Dynastic Potential Crossover Operator

Francisco Chicano
 chicano@lcc.uma.es

Joint work with
Gabriela Ochoa, Darrell Whitley and Renato Tinós

Outline

- Gray-Box Optimization
- Variable Interaction Graph (VIG)
- Recombination Operators
- Dynastic Potential Crossover
- Experimental Results
- Conclusions

Gray-Box Optimization

Gray-Box (vs. Black-Box) Optimization

For most of real problems we know (almost) all the details

Gray-Box Structure: MK Landscapes

Variable Interaction Graph

Variable Interaction

- Partial "derivative" (difference) of a pseudo-Boolean function
$\Delta_{i} f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f\left(x_{1}, x_{2}, \ldots, 1_{i}, \ldots, x_{n}\right)-f\left(x_{1}, x_{2}, \ldots, 0_{i}, \ldots, x_{n}\right)$

We say that x_{i} and x_{j} interact when $\Delta_{i} f$ depends on x_{j}

- In terms of Walsh coefficients:
- x_{i} and x_{j} interact if there exist a nonzero Walsh coefficient with index containing both i and j

$$
f=\sum_{a \in \mathbb{B}^{n}} w_{a} \psi_{a} . \quad \text { Walsh expansion }
$$

Variable Interaction Graph

- A graph where the nodes are the variables and there is an edge between two nodes if the variables interact
- Example:

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{2}+x_{2} x_{3}+x_{2} x_{4}+x_{3} x_{4} \\
& \Delta_{1} f(x)=f\left(1, x_{2}, x_{3}, x_{4}\right)-f\left(0, x_{2}, x_{3}, x_{4}\right)=x_{2}
\end{aligned}
$$

Variable Interaction Graph (VIG)

Variable Interaction Graph

We will asume that x_{i} and x_{j} interact when they appear together in the same subfunction*

$$
x_{1}-x_{2}
$$

Variable Interaction Graph (VIG)

Recombination Operators

Recombination Operators (in EAs)

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	\mathbf{x}_{7}	x_{8}	x_{9}	x_{10}
Parent 1	a	b	b	c	d	c	c	a	a	d

Parent 2

a	a	c	c	a	b	c	b	a	d

Child \square
Radcliffe (1994)

Recombination Graph

Let us suppose our function has the following VIG...

Recombination Graph

Let us suppose our function has the following VIG...

Recombination Graph

Let us suppose our function has the following VIG...

Recombination Graph

Let us suppose our function has the following VIG...

Partition Crossover

The recombination graph is a subgraph of VIG containing only the differing variables

Partition Crossover takes all the variables in a component from the same parent
The contribution of each component to the fitness value of the offspring is independent of each other

FOGA 2015: Tinós, Whitley, C.

Partition Crossover

1087 components, the best out of 2^{1087} solutions obtained
 (there are about 2^{366} particles in the universe)

MAX-SAT instance atco_enc3_opt1_13_48 (SAT competition 2014)

> EvoCOP 2017: Chen and Whitley

Articulation Points Partition Crossover

Articulation Points Partition Crossover (APX) identifies articulation points in the recombination graph

It implicitly considers all the solutions PX would consider if one or none articulation point is removed from each connected component

GECCO 2018: C., Ochoa, Whitley, Tinós

Dynastic Potential Crossover

(DPX)

Dynastic Potential

Set of solutions that can be generated by a stochastic recombination operator

If $h(x, y)$ is the Hamming distance between solutions x and $y \ldots$
Single point crossover DP size: $2 h(x, y)$
z-point crossover DP size: $\mathrm{O}\left(h(x, y)^{z}\right)$ for $z \ll n$
Uniform crossover DP size: $2^{h(x, y)}$

Largest DP size for a recombination operator with the gene transmission property:
$2 h(x, y)$

Optimal Recombination Operator

Produces the best solution in the largest dynastic potential...

Eremeev, Kovalenko (2013)

...exploring the "hyperplane" defined by the common variables ($2^{h(x, y)}$ solutions)

It requires time $\mathbf{O}\left(\mathbf{2}^{\mathbf{n}}\right)$ in a black-box setting

It can be done in $O\left(4^{\beta}(n+m)+n^{2}\right)$ time in a gray-box setting for low-epistasis functions using DPX

