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Introduction

• ChatGPT is a Large Language Model (LLM) that is fine-

tuned from a Generative Pre-Trained Transformer-3.5 

(GPT-3.5) LLM series, produced by OpenAI.

• An LLM is a Deep Neural Network (DNN) trained to

generate smooth text similar to the human-generated one.

• The fine-tuning of the GPT-3.5 is performed using

supervised and reinforcement learning with human

feedback [OPE2023] .
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Large Language Models

The building blocks of LLMs are [AJI2023] :

• Tokenization: transforming a text in a series of tokens, e.g.,:
• sub-words, words.

• Text compression, in order to minimize the size of the encoded 

token, while retaining the ability to represent well text 

sequences. 

• Vector embedding: Token representation by vectors 

capturing their semantic meaning in a high-dimensional space.

• Vector embeddings are processed by the NN and are learned 

during the training.
4



Large Language Models
Word embeddings: Word2Vec (example)

Two-layer NN trained to reconstruct linguistic context of 

words.

• Training is performed with pairs of context-target words. 

• 2 training variations.
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Word embeddings
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Visualization of word prediction in 2D space

A sentence can be visualized as a curve in the vectorial 

space over time, connecting all its word embeddings.

Word trajectory in a 2D vectorial space [𝑥1, 𝑥2].

𝑥1

𝑥2



Large Language Models
Transformers provide data

representations based on statistical

correlations of input elements (NLP

tokens).

• They comprise of the encoder and

decoder.

• Self-attention weighs the importance

of input or output tokens.

• Cross-attention cross-correlates

input and output tokens.

7Transformer architecture.



Large Language Models

Transformers

• Transformers comprise of the

encoder and decoder and use

the self-attention mechanism

to weigh the importance of

input elements [VAS2017] .

• GPT-3.5 is a fine-tuned model

of the GPT-3, which is a

Transformer DNN.

8Transformer architecture [VAS2017].



Large Language Models

The transformer encoder processes the input

sequence using two sub-layers [VAS2017]:

• Multi-head self-attention mechanism: It

attends to different parts of the sequence in

parallel, inferring meaning and context.

• Position-wise fully connected feed-

forward network: Two linear transformations

with a RELU activation in between applied to

each position independently [VAS2017].

12

Transformer encoder [VAS2017].



Large Language Models

• The transformer decoder has an extra

multi-head cross-attention sub-layer of

attention, between the two sub-layers of

the encoder layer.

• It outputs the probability of each

vocabulary token.

• In the multi-head cross-attention sub-

layer the key-value pairs 𝐊, 𝐕 are

obtained from the encoder output.

13Transformer decoder.



Large Language Models

LLM training and text production:

• LLMs search for text patterns and correlations in huge 

amounts of training data and produce statistically probable 

output (text). 

• They become increasingly better in learning word 

predictions and relations. 

• This is an essential feature in outputting smooth ‘human-

like’ text. 
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Large Language Models

LLM training and text production example:

• LLMs’ reply to the query ‘What is the capital of Spain?’ 

would be ‘Madrid’ rather than ‘death penalty’, since:

• a) they encountered this semantic association (Spain, 

Madrid, capital) too many times in their training corpora. 

• b) the learned association (Spain, country) helps them 

disambiguate the meaning of the query word ‘capital’. 

• Such statistical associations may occasionally be out 

of context, or semantically wrong or completely 

fabricated. 
16



GPT
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• The Generative Pre-Trained

Transformer (GPT) is a decoder-

only Transformer model that

generates one token at a time

[RAD2018].

• Semi-supervised training:

a) Unsupervised pre-training.

b) Supervised fine-tuning.

GPT architecture [RAD2018].



GPT Training stages
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Unsupervised Pre-training stage:

• Training dataset: BooksCorpus [ZHU2015].

• Objective: Standard language modelling [RAD2018].

Fine-tuning stage:

• Training dataset: a labelled dataset corresponding to the

fine-tuning task

• Objective: GPT model parameters adaptation to the

supervised target task and language modelling [RAD2018].



GPT
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GPT architecture of GPT model (left). Input for GPT fine-tuning to perform various tasks (right) [RAD2018].



