
Dynastic Potential
Crossover Operator

Francisco Chicano
chicano@lcc.uma.es

Joint work with
Gabriela Ochoa, Darrell Whitley and Renato Tinós

2. ELEMENTOS DE LA IDENTIDAD

2.2. Versiones de la marca Universidad de Málaga

Esta actualización del manual recoge el uso horizontal de la marca UNIVERSIDAD
DE MÁLAGA tal y como se muestra en la imagen. También se ha corregido el uso
negativo del escudo. En esta versión se respeta el original diseño de la imagen de
“La Paloma”.

VERSIÓN HORIZONTAL EN POSITIVO VERSIÓN VERTICAL EN POSITIVO

VERSIÓN HORIZONTAL EN NEGATIVO VERSIÓN VERTICAL EN NEGATIVO

5

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 2

• Gray-Box Optimization

• Variable Interaction Graph (VIG)

• Recombination Operators

• Dynastic Potential Crossover

• Experimental Results

• Conclusions

Outline

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 4

Gray-Box (vs. Black-Box) Optimization

x f(x)

x f(x) For most of real problems we
know (almost) all the details

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 5

Gray-Box Structure: MK Landscapes

Example (k=2):

f = + + + f(1)(x) f(2)(x) f(3)(x) f(4)(x)

x1 x2 x3 x4

derivative, they reduce the time needed to identify improv-
ing moves from O(k22k) to O(k3). In addition, the new
approach avoids the use of the Walsh transform, making the
approach conceptually simpler.

In this paper, we generalize this result to present a local
search algorithm that can look r moves ahead and iden-
tify all improving moves. This means that moves are being
identified in a neighborhood containing all solutions that lie
within a Hamming ball of radius r around the current so-
lution. We assume that r = O(1). If r ⌧ n, the number
of solutions in such a neighborhood is ⇥(nr). New improv-
ing moves located up to r moves away can be identified in
constant time. The memory required by our approach is
O(n). To achieve O(1) time per move, the number of sub-
functions in which any variable appears must be bounded by
some constant c. We then prove that the resulting algorithm
requires O((3kc)rn) space to track potential moves.

In order to evaluate our approach we perform an experi-
mental study based on NKq-landscapes. The results reveal
not only that the time required by the next ascent is inde-
pendent of n, but also that increasing r we obtain a signifi-
cant gain in the quality of the solutions found.

The rest of the paper is organized as follows. In the next
section we introduce the pseudo-Boolean optimization prob-
lems. Section 3 defines the“Scores”of a solution and provide
an algorithm to e�ciently update them during a local search
algorithm. We propose in Section 4 a next ascent hill climber
with the ability to identify improving moves in a ball of ra-
dius r in constant time. Section 5 empirically analyzes this
hill climber using NKq-landscapes instances and Section 6
outlines some conclusions and future work.

2. PSEUDO-BOOLEAN OPTIMIZATION
Our method for identifying improving moves in the radius

r Hamming ball can be applied to all k-bounded pseudo-
Boolean Optimization problems. This makes our method
quite general: every compressible pseudo-Boolean Optimiza-
tion problem can be transformed into a quadratic pseudo-
Boolean Optimization problem with k = 2.

The family of k-bounded pseudo-Boolean Optimization
problems have also been described as an embedded landscape.
An embedded landscape [3] with bounded epistasis k is de-
fined as a function f(x) that can be written as the sum
of m subfunctions, each one depending at most on k input
variables. That is:

f(x) =
mX

i=1

f
(i)(x), (1)

where the subfunctions f
(i) depend only on k components

of x. Embedded Landscapes generalize NK-landscapes and
the MAX-kSAT problem. We will consider in this paper that
the number of subfunctions is linear in n, that is m 2 O(n).
For NK-landscapes m = n and is a common assumption in
MAX-kSAT that m 2 O(n).

