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Action Recognition
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@ Goal: Learn to recognize human actions from labelled data.







Challenges

 Leveraging the temporal dimension
= How to effectively model spatio-temporal data?

« Complexity
= [mpact on storage and computational cost
* Annotated large-scale datasets availability




Action Recognition

1 20% “driméfng"
I 40%  ‘throwing an object”
CC130% ‘diving”
3 10%  Jumping”

(X, y)
@ Goal: Learn to recognize human actions from labelled data.

1. Downside: Expensive and time-consuming to collect annotations.

@ Solution: Leverage unlabelled data.




Challenge: Domain Shift

e Unlabelled (or target domain)
videos exhibit domain shift.

p(X*) # p(xh)

e Domain shift can arise due to

several factors:
o lighting
o resolution
o environment
o camera position




Unsupervised Domain Adaptation (UDA) with Attention

Attention mechanism to effectively align the temporal representations
Domain adversarial loss at spatio-temporal levels
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[Chen et al. ICCV 2019] [Pan et al. AAAI 2020]




Pretext Tasks for UDA

Clip Attention
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Measure the gap
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Our Journey
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No pretext task, instead Contrastive Learning

Contrastive Learning: Self-supervised feature representation learning

make model prediction robust to domain shift

[Chen et al. ICML2020]




Supervised cross-domain representation learning

“horse riding” “bike riding”

= Pull together video representations (target domain)  (target domain)

from different domains belonging
the same class

= Push apart video representations
from different domains belonging

different classes o
“horse riding”

(source domain)

[Turrisi et al. WACV2022]




Proposed architecture

[Turrisi et al. WACV2022]




Proposed architecture
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Proposed architecture
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Results UCF « HMDB
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Results on Kinetics — NEC-Drone

Kinetics
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Video Transformers

MLP Head — Video Class ID ‘

Temporal Transformer

Cl l I ] ]

token Spatial Spatial Spatial
Transformer Transformer  Transformer

ARARERAMRAARARRA A RRAAAL

Transformer Encoder
A

Lx °

©

Multi-Head
Linear Linear Linear Attention
od OF OF
1
X 16 frames gg DB gg =
Patches

[Shair et al. 2021]




Cross-Domain Video Transformers
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Cross-Domain Video Transformers

Step 1: source-only fine tuning
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Cross-Domain Video Transformers

Step 2: adaptation
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Results UCF «< HMDB

HMDB-UCF
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Results on Kinetics — NEC-Drone
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Results on Kinetics — NEC-Drone
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What we learned

= Methods from self-supervised
learning can be adapted for
cross-domain feature alignment

= Video Transformers are more
robust to domain shift but they
need to be adapted

= Domain shift is a severe issue also
in the egocentric setting:
EPIC-Kitchens Unsupervised
Domain Adaptation Challenge [1]

[1] https://epic-kitchens.github.io/2023#challenge-domain-adaptation




So far: Closed-set Domain Adaptation
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Challenge: Open-set classes in Target
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Challenge: Open-set classes in Target
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Open-set Video Domain Adaptation
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@ Goal: Adapt a model to the target domain that can:

e classify a sample to one of the 'known' classesin [, g
e reject the ‘unknown' sample belongingto Ly /Lg




CLIP: Large Language & Vision Models

\X/hy CI_l Pl? Known climb
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I Downside: CLIP assumes knowledge of the class names in order to carry out
zero-shot classification.

@ How to leverage CLIP without any a priori knowledge of the ‘unknown’ class names?

'Radford et al, "Learning Transferable Visual Models From Natural Language Supervision”. In ICML, 2021.




Proposed Method: AutolLabel
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Automatically discover the ‘unknown’ (or target private) class names and
extend the 'known' classes label set.




Intuition behind AutolLabel

Discovering unknown class names

e An action can be loosely defined by:
o object(s)
o actor(s)
o environment
e \We aim to discover the candidate
‘unknown' class names by finding
attributes that appear in the video
sequences.

@ Image captioning models? can serve the purpose.

°Kim et al., "Vilt: Vision and-language transformer without convolution or region supervision”. In ICML, 2021.

captioner

Attributes
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golf club
grass
trees




AutolLabel

1. Attribute
Extraction
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Kim et al., “Vilt: Vision and-language transformer without convolution or region supervision”. In ICML, 2021.
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AutolLabel

3.Attribute

Matching
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Experimental Results
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Experimental Results
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Experimental Results
Epic-Kitchens
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Take home messages

e CLIP-based framework can be devised for addressing open-set unsupervised video
domain adaptation.

e AutolLabel enhances the zero-shot prediction capabilities of CLIP without knowing a priori
the ‘'unknown'’ class names.

e \Xe leverage a simple yet powerful idea that actions can be described by attributes.

e Image captioning models were used to extract attributes, which are then processed by
Autolabel to zero in the ‘'unknown'’ class names.

e e obtain state-of-the-art results in open-set unsupervised video domain adaptation.
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Moving one step further: source-free

Source data

Target data




Moving one step further: source-free

ource data

Target data




Moving one step further: source-free video domain
adaptation (SFVUDA)

Source pretrained model Target data




General intuition
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General intuition
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ISSUE Useful knowledge from the source domain may be overwritten by the tuning
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General intuition

Self-sup. loss
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General intuition
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ISSUE This approach does not leverage useful domain-specific knowledge from
either domain, relying solely on CLIP generalization




General intuition
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Our Solution Leveraging the complementarity of general CLIP knowledge and

domain specific information through a distillation process, by only learning an adapter




Adapter training
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The training process
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governed by a
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Adapter training
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Ensemble distillation
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Experimental Results osrcus Tim SIUDA
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Experimental Results
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Take home messages

e Simple but novel approach for SFVUDA

e Combination of complementary information derived from domain-specific
models and the powerful CLIP-based LLVMs

e Extensive evaluation on two standard benchmarks for VUDA repurposed
for the source-free scenario

e Comparison with existing methods and a selection of CLIP-based baseline,
showing state-of-the-art results




Did we close the gap?

(thanks to Large Language & Vision Models)
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Future research directions

Can we describe the test domain with language?

How can we further exploit language (e.g. other captioning models)?
Domain Generalization

Mandatory to reduce computational burden
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