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Part I
ML for the Earth sciences
Opportunities & challenges
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Earth science
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Earth observation
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DL in Earth and climate sciences – the promise!

Reichstein, Camps-Valls et al, Nature, 2019

Camps-Valls, Tuia, Xiang, Reichstein. Wiley & Sons book, 2021
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DL in Earth sciences – solved!
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Earth sciences – the what, but also the why & how questions

● Predict weather / essential climate variables
● Being consistent with domain knowledge
● Understand processes by emulation/parametrization
● Characterize and explain extreme events
● Learn meaningful/causal representations
● Discover causal relations from data
● Attribute causes of changes and anomalies
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Earth sciences – not yet!

● Predict weather / essential climate variables
● Being consistent with domain knowledge
● Understand processes by emulation/parametrization
● Characterize and explain extreme events
● Learn meaningful/causal representations
● Discover causal relations from data
● Attribute causes of changes and anomalies

Part II

Part III
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Part II
Physics-aware ML
* aka physics-guided/informed, domain/science-guided, ...



12At AGU 2017, New Orleans, USA



13“Deep learning and process understanding for data-driven Earth System Science”, Reichstein, Camps-Valls et al. Nature, 2019.
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1. Encoding domain knowledge
Constrained optimization & hybrid modeling
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A- Constrained optimization

● ML minimizing model errors & violations of the physical laws

“Theory-guided Data Science”, Karpatne, A. et al.  IEEE Trans. Know. Data Eng., 2017.
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B- Fair optimization

● ML minimizing errors & predictions independent of sensitive factors

● Independence measured with HSIC

● Closed form solution with kernels

● Probabilistic interpretation with GPs:

“Fair Kernel Learning” Perez, Laparra, Gomez, 
Camps-Valls, G. ECML, 2017.

“Consistent Regression of Biophysical 

Parameters with Kernel Methods” Díaz, Peréz-
Suay, Laparra, Camps-Valls, IGARSS 2018

“Physics-aware Nonparametric Regression 

Models for Earth Data Analysis”. Cortés & 
Camps-Valls. Environmental Research Letters,, 2022

“Kernel Dependence Regularizers and 

Gaussian Processes with application to 

Algorithmic Fairness” Zhu Li, Perez-Suay, Camps-
Valls and Sejdinovic, Pattern Rec. 2022
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B- Fair optimization

● ML minimizing errors & predictions independent of human factors

“Fair Kernel Learning” Perez, Laparra, Gomez, Camps-Valls, G. ECML, 2017.

“Consistent Regression of Biophysical Parameters with Kernel Methods” Díaz, Peréz-Suay, Laparra, Camps-Valls, IGARSS 2018

“Kernel Dependence Regularizers and Gaussian Processes with application to Algorithmic Fairness” Zhu Li, Perez-Suay, Camps-Valls and Sejdinovic, , Pattern Rec. 2022
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B- Hybrid neural networks

"Physics-informed neural networks: A deep learning framework for solving forward and inverse 

problems involving nonlinear partial differential equations." Raissi, Maziar, Paris Perdikaris, and George 
E. Karniadakis. Journal of Computational Physics 378 (2019): 686-707.

"Neural ordinary differential equations." Chen, Ricky TQ, et al. NeurIPS 31 (2018).

"Neural General Circulation Models." Kochkov, Dmitrii, et al. arXiv preprint arXiv:2311.07222 (2023).

“Deep learning and process understanding for data-driven Earth 

System Science”, Reichstein, Camps-Valls et al. Nature, 2019.

PINNs
...
NeuralODE
NeuralGCM
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B- Hybrid model for the global hydrological cycle

"Towards hybrid modeling of the global hydrological cycle." Kraft, Basil, et al. Hydrology and Earth System Sciences 26.6 (2022): 1579-1614.