3. SCORES IN THE HAMMING BALL
For v, x 2 Bn, and a pseudo-Boolean function f : Bn ! R,

we denote the Score of x with respect to move v as Sv(x),
defined as follows:1

Sv(x) = f(x� v)� f(x), (2)
1We omit the function f in Sv(x) to simplify the notation.

where � denotes the exclusive OR bitwise operation. The
Score Sv(x) is the change in the objective function when we
move from solution x to solution x� v, that is obtained by
flipping in x all the bits that are 1 in v.
All possible Scores for strings v with |v|  r must be

stored as a vector. The Score vector is updated as local
search moves from one solution to another. This makes it
possible to know where the improving moves are in a ball of
radius r around the current solution. For next ascent, all of
the improving moves can be bu↵ered. An approximate form
of steepest ascent local search can be implemented using
multiple bu↵ers [9].
If we naively use equation (2) to explicitly update this

Score vector, we will have to evaluate all
Pr

i=0

�
n
i

�
neigh-

bors in the Hamming ball. Instead, if the objective function
satisfies some requirements described below, we can design
an e�cient next ascent hill climber for the radius r neigh-
borhood that only stores a linear number of Score values and
requires a constant time to update them. We next explain
the theoretical foundations of this next ascent hill climber.
The first requirement for the objective function is that it

must be written such that each subfunction depends only on
k Boolean variables of x (k-bounded epistasis). In this case,
we can write the scoring function Sv(x) as an embedded
landscape:

Sv(x) =
mX

l=1

⇣
f
(l)(x� v)� f

(l)(x)
⌘
=

mX

l=1

S
(l)
v (x), (3)

where we use S
(l)
v to represent the scoring functions of the

subfunctions f (l). Let us define wl 2 Bn as the binary string
such that the i-th element of wl is 1 if and only if f (l) depends
on variable xi. The vector wl can be considered as a mask
that characterizes the variables that a↵ect f

(l). Since f
(l)

has bounded epistasis k, the number of ones in wl, denoted
with |wl|, is at most k. By the definition of wl, the next
equalities immediately follow.

f
(l)(x� v) = f

(l)(x) for all v 2 Bn with v ^ wl = 0, (4)

S
(l)
v (x) =

⇢
0 if wl ^ v = 0,

S
(l)
v^wl

(x) otherwise.
(5)

Equation (5) claims that if none of the variables that
change in the move characterized by v is an argument of
f
(l) the Score of this subfunction is zero, since the value of

this subfunction will not change from f
(l)(x) to f

(l)(x� v).
On the other hand, if f (l) depends on variables that change,
we only need to consider for the evaluation of S

(l)
v (x) the

changed variables that a↵ect f (l). These variables are char-
acterized by the mask vector v ^ wl. With the help of (5)
we can write (3) as:

Sv(x) =
mX

l=1
wl^v 6=0

S
(l)
v^wl

(x), (6)

3.1 Scores Decomposition
The Score values in a ball of radius r give more informa-

tion than just the change in the objective function for moves
in that ball. Let us illustrate this idea with the moves in the
balls of radius r = 1 and r = 2. Let us assume that xi and
xj are two variables that do not appear together as argu-
ments of any subfunction f

(l). Then, the Score of the move

Each subfunction is unknown
and depends on k variables

All compresible pseudo-Boolean
functions can be transformed into

this in polynomial time

We focus on

binary
varia

bles

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 7

• Partial “derivative” (difference) of a pseudo-Boolean function

• In terms of Walsh coefficients:

• xi and xj interact if there exist a nonzero Walsh coefficient with index containing both i and j

�if(x1, x2, . . . , xn) = f(x1, x2, . . . , 1i, . . . , xn)� f(x1, x2, . . . , 0i, . . . , xn)

1

We say that xi and xj interact when ∆i f depends on xj

5.3. PARTIAL DERIVATIVES OF WALSH EXPANSION 19

Equation (5.5) can be generalized as follows:

Bdf “ d�df, (5.13)

where d P Bn. Taking into account that 1{ d “ d, we can also write �df “ dBdf . Thus, in the
following we will use partial derivatives or di↵erences as appropriate to simplify the results. We can
always relate them using (5.13).