GPT-2
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• GPT-2 is larger than the first GPT model [RAD2019]:

• GPT: 117 million parameters, GPT-2: 1.5 billion parameters.

• GPT-2 employs zero-shot learning.

• Special tasks (text translation, question answering, etc.) can be

framed in the same way as language modelling.

• WebText training dataset (internal OpenAI corpus) was used

with emphasis on document quality.



GPT-2

• Zero-shot learning: GPT model input is: a) a task

description b) prompt.

• Example: Translate English to French (task description),

cheese (prompt).

• One-shot learning: GPT model input is: a) task description

and b) a single task example (from the training dataset).

• Few-shot learning: GPT model input is: a) task description

and b) few task examples (from the training dataset).
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GPT-3
• GPT-3 is a Transformer DNN with the same design and

architecture as GPT-2 [BRO2020].

• It is an autoregressive model generating a continuation of

an input sequence of tokens.

• GPT-3 has 10 times bigger parameter set compared to

GPT-2:

• 175 billion parameters, 96 attention layers.

• Each layer has 96 heads. Each head is 128-dimensional.

• GPT-3 is trained on batches of size 3.2 million token.
23



GPT-3
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• After the pretraining stage GPT-3 (in contrast to GPT-2),

applies in-context learning to address fine-tuning issues

[BRO2020]:

• E.g., too many required data, overfitting.

• Training dataset comprises:

• Common Crawl (filtered) [COM2023], WebText2 [ALE2019].

• Books1, Books2 [JAR2020], Wikipedia [BRO2020].



GPT-4
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• GPT-4 is a large multimodal model

Input: Both images and text

Output: Text

• Trained on next word prediction using public and licensed data.

• Fine-tuned through Reinforcement Learning with Human

Feedback (RLHF) in order to align the models output with the

user’s intent [OP2023].

• Models capabilities originate from the pre-training process and

not the RLHF [OP2023].



GPT-4
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• GPT-4 exhibits human-level

performance on various

professional and academic

benchmarks [OP2023].

GPT performance on academic and 

professional exam [OP2023].



GPT-4 Capabilities
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• Visual inputs

• Steerability

• Significantly reduced hallucinations

• Improved safety and alignment

• Improved mathematical reasoning

• Strong performance in many languages.



GPT-4 Capabilities
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Performance of GPT-4 on 

academic benchmarks 

[OP2023].



GPT-4 Limitations

29

GPT-4 suffers from the same limitations as the previous GPT

models [OP2023]:

• Hallucinations.

• Bias in its output text.

• Lack knowledge past 2021 and doesn’t learn from its

experience.

• There is still a risk of generating harmful advice, buggy code

and inaccurate information. This risk has been reduced

compared to older models through additional signal in the

RLHF.



ChatGPT – Fine-Tuning

A pre-trained 3rd generation GPT

DNN for language tasks is

acquired.

• Step 1: Fine-tune the pre-trained

GPT DNN on a labelled dataset

[OPE2023].

30ChatGPT fine-tuning (step 1) [OPE2023].



ChatGPT – Fine-Tuning

• Step 2: A reward model is

trained with a scalar output.

• The output quantifies how good

was the response of the fine-

tuned GPT to a given prompt.

• Human-in-the-loop through 

Reinforcement Learning from 

Human Feedback (RLHF). 

31Step 2 of ChatGPT fine-tuning: reward model training [OPE2023].



ChatGPT – Fine-Tuning
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ChatGPT reward model:

• It is trained on a dataset of responses returned by the fine-

tuned GPT-3 for a given prompt [OPE2023].

• For each prompt, the fine-tuned GPT outputs four

responses according to a decoding strategy by sampling

responses with the highest probability.

• The responses are labelled by a reward proportional to the

quality of each output.

• Non-toxic and factual responses are given a higher reward.



ChatGPT Capabilities

ChatGPT text processing capabilities:

• Translation: chatGPT performs well translating in English

[BAN2023].

• Summarization: Adequate results (similar to GPT3).

However, it is outperformed by SOTA works [BAN2023].

• Question Answering: Near perfect scores [BAN2023].