Detect, anticipate, understand climate extremes
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C- Extreme event detection, anticipation & explanation

“Domain Knowledge-Driven 

Variational Recurrent Networks 

for Drought Monitoring” 

Mengxue Zhang, Miguel Ángel 
Fernández-Torres, Gustau Camps-
Valls, Submitted 2023

● Multimodal architecture: blend&match latent representations
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C- Extreme event detection, anticipation & explanation

“Domain Knowledge-Driven Variational Recurrent Networks for Drought Monitoring” Mengxue Zhang, Miguel Ángel Fernández-Torres, Gustau Camps-Valls, Submitted 2023

● Transfer across space and time
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C- Extreme event detection, anticipation & attribution

“Domain Knowledge-Driven Variational Recurrent Networks for Drought Monitoring” Mengxue Zhang, Miguel Ángel Fernández-Torres, Gustau Camps-Valls, Submitted 2023
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2. Emulation
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Forward & inverse modeling
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A- Emulating complex codes

● GP Emulation = UQ/UP + Sensitivity analysis + Speed

“Emulation of Leaf, Canopy and Atmosphere Radiative Transfer Models for Fast Global Sensitivity Analysis” 
Verrelst, Camps-Valls et al  Remote Sensing of Environment, 2016

“Emulation as an accurate alternative to interpolation in sampling radiative transfer codes”

Vicent and Camps-Valls, IEEE Journal Sel. Topics Rem. Sens, Apps. 2018
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B- Optimizing emulators with GPs

● AGAPE = GP interpolation + Acquisition function

Active Emulation of Computer Codes with Gaussian Processes. Svendsen, D.H. and 
Martino, L. and Camps-Valls, G. Pattern Recognition 100 (107103) :1--12, 2020
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3. Learning Parametrizations
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Model inversion and learning parametrizations

“Variational inference over radiative transfer model for biophysical parameter retrieval”

D. Svendsen, L. Martino, V. Laparra, G. Camps-Valls, Machine Learning, 2021

● RTM is a deterministic model mapping params (c) to radiances (E)
● Assume a Gaussian prior
● The likelihood is hard to integrate w/ RTM inside the Gaussian mean!

● Kingma and Welling (2013)
– Introduce the variational posterior into the log marginal likelihood
– Choose the variational posterior to be Gaussian (mean&cov w/ nnet)
– Compute the expected value of the log-likelihood (KLDs btw. Gaussians easy)

● Unlike in the VAE literature: deterministic decoder + low noise variance in the lik.



30

Model inversion and learning parametrizations

“Variational inference over radiative transfer model for biophysical parameter retrieval”

D. Svendsen, L. Martino, V. Laparra, G. Camps-Valls, Machine Learning, 2021

● VAE is orders of magnitude faster 
than MCMC or ABC, but problems 
with multimodal distributions

● The VAE scheme provides a posterior 
approximation

● Readily used for fast inverse 
modeling & parameterization

● Learn prior distributions of land 
parameters; canopy water content, 
chlorophyll and dry matter
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Part III
Causal Machine Learning
Pragmatic approaches in the wild



Causal understanding means better management & robustness

32

● Discover causal relations  being right for the right reasons→

● Identify causal factors of events  prevent them from occurring→

● Predict occurrence of disasters  causal forecasting models→

● Evaluate the effectiveness of interventions  better policies→

● Causal evaluation  hypothesis testing & model-obs comparison→



Challenges in causality
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1. Difficulty of identifying causation from data
2. Multidimensionality & collinearity
3. Poor data quality & assumptions (lin/Gauss/iid)
4. Poor data quantity
5. Many factors difficult to measure or quantify
6. Many confounders & sufficiency assumption
7. Hidden/latent factors
8. Nonstationarities in a changing Planet
9. Idenfiability and falsifiability issues
10.Weak or controversial domain knowledge
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1. Causal discovery in time series



Causal inference for the Earth system
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Ex. 1 - Nonlinear Nonstationary Granger Causality (XKGC)

“Inferring causation from time series with perspectives in Earth system sciences”, Runge, Bathiany, Bollt, Camps-Valls, et al. Nat Comm (submitted), 2018.
“Causal Inference in Geoscience and Remote Sensing from Observational Data,” Pérez-Suay and Camps-Valls, IEEE Trans. Geosc. Rem. Sens, 2018
“CauseMe: An online system for benchmarking causal inference methods,” Muñoz-Marí, Runge, Camps-Valls. (2019). CauseMe: http://causeme.uv.es