Let us know write an explicit expression for the di↵erence operator �d. We have seen that the first
and second di↵erence operator applied to f are:

�ifpzq “ fpz ‘ iq ´ fpzq, (5.14)

�i,jfpzq “ fpz ‘ i, jq ´ fpz ‘ iq ´ fpz ‘ jq ` fpzq. (5.15)

It can be proved by induction that this generalizes to:

�dfpzq “ p´1q
|d| ÿ

wPBn^d

p´1q
|w|fpz ‘ wq. (5.16)

5.3 Partial Derivatives of Walsh Expansion

Let us start this section by computing the di↵erence operator for any arbitrary Walsh function a.
We have:

�d apzq “ p´1q
|d| ÿ

wPBn^d

p´1q
|w| apz ‘ wq “ p´1q

|d| ÿ

wPBn^d

p´1q
|w| apzq apwq

“ apzq

˜
p´1q

|d| ÿ

wPBn^d

p´1q
|w| apwq

¸
“ apzq

˜
p´1q

|d| ÿ

wPBn^d

 wp1q apwq

¸

“ apzq

˜
p´1q

|d| ÿ

wPBn^d

 apwq

¸
“ apzq

´
p´1q

|d|2|d|�|a^d|
0

¯
“ p´2q

|d|�|a^d|
0 apzq, (5.17)

where we used the Kronecker delta, which should not be confused with the di↵erence operator.
Any pseudo-Boolean function can be written as a weighted sum of Walsh functions (the Walsh

expansion):

f “

ÿ

aPBn

wa a. (5.18)

Using this result we can interpret the di↵erence operator (and the partial derivative) as a filtering
of Walsh terms in the Walsh expansion:

�df “ �d
ÿ

aPBn

wa a “

ÿ

aPBn

wa�d a “ p´2q
|d| ÿ

aPBn

wa�
|a^d|
0 a “ p´2q

|d| ÿ

aPBn
dÑa

wa a,

where the logical expression d Ñ a is true when ai “ 1 for all the positions i in which di “ 1.
One direct consequence of the previous expression is that applying di↵erence operator �d (or partial

derivative Bd) to f removes all the Walsh terms with order lower than |d|. This means that in a pseudo-
Boolean function with epistasis bounded by k all the partial derivatives (an di↵erences) of order larger
than k are zero.

5.4 Zeta and Möbius Transforms

Let us suppose that f is a real-valued function defined over subsets of a superset U , that is: f : 2U Ñ R.
Then, the zeta transform of f , denoted by f⇣ is defined as:

f⇣pY q “

ÿ

XÑY

fpXq. (5.19)

Walsh expansion

Variable Interaction

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 8

• A graph where the nodes are the variables and there is an edge between two nodes if the variables
interact

• Example:

x4 x3

x1 x2

Variable Interaction Graph (VIG)

�if(x1, x2, . . . , xn) = f(x1, x2, . . . , 1i, . . . , xn)� f(x1, x2, . . . , 0i, . . . , xn)

f(x1, x2, x3, x4) = x1x2 + x2x3 + x2x4 + x3x4

1

Variable Interaction Graph

∆1f(x) = f(1,x2,x3,x4) - f(0,x2,x3,x4) = x2

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 9

Variable Interaction Graph

f = + + + f(1)(x) f(2)(x) f(3)(x) f(4)(x)

x1 x2 x3 x4

We will asume that xi and xj interact when they appear together in the
same subfunction*

If xi and xj don’t interact: ∆ij = ∆i + ∆j

x4 x3

x1 x2

Variable Interaction Graph (VIG)

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 11

Recombination Operators (in EAs)

a b b c d c c a a d

a a c c a b c b a d

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Parent 1

Parent 2

a b c c d b c b a dChild

Gene Transmission → Respect Property

Radcliffe (1994)