Dynastic Potential Crossover

We compute the optimum using dynamic programming by eliminating the variables

Dynastic Potential Crossover

We compute the optimum using dynamic programming by
eliminating the variables

Dynastic Potential Crossover

We compute the optimum using dynamic programming by
eliminating the variables

Dynastic Potential Crossover

We compute the optimum using dynamic programming by
eliminating the variables

Dynastic Potential Crossover

We compute the optimum using dynamic programming by eliminating the variables

Dynastic Potential Crossover

We compute the optimum using dynamic programming by
eliminating the variables

Dynastic Potential Crossover

We compute the optimum using dynamic programming by
eliminating the variables

Dynastic Potential Crossover

We compute the optimum using dynamic programming by eliminating the variables

Dynastic Potential Crossover

We compute the optimum using dynamic programming by eliminating the variables

Dynastic Potential Crossover

When one variable remains we take its best value and reconstruct the solution (optimal child)

Dynastic Potential Crossover

In general, we have to build a clique tree (junction tree)

Tarjan, Yannakakis (1984)
Galinier, Habib, Paul (1995)

Algorithm 1 Pseudocode of DPX
Input: two parents x and y
Output: one offspring z
1: Compute the Recombination Graph of x and y as in [6]
2: Apply Maximum Cardinality Search to the Recombination Graph [12]
3: Apply the fill-in procedure to make the graph chordal [12]
4: Apply the Clique Tree construction procedure [13]
5: Assign subfunctions to cliques in the clique tree
6: Apply Dynamic Programming to find the offspring (see Algorithm 2)
7: Build z using the tables filled by Dynamic Programming
EvoCOP 2019: C., Ochoa, Whitley, Tinós

Dynastic Potential Crossover

Recombination graph

Clique tree

$$
\begin{gathered}
\begin{array}{l}
\begin{array}{l}
C_{1}=\{7,12,13,15\} \\
S_{1}=\emptyset \\
R_{1}=\{7,12,13,15\}
\end{array} \\
\qquad \begin{array}{l}
C_{2}=\{3,7,13\} \\
S_{2}=\{7,13\} \\
R_{2}=\{3\}
\end{array} \\
\qquad \begin{array}{l}
C_{3}=\{3,8\} \\
S_{3}=\{3\} \\
R_{3}=\{8\}
\end{array} \\
\hline
\end{array}
\end{gathered}
$$

Dynastic Potential Crossover

What if we have too many variables to enumerate?

We put a limit β on the number fo variables that are fully enumerated

The remaining ones are taken in block from the parents

This makes the operator is Quasi-Optimal...
...and makes the time complextiy to be:

$$
O\left(4^{\beta}(n+m)+n^{2}\right)
$$

Experimental Results

Problems and Instances

An NK Landscape is a pseudo-Boolean optimization problem with objective function:

$$
f(x)=\sum_{l=1}^{N} f^{(l)}(x)
$$

where each subfunction $f^{\prime \prime}$) depends on variable x_{l} and K other variables

MAX-SAT consists in finding an assignment of variables to Boolean (true and false) values such that the maximum number of clauses is satisfied

A clause is an OR of literals: $x_{1} \vee \neg x_{2} \vee x_{3}$

DPX Statistics with NKQ Landscapes

Table 1: Average runtime of crossover operators for random NKQ Landscapes with $n=10000$ variables. Time is in microseconds ($\mu \mathrm{s}$) for UX and in milliseconds (ms) for the rest. The Hamming distance between parents, h, is expressed in percentage of variables.

$h$$\%$	$\begin{gathered} \mathrm{UX} \\ \mu \mathrm{~s} \end{gathered}$	$\begin{gathered} \mathrm{NX} \\ \mathrm{~ms} \end{gathered}$	$\begin{aligned} & \mathrm{PX} \\ & \mathrm{~ms} \end{aligned}$	$\begin{gathered} \text { APX } \\ \mathrm{ms} \end{gathered}$	DPX (ms)					
					$\beta=0$	$\beta=1$	$\beta=2$	$\beta=3$	$\beta=4$	$\beta=5$
$K=2$										
1	73	1.2	0.5	1.0	0.8	0.9	0.8	0.8	0.8	0.9
2	95	2.3	0.9	2.5	2.1	2.3	2.4	2.0	2.1	1.9
4	93	2.3	1.4	4.5	2.9	2.8	2.9	2.5	2.5	2.4
8	120	2.3	2.2	7.2	6.3	6.9	6.3	5.8	5.8	5.7
16	113	1.2	2.8	7.1	5.5	5.9	5.8	5.8	5.4	5.3
32	154	1.7	9.3	12.7	22.1	22.8	23.5	23.3	24.6	23.3
$K=5$										
1	68	3.2	0.9	2.6	1.4	1.5	1.5	1.4	1.4	1.3
2	82	3.7	1.8	5.2	2.1	2.3	2.3	2.1	2.2	2.0
4	85	4.2	3.5	8.7	3.6	3.9	3.8	3.9	4.0	4.1
8	119	4.3	5.4	13.3	8.0	8.1	8.2	9.5	10.9	9.9
16	113	3.0	4.1	12.8	90.7	83.0	103.0	92.2	101.3	107.5
32	139	3.7	5.8	19.4	1000.5	1034.0	1041.1	1020.3	1089.9	1021.7