• Sentiment Analysis: It outperforms supervised SOTA

works [SCA2022] and zero-shot multilingual LLM

[CAH2022] (evaluation metric: F1 score) [BAN2023].
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ChatGPT Capabilities

• Dialogue tasks: ChatGPT generates high quality fluent

human-like responses [BAN2023].

• Misinformation detection: ChatGPT detected

misinformation at 92% and 73.33% accuracy on covid-

scientific and covid-social datasets, containing scientific and

social claims related to Covid-19 accordingly [BAN2023].

• Code understanding and generation: ChatGPT achieved

higher score on the LinkedIn Python skills assessment than

85% of humans [CFTE].
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ChatGPT Reasoning

• Despite performing well on certain reasoning tasks,

ChatGPT is unreliable, as its responses are inconsistent

[BAN2023].

• Its reasoning evaluation was performed via question

answering.

• ChatGPT has acceptable performance in deductive,

abductive, temporal, causal and analogical reasoning

[BAN2023].

• ChatGPT has weakness in inductive, spatial, mathematical,

non-textual semantic and multi-hop reasoning [BAN2023].
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ChatGPT Reasoning

37

Categories Testset Results

Deductive ENTAILMENTBANK bAbI 28/30 

Inductive CLUTRR 13/30

Abductive αNLI 26/30

Mathematical Math 13/30

Temporal Timedial (formatted) 26/30

Spatial

SpartQA
StepGame (hard)

StepGame (diagonal)
StepGame (clock-direction)

12/30
7/30

11/20
5/20

Common sense
CommonsenseQA

Pep-3k (Hard)
27/30
28/30

Causal E-Care 24/30

Multi-hop hotpotQA 8/30

Analogical Letter string analogy 30/30

ChatGPT results on 

reasoning tasks 

[BAN2023].



ChatGPT Limitations

• ChatGPTs responses sometimes sound plausible, while

they are incorrect or nonsensical [OPE2023].

• ChatGPT responses are sensitive to tweaks in input

phrasing and prompt repetition [OPE2023].

• Training data bias causes excessively verbose responses

and overuse of certain phrases [OPE2023].

• In translation, it still lacks excellent ability to successfully

translate English in other languages [BAN2023].
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ChatGPT Limitations

• In the case of an ambiguous query, the model guesses

what the user intended to say, rather than ask for

clarifying questions [OPE2023].

• ChatGPT sometimes responds to harmful instructions or

outputs biased answers.

• The Moderation API is used to flag certain types of unsafe

content [OPE2023].

• ChatGPT has a limited understanding of low-resource

languages, due to low training data volume [BAN2023].
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ChatGPT Limitations

• There are concerns and limitations due to lack of

controllability and knowledge grounding in ChatGPT

responses [BAN2023].

• ChatGPT fails in basic reasoning for recommendations.

• It fails to answer correctly 66% of the time [BAN2023].

40



ChatGPT Limitations

ChatGPT hallucinations

• Statistical token associations may occasionally be out of 

context, or semantically wrong or completely fabricated.  

• LLM training optimizes an objective function (or reward) 

for a certain task. 

• AI alignment problem: a misaligned AI system may 

optimize some objective function, but not necessarily the 

intended one. 

• Alternatively, an aligned AI system may get stuck in local 

minima and work sub-optimally.
41



ChatGPT Limitations

ChatGPT hallucinations

• Reward functions can induce ChatGPT into hallucinating 

facts, rather than admitting ignorance.

• Hallucinations can become even more serious when 

human-in-the-loop LLM retraining or fine-tuning is 

employed. 

• Users can trigger hallucinated replies, e.g., that ‘the Pope is 

a pop singer’, as the LLM thinks it maximizes its reward.

42



ChatGPT Limitations

ChatGPT hallucinations

• Humans make such judgement errors as well:

• Sensory illusions, wild children’s imagination.

• The human mind creates mental images of the world that 

map reality, yet are completely artificial, real, but different 

from reality.

• Arts can be considered as a form of creative expressed 

hallucination.

43



ChatGPT Limitations

ChatGPT hallucinations

• In principle, Generative AI fabricates imaginary outputs.

• They may deviate from the training data and ‘common 

human sense’.

• Depending on their social use, we can call them Art or 

Fake data or Hallucinations.

44



ChatGPT: Questionmarks

• Does ChatGPT have access to external resources? No.