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 12

Let us suppose our function has the following VIG…
�if(x1, x2, . . . , xn) = f(x1, x2, . . . , 1i, . . . , xn)� f(x1, x2, . . . , 0i, . . . , xn)

f(x1, x2, x3, x4) = x1x2 + x2x3 + x2x4 + x3x4

x9

x20

x23

x22

x21

x8

x10

x1 x2

x3

x4

x5

x6
x7

x15

x14

x13

x12

x11

x16

x19

x18

x17

1

Recombination Graph

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 13

Let us suppose our function has the following VIG…
�if(x1, x2, . . . , xn) = f(x1, x2, . . . , 1i, . . . , xn)� f(x1, x2, . . . , 0i, . . . , xn)

f(x1, x2, x3, x4) = x1x2 + x2x3 + x2x4 + x3x4

x9

x20

x23

x22

x21

x8

x10

x1 x2

x3

x4

x5

x6
x7

x15

x14

x13

x12

x11

x16

x19

x18

x17

1

a
c

b a
c

ab

a
b

c

b

d
a

a

a
b

d
b c

a

b

a
d

Recombination Graph

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 14

Let us suppose our function has the following VIG…
�if(x1, x2, . . . , xn) = f(x1, x2, . . . , 1i, . . . , xn)� f(x1, x2, . . . , 0i, . . . , xn)

f(x1, x2, x3, x4) = x1x2 + x2x3 + x2x4 + x3x4

x9

x20

x23

x22

x21

x8

x10

x1 x2

x3

x4

x5

x6
x7

x15

x14

x13

x12

x11

x16

x19

x18

x17

1

a
c

c
a

c

ab

a
b

d

c

d
a

a

c

b d
b c

b
b

b

d

a
c

b a
c

ab

a
b

c

b

d
a

a

a
b

d
b c

a

b

a
d

Recombination Graph

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 15

Let us suppose our function has the following VIG…
�if(x1, x2, . . . , xn) = f(x1, x2, . . . , 1i, . . . , xn)� f(x1, x2, . . . , 0i, . . . , xn)

f(x1, x2, x3, x4) = x1x2 + x2x3 + x2x4 + x3x4

x9

x20

x23

x22

x21

x8

x10

x1 x2

x3

x4

x5

x6
x7

x15

x14

x13

x12

x11

x16

x19

x18

x17

1

a
c

c
a

c

ab

a
b

d

c

d
a

a

c

b d
b c

b
b

b

d

a
c

b a
c

ab

a
b

c

b

d
a

a

a
b

d
b c

a

b

a
d

Recombination Graph

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 16

The recombination graph is a subgraph of VIG containing only the differing variables

Partition Crossover takes all the variables in a component from the same parent
The contribution of each component to the fitness value of the offspring is
independent of each other

x23
x18

x9

x3

x5

x16

FOGA 2015: Tinós, Whitley, C.

Partition Crossover

PX: If there are q
components, the best

offspring out of 2q

solutions is obtained

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 17

45-character paper description goes here

61

Tunneling Local Optima Networks

Multimodal problems are not always di�cult
NK Landscapes: Ochoa et al. GECCO 2015

Adjacent (easy) NK Landscapes have more optima.
But Random (hard) NK Landscapes have disjunct “funnels.”

62

NK and Mk Landscapes, P and NP

63

NK and Mk Landscapes, P and NP

64

Decomposed Evaluation for MAXSAT

N= 1,067,657

1054

Figure 3: Variable interaction graph (left) and recombination graph (right) of instance
atco enc3 opt1 13 48 (1 067 657 variables) from the SAT Competition 2014. The recom-
bination graph contains 1087 connected components.

where g(x0) = f |h(x0) and x
0 are solutions restricted to a subspace of the hyperplane

h that contains the parent strings as well as the full dynastic potential. The constant
a = f(x0)�

P3
i=1 gi(x

0) depends on the common variables.
The Partition Crossover operator (PX), defined by Tinós et al. (2015) is based on

this recombination graph. Every recombination graph with q connected components
induces a new separable function g(x0) that is defined as:

g(x0) = a+
qX

i=1

gi(x
0). (2)

Partition Crossover selects the decision variables from one or another parent yielding
the best partial evaluation for each subfunction gi(x0). All of the variables in the same
recombining component in the recombination graph must be inherited together from
one of the two parents.