DPX Statistics with NKQ Landscapes

Table 2: Average quality improvement ratio of crossover operators for random NKQ Landscapes with $n=10000$ variables. The numbers are in parts per thousand (\%o). The Hamming distance between parents, h, is expressed in percentage of variables.
$Q I R_{f}(x, y, z)=\frac{f(z)-\max \{f(x), f(y)\}}{\max \{f(x), f(y)\}}$

h	UX	NX	PX	APX	DPX (\%)					
\%	\%	\%o	\%	\%	$\beta=0$	$\beta=1$	$\beta=2$	$\beta=3$	$\beta=4$	$\beta=5$
$K=2$										
1	-0.58	-0.55	4.92	4.93	4.92	5.04	5.04	5.04	5.04	5.04
2	-0.79	-0.81	9.89	9.99	9.95	10.38	10.39	10.39	10.39	10.39
4	-1.13	-1.11	19.28	19.96	19.70	21.21	21.23	21.23	21.23	21.23
8	-1.56	-1.54	35.04	39.19	38.15	42.80	42.92	42.92	42.92	42.92
16	-2.08	-2.07	53.43	70.87	75.03	85.72	86.21	86.21	86.21	86.21
32	-2.72	-2.71	34.41	42.09	108.86	123.98	134.38	137.29	138.78	139.76
$K=5$										
1	-0.79	-0.78	6.38	6.72	6.61	7.18	7.18	7.18	7.18	7.18
2	-1.10	-1.10	11.46	13.40	13.17	14.77	14.81	14.81	14.81	14.81
4	-1.53	-1.56	15.06	20.38	26.44	29.58	30.06	30.14	30.16	30.17
8	-2.07	-2.06	8.07	9.56	31.18	34.54	39.26	41.02	41.98	42.67
16	-2.68	-2.66	2.19	2.90	30.14	31.61	37.08	41.51	43.48	44.83
32	-3.15	-3.13	0.28	0.77	32.42	32.82	34.18	36.64	40.31	44.05

DPX Statistics with NKQ Landscapes

Table 3: Average logarithm in base 2 of the solutions explored by PX, APX and DPX for random NKQ Landscapes with $n=10000$ variables. The Hamming distance between parents, h, is expressed in percentage of variables.

h	PX	APX	$\mathrm{DPX}\left(\log _{2}\right)$									
$\%$	$\log _{2}$	$\log _{2}$	$\beta=0$	$\beta=1$	$\beta=2$	$\beta=3$	$\beta=4$	$\beta=5$				
$K=2$												
1	97.1	97.3	97.2	100.0	100.0	100.0	100.0	100.0				
2	188.1	190.3	189.3	199.9	200.0	200.0	200.0	200.0				
4	352.9	368.1	362.0	399.5	400.0	400.0	400.0	400.0				
8	613.5	703.3	679.7	796.8	800.0	800.0	800.0	800.0				
16	873.6	1220.6	1311.2	1586.5	1600.0	1600.0	1600.0	1600.0				
32	660.7	828.3	2055.6	2399.2	2586.9	2636.5	2661.3	2677.4				
			$K=5$									
1	85.4	91.1	89.1	99.9	100.0	100.0	100.0	100.0				
2	142.0	172.4	168.5	199.2	200.0	Full dynastic potential (21600)						
4	175.4	246.1	332.2	390.6	398.2		explored in 5.3 ms					
8	113.2	132.7	420.5	470.8	530.8		627.7	645.3				
16	38.9	47.6	449.0	469.0	542.8	601.9	620.3					
32	7.5	13.7	534.0	539.3	559.3	595.7	649.7	703.5				

Experiments in Search Algorithms

Two Algorithms were used:
Steady-state Evolutionary Algorithm (population-based metaheuristic)
DRILS (trajectory-based metaheuristic)

The parameters of the algorithms were tuned using irace for each class of instances
NKQ Landscapes with $\mathrm{K}=2$ and $\mathrm{K}=5$
MAX-SAT (industrial and crafted) instances from MAX-SAT Evaluation 2017

- 160 unweighted
- 132 weighted

Deterministic Recombination and Iterated Local Search (DRILS)

Hill Climber

Included in DRILS and EA in NKQ Landscapes

Table 8: Performance of the five recombination operators used in DRILS and EA when solving NKQ Landscapes instances with $n=10000$ variables. The symbols $\boldsymbol{\Delta}, \nabla$ and $=$ are used to indicate that the use of the crossover operator in the row yields statistically better, worse or similar results than the use of DPX in each algorithm.