• Yet, if suitably trained ChatGPT can provide lots of factual

information.

• If not, what is its knowledge storage capacity?

• Should LLMs have access to external resources? Yes.

• Knowledge graphs? Algebraic computations (Symbolic

Algebra)?

• This combination has great potential, e.g., in search.

 
45



ChatGPT: Questionmarks

• Can LLMs provide hints on how human memory works?

• Associative memories, Hopfield networks.

• CNNs can store some training data information.

• Transformer-based LLMs are based on statistical 

associations. 

• Relation between human imagination and ChatGPT

hallucination?

• Kids are particularly good at fabricating facts or stories.

46



ChatGPT: Questionmarks

• Does ChatGPT have explicit reasoning mechanisms?

• No, it has been trained as a pure language model.

• However, its replies show some reasoning capabilities.

• ‘Text is all we need’ to learn reasoning?

• Language/text contain many examples of reasoning.

• Reasoning as a result of learning-by-examples?

• If proven, it is a Nobel-level breakthrough.

• It can reconcile Machine Learning and Symbolic AI.

47



ChatGPT: Questionmarks

Does ChatGPT have explicit reasoning mechanisms?

• Humans learn from their mothers, relatives, and peers how 

to think, based on countless everyday discussions. 

• An eventual LLM ‘inference by example’ capacity may hint 

towards ways that humans learn to think. 

48



ChatGPT: Questionmarks

Causal, approximate reasoning?

• LLM output (statistical event cross-association):

‘It has repeatedly been observed (or better, has been found in the literature) 

that plants thrive, when the sun shines’.

• Causal argumentation:

‘Plants thrive when the sun shines, because they use sunlight in their 

photosynthesis’. 

49



ChatGPT Questionmarks

• Do LLM/ChatGPT have abstraction mechanisms?

• Their internal structure and functionalities are unknown.

• Clustering and concept creation? Rule creation?

• Can ChatGPT provide explicit language modelling?

• Derivation of grammar and syntax rules.

• ChatGPT explainability?

50



ChatGPT Questionmarks

• Do LLMs/ChatGPT have affect?

• Absolutely not in the human sense.

• Yet, it is a disgrace that they can create such an

impression to unsuspecting public, when texting like ‘I

love you’.

• Machines are very good in understanding certain affect

signals, e.g., facial expressions.

51



LLM criticism

• ‘Human intelligence can work well with few data’ (Chomsky, 

2023) [CHO2023]: completely wrong. 

• The contrary is true: both machine and human learning 

require massive training, in terms of data, architecture 

complexity and energy needs. 

• Is it possible that similar laws govern both machine and 

human learning?

52



LLM criticism

Criticism:

• ‘Current LLMs have many deficiencies’, 

• ‘They do just massive plagiarism’, 

• ‘They know nothing about particular domains’, 

• ‘They are not multimodal, e.g., supporting visual perception’ (except GPT-4).

• Completely wrong claims. LLMs are only at the start. Great 

advances are expected. 

• Such nihilistic criticism is similar to the ill-fated criticism of 

Rosenblatt’s perceptron by Minsky and Papert that led to the 

AI winter at the end of the 1960s.
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ChatGPT in Education

• ChatGPT can change the way we search and retrieve

information.

• It has the capacity to help students reply to scientific

questions.

• ChatGPT changes:

• student project execution and examination.

• educational exams.

54



ChatGPT in Education

‘Scientific’ capacity of ChatGPT:

• Good at replying factual questions on known topics. 

• It has certain capacity to reply mathematical questions.

• It can solve programming exercises very well (e.g., in

Python).

• Currently, it can neither process nor output diagrams and

figures.

55



ChatGPT in Education

ChatGPT in CS/ECE exams: very good score in mathematical questions.

56



ChatGPT in Education

ChatGPT and Mathematics:

• It can solve mathematical questions.

• Complex numbers, Z/Fourier transform properties.

• Replies tend to be verbose.

• It fails on some simple mathematical questions

• It cannot always handle well reasoning with negative

numbers.
Question: He asked me to give 2 Euros. I gave him 3; how much I owe him?

ChatGPT: You owe him 1 Euro. 