Articulation Points Partition Crossover (APX) (Chicano et al., 2018) goes further
and finds the articulation points of the recombination graphs. Articulation points are
variables whose removal increases the number of connected components. Variables x1,
x2 and x3 are articulation points in our example (see Figure 2). Then, APX efficiently
simulates what happens when the articulation points are removed, one at a time, from
the recombination graph by flipping the articulation point in any of the parent solutions
before applying PX, and the best solution is returned as offspring. With the appropriate
data structures, this can be done in O(n2 +m), the same complexity of PX.

3 Dynastic Potential Exploration

The proposed Dynastic Potential Crossover Operator (DPX) takes the ideas of PX and
APX even further. DPX starts from the recombination graph, like the one in Figure 2,
and tries to exhaustively explore all the possible combinations of the parent values in
the variables of each connected component to find the optimal recombination regarding
the hyperplane h defined by the blue and red parents. This exploration is not done by
brute force, but using dynamic programming. Following with our example, in order to
compute the best combination for the variables x9, x11 and x16, we need to enumerate
the 8 ways of taking each variable from each parent, and this is not better than brute
force. However, the component containing variables x0, x1, x2 and x5 forms a thread.

Evolutionary Computation Volume x, Number x 5

MAX-SAT instance atco_enc3_opt1_13_48 (SAT competition 2014)

EvoCOP 2017: Chen and Whitley

Partition Crossover 1087 components, the best
out of 21087 solutions obtained

(there are about 2366 particles
in the universe)

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 18

x23
x18

x9

x3

x5

x16

x1

Articulation Points Partition Crossover (APX) identifies articulation points in the
recombination graph

It implicitly considers all the solutions PX would consider if one or none articulation
point is removed from each connected component

APX will consider 2 and 3
components and will provide

the best of 32 solutions

APX can break one connected
component by flipping

variables in one of the parents

Articulation Points Partition Crossover

GECCO 2018: C., Ochoa, Whitley, Tinós

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 20

Dynastic Potential

Set of solutions that can be generated by a stochastic recombination operator

If h(x,y) is the Hamming distance between solutions x and y…

Single point crossover DP size: 2 h(x,y)

z-point crossover DP size: O(h(x,y)z) for z << n

Uniform crossover DP size: 2h(x,y)

Largest DP size for a recombination operator with the gene transmission
property:

2h(x,y)

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 21

Optimal Recombination Operator

Produces the best solution in the largest dynastic potential…

…exploring the “hyperplane” defined by the common variables (2h(x,y) solutions)

Eremeev,
Kovalenko
(2013)

x f(x)

x f(x)

It requires time O(2n) in a black-box setting

It can be done in time
in a gray-box setting for low-epistasis
functions using DPX

Quasi-Optimal Recombination Operator

Francisco Chicano1[0000�0003�1259�2990], Gabriela Ochoa2[0000�0001�7649�5669],
Darrell Whitley3, and Renato Tinós4[0000�0003�4027�8851]

1 University of Malaga, Spain ?

chicano@lcc.uma.es
2 University of Stirling, UK

gabriela.ochoa@cs.stir.ac.uk
3 Colorado State University, USA

whitley@cs.colostate.edu
4 University of Sao Paulo, Brazil

rtinos@ffclrp.usp.br

Abstract. The output of an optimal recombination operator for two
parent solutions is a solution with the best possible value for the ob-
jective function among all the solutions fulfilling the gene transmission
property: the value of any variable in the o↵spring must be inherited
from one of the parents. This set of solutions coincides with the largest
dynastic potential for the two parent solutions of any recombination op-
erator with the gene transmission property. In general, exploring the full
dynastic potential is computationally costly, but if the variables of the
objective function have a low number of non-linear interactions among
them, the exploration can be done in O(4�(n+m) + n

2) time, for prob-
lems with n variables, m subfunctions and � a constant. In this paper,
we propose a quasi-optimal recombination operator, called Dynastic Po-
tential Crossover (DPX), that runs in O(4�(n + m) + n

2) time in any
case and is able to explore the full dynastic potential for low-epistasis
combinatorial problems. We compare this operator, both theoretically
and experimentally, with two recently defined e�cient recombination
operators: Partition Crossover (PX) and Articulation Points Partition
Crossover (APX). The empirical comparison uses NKQ Landscapes and
MAX-SAT instances.