	$K=2$		$K=5$	
	Statistical difference	Quality	Statistical difference	Quality
DRILS				
DPX		0.9997		0.9972
APX	04 $8 \nabla 2=$	0.9995	04 $7 \nabla 3=$	0.9947
PX	0ム $10 \nabla 0=$	0.9990	0 ^ $7 \nabla 3=$	0.9949
NX	0 ¢ $10 \nabla 0=$	0.9786	0 வ $10 \nabla 0=$	0.9934
UX	0 $10 \nabla 0=$	0.9790	0 வ $10 \nabla 0=$	0.9935
EA				
DPX		0.9795		0.8132
APX	04 $10 \nabla 0=$	0.9568	14 $0 \nabla 9=$	0.8890
PX	0 ¢ $10 \nabla 0=$	0.9445	10ム $0 \nabla 0=$	0.9085
NX	0 ¢ $10 \nabla 0=$	0.8803	0 ¢ $1 \nabla 9=$	0.7811
ux	0 ¢ $10 \nabla 0=$	0.9313	0 ¢ $1 \nabla 9=$	0.8407

Included in DRILS and EA in MAX－SAT

Table 9：Performance of the five recombination operators used in DRILS and EA when solving MAX－SAT instances．The symbols $\boldsymbol{\Delta}, \nabla$ and $=$ are used to indicate that the use of the crossover operator in the row yields statistically better，worse or similar results than the use of DPX．

	Unweighted		Weighted	
	Statistical difference	Quality	Statistical difference	Quality
DRILS				
DPX		0.9984		0.9996
APX	14』 $91 \nabla 57=$	0.9973	15ム $86 \nabla 31=$	0.9984
PX	8 ¢ $103 \nabla 55=$	0.9968	25ム $80 \nabla 27=$	0.9982
nX	24 $126 \nabla 28=$	0.9946	1＾126 $\nabla^{5} 5=$	0.9915
UX	0＾124จ40 $=$	0.9953	1＾126\％ $5=$	0.9930
EA				
DPX		0.9644		0.9583
APX	52 ＾ $68 \nabla 40=$	0.9604	43 】 $63 \nabla 26=$	0.9649
PX	$17 \pm 107 \nabla 36=$	0.9095	8 （109 $\nabla^{15}=$	0.9057
NX	18 \ $101 \nabla 41=$	0.8980	$18 \pm 103 \nabla 11=$	0.8786
UX	27 ＾ $96 \nabla 37=$	0.9134	18ム $99 \nabla 15=$	0.8989

Source Code in GitHub

https://github.com/jfrchicanog/EfficientHillClimbers

Conclusions

- DPX is a very effective crossover operator
- Main drawback: runtime and memory consumption
- "Removing randomness" from metaheuristic algorithms (D. Whitley)
- Take home message: use Gray-Box Optimization if you can

Future Work

- Explore the shape of the connected components in the recombination graph and their relationship with performance
- Find the optimal value of the parameters using the VIG

References (I)

- Chen, W., Whitley, D., 2017. Decomposing SAT Instances with Pseudo Backbones. EvoCOP: 75-90
- Chicano, F., Ochoa, G., Whitley, D., Tinós, R., 2018. Enhancing partition crossover with articulation points analysis. GECCO: 269-276
- Chicano, F., Ochoa, G., Whitley, D., Tinós, R., 2019. Quasi-Optimal Recombination Operator. EvoCOP: 131-146
- Eremeev, A. V., Kovalenko, Y. V., 2013. Optimal Recombination in Genetic Algorithms. CoRR abs/1307.5519
- Galinier, P., Habib, M., Paul, C., 1995. Chordal graphs and their clique graphs. In GraphTheoretic Concepts in Computer Sciences: 358-371
- Hammer, P. L., Rosenberg, I., Rudeanu, S., 1963. On the determination of the minima of pseudo-boolean functions. Stud. Cerc. Mat. 14:359-364
- Radcliffe, N. J., 1994. The algebra of genetic algorithms. Annals of Mathematics and Artificial Intelligence 10(4): 339-384

References (II)

- Tinós, R., Whitley, D., Chicano, F., 2015. Partition Crossover for Pseudo-Boolean Optimization. FOGA: 137-149
- Tarjan, R. E., Yannakakis, M., 1984. Simple linear-time algorithms to test chordality of graphs, test acyclicity and hypergraphs, and selectively reduce acylic hypergraphs. SIAM Journal on Computing 13(3): 566-579

Acknowledgements

GOBIERNO DE ESPANA

MINISTERIO DE ECONOMIA Y COMPETITIVIDAD

UNIVERSIDAD DE MÁLAGA

Andalucia Tech
Campus de Excelencia Internacional

Thanks for your attention!!!