57



ChatGPT in Education
• ChatGPT in CS/ECE programming exercises: excellent

scores (10/10).

58

ChatGPT programming: arithmetic mean and 1D moving 

average filter routines in Python.



LLMs and AI in Education
ChatGPT opportunities.

• LLMs can be used as a new education tool with massive

impact in education.

• We have to research how to best use it.

• Its interaction with other teaching modes must be

researched.

• Can it be used to trigger creative thinking, while speeding

up tedious processes?

59



LLMs and AI in Education
IT and AI opportunities in education.

• What is the impact of IT and AI in teaching Mathematics?

• What is the impact of LLMs in teaching languages?

• What is the impact of Deep Arts in Arts Schools?

• What is the long-term impact of IT and AI in human

memory?

• Will brain be ‘restructured’ to be, e.g., devoted more to

thinking tasks than to memory?

• Can we observe such findings from historical records?
60



LLMs and AI in Education
UNESCO guidelines [MIA2023].

• Promote inclusion, equity, linguistic and cultural diversity.

• Protect human agency.

• Monitor and validate GenAI systems for education.

• Develop AI competencies including GenAI-related skills for learners.

• Build capacity for teachers and researchers to make proper use of GenAI.

• Promote plural opinions and plural expressions of ideas.

• Test locally relevant application models and build a cumulative evidence base.

• Review long-term implications in intersectoral and interdisciplinary manner.

• Less than 10% of 450 schools/universities had policies on GenAI (2023). 
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LLMs and AI in Education
Restrictive/regulated use of LLMs in education.

• Plagiarism tools to detect LLM-produced documents.

• Extreme caution when examining student projects

• Very effort–intensive on Professors and students.

• Extra caution in distance learning environments.

• Return to old close student-Professor relations.

• Imposition of minimal age to use LLM tools.
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Artificial General Intelligence

Is AGI the next step after LLMs?

• A deeper understanding of LLM operation is needed.

• The exact GPT4 architecture and parameters (transformer 

network weights) are a well-kept corporate secret. 

• A deep LLM functionality understanding would be difficult, 

even if LLMs were open, due to their immense complexity. 

• Neuroscience did not advance enough to understand brain 

and human intelligence.
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Artificial General Intelligence

Is AGI the next step after LLMs?

• Most probably AGI will be VERY different from human 

intelligence.

• Airplanes are different then birds, yet they obey the same laws of Physics.

• The physical substrate of AI and human intelligence is very 

different.

• Robots have very limited but different physical intelligence.

• Things may change by developing biological robots.

• Life evolution by-design than through physical selection.

• Massive human-machine symbiosis at various levels. 
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Artificial General Intelligence

Is AGI the next step after LLMs?

• Will AGI be any different from human intelligence from a 

behavioral point of view that is worth talking about?

• Today too many commoners cannot make the difference.

• The phenomenon is intensified by:

• Lack of proper education.

• Access of machines remotely.

• Unwise claims and behavior of AI agents to the general public, e.g.,:

• AI halucinations being misunderstood as imagination.

• False claims of sentiments (internal affect states) by machines.
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Artificial General Intelligence

Layman’s technophobia

• Fear of the unknown as commoners cannot understand AI.

• Machines appear to be intelligent and possibly better at that 

than the humans themselves.

• They are massively better in certain tasks, e.g., 

computations, memory/retrieval.

• Machines appear to be sentient.

• Humans are awed by ChatGPT ‘intelligence’ much more 

than by other Generative AI methods, e.g., Deep Arts.

• Any technophobia can be socially destructive. 
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Artificial General Intelligence

Scientific technophobia

• Very recent trend: scientists fearing the unknown. 

67
Parable: AI and the tower of Babel.



Artificial General Intelligence

Can AI be stopped or delayed?

• AI is the response of humanity to a global society and 

physical world of ever-increasing complexity. 

• The physical and social complexity increase processes are 

very deep and seeming relentless. 

• AI is a blessing, but it can become a curse.

• Political, ethical, and regulatory concerns cannot and should 

not stop AI research [FUT2023].  

•  Scientific technophobia leads nowhere [NYT2023].
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Artificial General Intelligence

Can AI be stopped or delayed?