Keywords: Recombination operator, dynastic potential, gray box op-
timization.

1 Introduction

Many binary recombination operators for genetic algorithms have the property
of gene transmission [1]. When the solutions are represented by a set of vari-
ables taking values from a set (possibly di↵erent for each of them) with no
other constraint among the variables, this property implies that any variable

? This research is funded by the Spanish Ministry of Economy and Competitiveness
and FEDER under contract TIN2017-88213-R, and the University of Malaga.

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 22

Dynastic Potential Crossover

x23 x9

x3

x5

x1

We compute the optimum using dynamic programming by
eliminating the variables

Hammer, Rosenberg, Rudeanu (1963)

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 23

x23 x9

x3

x5

x1 x3 value x5
c

d

We compute the optimum using dynamic programming by
eliminating the variables

Dynastic Potential Crossover

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 24

x23 x9

x3

x5

x1 x3 value x5
c

d

x5 value

b 3

c 5

We compute the optimum using dynamic programming by
eliminating the variables

Dynastic Potential Crossover

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 25

x23 x9

x3

x5

x1 x3 value x5
c 5 c

d

x5 value

b 3

c 5

We compute the optimum using dynamic programming by
eliminating the variables

Dynastic Potential Crossover

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 26

x23 x9

x3

x5

x1 x3 value x5
c 5 c

d 6 b

We compute the optimum using dynamic programming by
eliminating the variables

Dynastic Potential Crossover

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 27

x23 x9

x3

x1 x3 value x5
c 5 c

d 6 b

We compute the optimum using dynamic programming by
eliminating the variables

We add this subfunction

Dynastic Potential Crossover

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 28

x23 x9

x1 x3 value x5
c 5 c

d 6 b

We compute the optimum using dynamic programming by
eliminating the variables

x1 value x3
b 11 c

d 10 d

Dynastic Potential Crossover

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 29

x23 x9

x3 value x5
c 5 c

d 6 b

We compute the optimum using dynamic programming by
eliminating the variables

x1 value x3
b 11 c

d 10 d

x9 value x1
b 20 d

c 15 c

Dynastic Potential Crossover

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 30

x23

x3 value x5
c 5 c

d 6 b

We compute the optimum using dynamic programming by
eliminating the variables

x1 value x3
b 11 c

d 10 d

x9 value x1
b 20 d

c 15 c

x23 value x9
a 22 c

c 18 b

Dynastic Potential Crossover

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 31

x23

x3 value x5
c 5 c

d 6 b

When one variable remains we take its best value and
reconstruct the solution (optimal child)

x1 value x3
b 11 c

d 10 d

x9 value x1
b 20 d

c 15 d

x23 value x9
a 22 c

c 18 b

x23 x9 x1 x3 x5
a c d d b

Dynastic Potential Crossover

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 32

unnumbered node with a higher number of numbered neighbors and solving the
ties arbitrarily. Figure 3 (left) shows the result of applying MCS to the third
connected component of Figure 2.

3

7

8

12

13

15

2

5

1

6

3

4

C1 = {7, 12, 13, 15}
S1 = ;
R1 = {7, 12, 13, 15}

C2 = {3, 7, 13}
S2 = {7, 13}
R2 = {3}

C3 = {3, 8}
S3 = {3}
R3 = {8}

Fig. 3. Maximum Cardinality Search applied to the third connected component of
Figure 2 (left) and clique tree with the sets of separators and residues (right).

If the graph is chordal then MCS will provide a numbering of the nodes such
that for each triple of nodes u, v and w, with (u, v), (u,w) 2 E and u has a lower
number than v, w, it happens that (v, w) 2 E. If this is not the case, the graph is
not chordal. A fill-in algorithm tests this condition and adds the required edges
to make the graph chordal. This algorithm runs in O(n + s

0) time, where s
0 is

the number of edges in the final chordal graph. Again, in the worst case, the
complexity is O(n2). These two steps, MCS and fill-in, can be computed to each
connected component separately or to the complete recombination graph with
the same result. The algorithms are applied in Lines 2 and 3 of Algorithm 1.