● Causality is 
sharper than  
correlation

● ENSO4 “causes” 
SM in very dry 
(Sahel) and very 
wet (tropical rain 
forests)
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Ex. 2- Robust Convergent Cross Mapping (RCCM)

● Causality on (GGP, Tair, SM)
● Causal maps capture general knowledge
● In dry (water-limited) areas, GPP is 

caused/driven by SM
● Temperature is mainly an effect in boreal 

regions
● GPP affects SM in dry/savannas/shrubs, 

possibly related through ET
● SM in boreal regions matches with a 

reduction in radiation and temperature

“Inferring causal relations from observational long-term carbon and water fluxes records” E. Diaz, J.E. Adsuara, A. Moreno, M. Piles, G. Camps-Valls,, Sci. Rep 2022
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«Causal networks for climate model evaluation and constrained projections» Nowack, et al, Nature Comm. (2020)

Ex. 3- PC with momentary conditional independence (PCMCI)
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2. Learning causal representations
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Learning causal feature representations

Learning Granger Causal Feature Representations, Varando, Fernandez, Camps-Valls, ICML 2021.

Image credits: Jakob Runge, 2019



● ENSO influences moisture, greenness & precipitation spatio-temp patterns
● Goal: Learn causal impact teleconnections of ENSO on greenness
● NDVI from MODIS in Africa, linear interp, anomalies
● ENSO3.4 index, focus on 2014-2017

2014-2017

Learning causal feature representations

Learning Granger Causal Feature Representations, Varando, Fernandez, Camps-Valls, ICML 2021.



Learning causal feature representations

Learning Granger Causal Feature 

Representations, Varando, Fernandez, 
Camps-Valls, ICML 2021.



No Granger penalization Granger penalization

Learning causal feature representations

Learning Granger Causal Feature Representations, Varando, Fernandez, Camps-Valls, ICML 2021.



• XAI (integrated gradients) on the Granger Autoencoder
• Spatio-temporal explicit attributions

Learning causal feature representations

Learning Granger Causal Feature Representations, 

Varando, Fernandez, Camps-Valls, ICML 2021.
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3. Causal discovery with LLMs
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Large Language Models for Constrained-Based Causal Discovery

“Large Language Models for Constrained-Based Causal 
Discovery” K-H Cohrs, G. Varando, G. Camps-Valls, AAAI 2024
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Large Language Models for Constrained-Based Causal Discovery

“Large Language 
Models for 
Constrained-Based 
Causal Discovery” K-
H Cohrs, G. Varando, G. 
Camps-Valls, AAAI 
2024



Impact on food insecurity

“A total of 6.5 million people face 
acute food insecurity amid the driest 
conditions in 40 years(...) A total of 
1.84 million children under 5 face 
acute malnutrition. (...) over 1.5 million 
drought-driven displacements since the 
start of the climate crisis.” 

World Food Programme, Jan 2023

49Image credits to: FEWS NET,  https://fews.net

https://fews.net/


Impact on food insecurity
Baidoa District
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● Monthly data
● 2016 - 2021
● 37 districts
● N~70
● Market/food/livestock/

water prices, displaced 
people, fatalities, climate 
variables, humanitarian aid

● Target: malnutrition
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Large Language Models for Constrained-Based Causal Discovery

● El Niño Southern Oscillation (ENSO)
● Standardized Precipitation Index (SPI)
● Fatalities due to conflicts (VC)
● Local market prices (LMP)
● Sorghum yield production (Y)
● Drought-induced IDP (DD)
● People receiving cash from 

humanitarian aid (RC)
● Global Acute Malnutrition (GAM).

“Large Language Models for Constrained-Based Causal 
Discovery” K-H Cohrs, G. Varando, G. Camps-Valls, AAAI 2024

●  Find traces of causal 
reasoning in model’s 
answers

●  Promising, alternative 
avenue for automated 
causality

●  Useful for fast response, 
scarce data regimes
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Part IV
Conclusion
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● Many challenges: emulate, learn 
representations, ensure consistency, 
interpretability, discover causal relations

● Take 1: Understanding processes by 
blending domain knowledge & data

● Take 2: Understanding complex systems 
means answering causal queries

Take-home messages
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