The Unreasonable Effectiveness of Large Language-Vision Models for Video Domain Adaptation

Elisa Ricci

Action Recognition

G Goal: Learn to recognize human actions from labelled data.

Challenges

- Leveraging the temporal dimension
 - How to effectively model spatio-temporal data?
- Complexity
 - Impact on storage and computational cost
- Annotated large-scale datasets availability

Action Recognition

Goal: Learn to recognize human actions from labelled data.

Downside: Expensive and time-consuming to collect **annotations**.

Solution: Leverage unlabelled data.

Challenge: Domain Shift

• Unlabelled (or *target* domain) videos exhibit **domain shift**.

 $p(\mathcal{X}^S) \neq p(\mathcal{X}^T)$

- Domain shift can arise due to several **factors**:
 - lighting
 - resolution
 - environment
 - camera position

 $(X^{T}, ?)$

Unsupervised Domain Adaptation (UDA) with Attention

Attention mechanism to effectively align the temporal representations Domain **adversarial loss** at spatio-temporal levels

Pretext Tasks for UDA

Clip Attention

clip1: relevant

clip1: irrelevant

clip2:

relevant

clip2: irrelevant

clip3: relevant

clip3: relevant

Clip Ordering Prediction

background: 'gym'

background: 'gym'

background: 'gym'

background: 'stair'

background: 'dining room'

background: 'living room'

HMDB51

"climb"

"golf"

UCF101

"playing guitar"

"walking the dog"

Kinetics

"jogging"

"punching person"

NEC drone

"drinking from a bottle"

Our Journey

No pretext task, instead Contrastive Learning

Contrastive Learning: Self-supervised feature representation learning make model prediction robust to domain shift

Supervised cross-domain representation learning

- Pull together video representations from different domains belonging the same class
- Push apart video representations from different domains belonging different classes

"bike riding" (target domain)

"horse riding" (**source domain**)

Proposed architecture

Proposed architecture

[Turrisi et al. WACV2022]

Proposed architecture

[Turrisi et al. WACV2022]

Results UCF \leftrightarrow HMDB

HMDB-UCF

Results on Kinetics \rightarrow NEC-Drone

Kinetics

NEC

Video Transformers

Cross-Domain Video Transformers

Cross-Domain Video Transformers

Step 1: source-only fine tuning

Fully frozen T_s Spatial transformer

Partially frozen

 \mathcal{T}_t Temporal transformer

Cross-Domain Video Transformers

Step 2: adaptation

Results UCF \leftrightarrow HMDB

HMDB-UCF

Results on Kinetics \rightarrow NEC-Drone

Results on Kinetics \rightarrow NEC-Drone

Source only

Adaptation

What we learned

- Methods from self-supervised learning can be adapted for cross-domain feature alignment
- Video Transformers are more robust to domain shift but they need to be adapted
- Domain shift is a severe issue also in the **egocentric setting**: EPIC-Kitchens Unsupervised Domain Adaptation Challenge [1]

So far: Closed-set Domain Adaptation

Source and **target** label sets are the same

AutoLabel: CLIP-based framework for **Open-set** Video Domain Adaptation

Giacomo Zara, Subhankar Roy, Paolo Rota, Elisa Ricci

Challenge: Open-set classes in Target

Challenge: Open-set classes in Target

Open-set Video Domain Adaptation

Goal: Adapt a model to the target domain that can:

- classify a sample to one of the 'known' classes in L_S
- reject the 'unknown' sample belonging to L_T/L_S

CLIP: Large Language & Vision Models

Why CLIP¹?

- **robust** to domain shifts due to web-scale pre-training
- enables zero-shot classification

Downside: CLIP assumes knowledge of the **class names** in order to carry out zero-shot classification.

How to leverage CLIP without any a priori knowledge of the 'unknown' class names?

Proposed Method: AutoLabel

Automatically discover the 'unknown' (or target private) class names and extend the 'known' classes label set.

Intuition behind AutoLabel

Discovering unknown class names

- An action can be *loosely* defined by:
 - object(s)
 - actor(s)
 - environment
- We aim to **discover** the *candidate* 'unknown' class names by finding **attributes** that appear in the video sequences.

Image captioning models² can serve the purpose.

Kim et al., "Vilt: Vision and-language transformer without convolution or region supervision". In ICML, 2021.

Experimental Results

Experimental Results

Experimental Results

Epic-Kitchens $\mathbf{HOS} = \frac{2 * acc_c + acc_o}{acc_c + acc_o}$ ResNet 101-based **CLIP-based** methods methods 40 38,2 32,4 30 30,9 20 HOS 13 10 12 0 CENT-CIP ACTIONCIP ACTIONCIP-20C AUGUSTO CEN

Take home messages

- **CLIP-based framework** can be devised for addressing open-set unsupervised video domain adaptation.
- AutoLabel enhances the **zero-shot** prediction capabilities of CLIP without knowing *a priori* the 'unknown' class names.
- We leverage a simple yet powerful idea that *actions can be described by attributes*.
- Image captioning models were used to extract attributes, which are then processed by AutoLabel to zero in the 'unknown' class names.
- We obtain **state-of-the-art** results in open-set unsupervised video domain adaptation.

The Unreasonable Effectiveness of Large Language-Vision Models for **Source-free** Video Domain Adaptation

Giacomo Zara, Alessandro Conti, Subhankar Roy, Stéphane Lathuilière, Paolo Rota, Elisa Ricci Moving one step further: source-free

Source data

 (X^S, y)

Target data

Moving one step further: source-free

Moving one step further: source-free video domain adaptation (SFVUDA)

Traditional SFVUDA The source model is fine-tuned on the target domain by means of a self-supervised loss

ISSUE Useful knowledge from the source domain may be overwritten by the tuning process on the target domain

Zero-shot CLIP The CLIP model is used for inference off-the-shelf, without further tuning, leveraging it generalization capabilities

ISSUE This approach does not leverage useful domain-specific knowledge from either domain, relying solely on CLIP generalization

Our Solution Leveraging the complementarity of general CLIP knowledge and domain specific information through a distillation process, by only learning an adapter

Adapter training

The training process of the adapters is governed by a standard Language&Vision loss

 \boldsymbol{q}

Adapter training

Ensemble distillation

We use the learned adapters and CLIP (ViT/B32) as **teachers**, and train a **student** adapter on top of a CLIP (RN50) encoder

Experimental Results HMDB-UCF

Zero-shot CLIP

Experimental Results SFVUDA Zero-shot CLIP methods Daily-DA 80 60 Validation Accuracy 40 20 0 Lowerbound RANGO TERSA SEDA SHOT SHOTA WA BAIT CPGA ATCON EXTERN DALLY UPPerbound

Take home messages

- Simple but novel approach for SFVUDA
- Combination of complementary information derived from domain-specific models and the powerful CLIP-based LLVMs
- Extensive evaluation on two standard benchmarks for VUDA repurposed for the source-free scenario
- Comparison with existing methods and a selection of CLIP-based baseline, showing state-of-the-art results

Did we close the gap? (thanks to Large Language & Vision Models)

Upper bound (target model) is 61%

Future research directions

- Can we describe the test domain with language?
- How can we further exploit language (e.g. other captioning models)?
- Domain Generalization
- Mandatory to reduce computational burden

Thank you for the attention!

People

G. Zara

A.Conti

P. Rota

N. Sebe

T. O. Dos Santos

S. Roy

S. Lathuillere

V.Murino