• AI research can and should become more open, 

democratic, scientific and ethical.

• Simple AI regulatory examples:

• AI system registry, 

• Clear indication that somebody converses with a machine. 

• AI deployment should be regulated and can be temporarily 

delayed.

• Geopolitical aspects must be dealt by international cooperation.
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Citizen Morphosis

Information and Knowledge Society

• Information society: exponential increase of 

data/information, linear increase of knowledge.

• Knowledge society: exponential increase of knowledge?

• AI, IT and citizen morphosis are our only hope to have a 

smooth transition from the current Information Society to a 

Knowledge Society. 

• Else, humanity may face a catastrophic social implosion, if 

proven unable to advance and pass knowledge to new 

generations (see start of Medieval Times). 
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Citizen Morphosis

Citizen morphosis (rather than education) emphasizes the 

need for conscious citizens:

• with critical thinking, communication precision skills, 

imagination, and emotional intelligence;

• being  able to understand, adapt, and ultimately harness the 

tremendous new technological and economic possibilities 

and employment prospects. 

• Such a level of education is sought after today in many job 

positions internationally.
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Citizen Morphosis

Major overhaul of education at all levels to master 

knowledge development and uptaking needs. 

• The need for such education permeates all levels of 

education and all social strata. 

• A 1/3-2/3 society, where 1/3 of the population understands 

and benefits from scientific progress, while the remaining 

2/3 lags, being impoverished and technophobic, is simply 

not sustainable.

• Need to educate women, minorities and Global South to 

improve the global education level.
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Citizen Morphosis

The basic AI and IT concepts are simple and can be taught 

at all educational levels:

• Data clustering, similarity, classification etc.

• Educational readjustment for their teaching by rearranging 

the curriculum of Mathematics and Informatics. 

• A (partial) mathematization of education is inevitable. 

• It is not certain that it is feasible, given the traditional 

separation of the sciences and the humanities. 
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Citizen Morphosis

• Classical studies are also an ideal tool for developing 

critical thinking and precision.

• They provide a solid basis for Ethics, Legal and Social 

Implications (ELSI) knowledge.
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AI and University Education

Changes will be drastic and will come very soon.

Schools of 'Information Science and Engineering' with 

departments of:

• Computer Science/Informatics,

• Mathematics

• Computer Engineering

• Artificial Intelligence Science and Engineering

• Internet/Web Science.
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AI and University Education

AI Science and Engineering: A new scientific discipline?

• CSE spawning new disciplines through specialization:

• Web science

• Data science

• AI Science and Engineering.

• New scientific methodologies are not necessarily essential.

• Poor terminology?

• Past experience: Physics spawning Engineering disciplines

• Electrical Engineering, Mechanical Engineering.
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AI and University Education

Creation of Departments for ‘Mind and Social Science and 

Engineering' in Schools of Arts and Humanities. 

• Groundbreaking proposal. 

• Departments of Digital Humanities is another good 

solution.

• The exact name or form is not important, as long as it 

serves the transfer of mathematical and programming skills 

to arts and humanities students.
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AI and University Education

• Currently, the Humanities face the greatest pressure from 

LLMs and AI. 

• The mathematization of classical subjects (e.g., Linguistics, 

Sociology) has advanced significantly. 

• Alternative? Creation of departments for 

'Philological/Linguistic Engineering' or 'Social 

Engineering' in Science/Engineering Schools.
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AI and University Education
Creation of departments for 'Bio-Science and Engineering' 

in Schools of Health Sciences, including: 

• Biomedical Engineering, Genetic Engineering and Systems 

Biology.

Mandatory inclusion of Mathematics and Computer 

Science courses in all disciplines without exception. 

• Simply, one (poor) course in Statistics does not meet the 

current needs.

• Mandatory courses on AI Ethics, Legal and Social 

Implications (ELSI) in all ECE, EE, CS and CSE Curricula.

• It is already partly underway. 79



University Education on AI
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Countries that offer AI studies.



University Education on AI
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Global distribution of undergraduate AI studies. Number of undergraduate AI programs worldwide. 



University Education on AI
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Distribution of undergraduate AI programs in Europe.



University Education on AI
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Geographical distribution of AI undergraduate programs in Europe.
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