotics & Multi-Agent Systems

Swarm Coordination Laws and Leader Detection

- --4-1‘3. e
- e . -
‘::-:" ok '.L..:
OH * .~ (s
Riz) = J(2)] 5 "2yt
2 ety = o

Port-Hamiltonian
System Representation

\ One leader
t&"!""u | .
ol

Learning Interaction Laws
Leader Detection (Large-Scale Optimization, Automatic Differentiation)

\ (ODA + Granger Causality) ‘ Multiple leaders

Observed Swarm
Trajectories N

* Application: Defense against adversarial UAV swarm attacks

Mavridis , Baras, et al., Detection of Dynamically Changing Leaders in Complex Swarms from Observed Dynamic Data, Springer 2020.
Mauvridis , Baras, et al., Learning Swarm Interaction Dynamics from Density Evolution, IEEE TCNS.
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Application in Robotics & Multi-Agent Systems

Community Detection on Graphs

= Adaptive Spectral Clustering

* ODA on spectral clustering features

* Distributed approximation of spectral clustering features g ,

Cyber-Physical Security: Attack Identification in Dynamic Games

z(t) = Az(t) + Bu(t) + K;d;(t), (0) = xg, t >0
V(z) = min mgx/ (27 Qz +u" Ru — ~?||d||?) dr
“ t

Tractable Solution: Bounded Rationality + Attack Identification

Mavridis, Baras, Progressive Graph Partitioning Based on Information Diffusion, IEEE CDC 2021.

Mavridis, Baras, et al., Attack Identification for Cyber-Physical Security in Dynamic Games under Cognitive Hierarchy [under review].

QERSIpy
3

N
5
18 56
47 ~ W
RYL%\A

79



.!«I)c 2 %\QERSQ}
Syesins &
Research  Application in Graph Partitionin 4 WS
’YRYLPs

* Spectral Clustering — Graph Cuts, Image Segmentation

* Distributed approximation of spectral clustering features

* Simulated heat diffusion on graphs — w(t+1) =w(t) = Y Lyu;(t)
JEN(I)

* Adaptive Spectral Clustering using ODA
* Progressively growing model (adjusts number of clusters)
* Online Learning (no need for graph knowledge a priori)
* Avoids poor local minima

*Mavridis and Baras, Progressive Graph Partitioning Based on Information Diffusion, CDC 2021
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Information Diffusion on Graphs

 Discretized Heat equation on graphs: uwi(t+1) =u(t) — Z Liju;(t
FEN(i)

Solution:  wi(t) = c1 + (1 — A2)'6!® + ...+ (1 — Ax)tol™

where |(1—A)| < 1. fori=2._... N

u;~ =1 N.
- > N — | T E w; (1) — ui (N,)
z wi(t) —us® = —
t=0 §=2 j t—D
X Learning features

Weighted sum of for Spectral Clustering
eigenvectors
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5}\.8';;'%&8 Future Directions: Advancing Al
and ML — our Approach

Rigorous Mathematics for Deep Networks — Universal
Architecture emerging

Non von-Neumann computing — do not separate CPU form
Memory — Synaptic NN, in-memory processing

Universal ML -- Integrate Deep NN and Synaptic NN

Knowledge Representation and Reasoning: Integrate Knowledge
Graphs and Semantic Vector Spaces

Progressive Learning, Knowledge Compacting

Link Machine Learning with Knowledge Representation and
Reasoning
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' > Hierarchical and Safe Decision-Making RYLP\‘A

o Progressively transition from fast sub-optimal to optimal solutions
o Constructing hierarchical and invariant data representations

2 » Risk-Sensitive & Explainable Reinforcement Learning
o Connection to Robust Control
o Explainable Policies — Error Correction
o Partially-Observable Systems using the “information state”

3 > Network Dynamics and Structure
o Importance of Leaders and Self-Organization
o Heterogeneous Graph Consensus / Decentralized Auctions (Traffic Control)
o Distributed Learning

* > Coordination Games
o Risk-Sensitivity and Trust in Coordination Game Equilibria
o Signaling (Implicit Communication) and Optimal Control

> Intelligent Transportation
o Mixed-Traffic Control
o Real-time Communication-based CAV Consensus for optimal decisions

63> Human-Robot Interaction (& Collaboration)
o Safety, Real-time Adaptation
o Learning from Human Demonstration

7> Augment Human Decision Makers with Machine Intelligence
o Interpretable Learning models
o Knowledge Representation and Reasoning
o Situational awareness, e.g., assistive robotics, battlefield applications
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