3.2 Clique Tree

Dynamic Programming is based on the exhaustive exploration of the cliques5

in the chordal graph. The maximum size of a clique in the chordal graph is
an upper bound of its treewidth, and determines the complexity of applying
dynamic programming to find the optimal solution. A clique tree of a chordal
graph is a tree where the nodes are cliques and for any variable appearing in
two of such cliques, the path among the two cliques in the tree is composed of
cliques containing the variable (junction tree property). We can also identify a
clique tree with a tree-decomposition of the chordal graph [4]. This clique tree
will determine the order in which the variables can be eliminated.

Starting from the chordal graph provided in the previous steps, we apply an
algorithm by Galinier et al. [13] to find the clique tree (Line 4 in Algorithm 1).

5 We will use the term clique to refer to a maximal complete subgraph, as the cited
literature does. However, the term clique is sometimes used to refer to a complete
subgraph (not necessarily maximal).

best option for variable x0 when any of the two possible values for variable x1

are selected and we can store in the same table what is the value of the sum
of subfunctions depending only on x0 and x1 (and possibly common variables
eliminated in the recombination graph). After this step, we can consider that
variable x0 has been removed from the problem and we can proceed in the same
way with the rest of the variables in the order x1, x2 and x5. At the end, only
12 evaluations are necessary, while a brute force would require 16 evaluations.

The idea of variable elimination using dynamic programming dates back to
the 1960’s and Hammer’s basic algorithm [3]. It is well-known that the com-
plexity of this approach is O(N2t), where t is the treewidth of the graph. Com-
puting the treewidth of a graph is an NP-hard problem [4]. Thus, heuristics
should be applied to find an elimination order for the variables. The problem
of variable elimination has also been studied in other contexts, like Gaussian
Elimination [12] and Bayesian Networks [4]. In fact, we follow the works done
for computing the junction tree in Bayesian Networks. In order to do this, we
first need a chordal graph and then compute the clique tree (or junction tree),
which will fix the order in which the variables are eliminated using Dynamic
Programming. Our contribution in this work consists in applying these ideas to
the recombination operator. The high level pseudocode of the proposed DPX is
presented in Algorithm 1. In the next subsections we will detail each of these
steps.

Algorithm 1 Pseudocode of DPX
Input: two parents x and y

Output: one o↵spring z

1: Compute the Recombination Graph of x and y as in [6]
2: Apply Maximum Cardinality Search to the Recombination Graph [12]
3: Apply the fill-in procedure to make the graph chordal [12]
4: Apply the Clique Tree construction procedure [13]
5: Assign subfunctions to cliques in the clique tree
6: Apply Dynamic Programming to find the o↵spring (see Algorithm 2)
7: Build z using the tables filled by Dynamic Programming

3.1 Chordal Graphs

A chordal graph is a graph where all the cycles of length 4 or more have a chord
(edge joining two nodes not adjacent in the cycle). All the connected components
in Figure 2 are chordal graphs. Tarjan and Yannakis [12] provided algorithms
to test if a graph is chordal and add new edges to make it chordal if it is not.
Their algorithms run in time O(n + e), where e is the number of edges in the
graph. In the worst case the complexity is O(n2). The first step to check the
chordality is to number the nodes using Maximum Cardinality Search (MCS).
This algorithm numbers each node in descending order, choosing always the

In general, we have to build a clique tree (junction tree)

Galinier, Habib, Paul (1995)Tarjan, Yannakakis (1984)

Dynastic Potential Crossover

EvoCOP 2019: C., Ochoa, Whitley, Tinós

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 33

unnumbered node with a higher number of numbered neighbors and solving the
ties arbitrarily. Figure 3 (left) shows the result of applying MCS to the third
connected component of Figure 2.

3

7

8

12

13

15

2

5

1

6

3

4

C1 = {7, 12, 13, 15}
S1 = ;
R1 = {7, 12, 13, 15}

C2 = {3, 7, 13}
S2 = {7, 13}
R2 = {3}

C3 = {3, 8}
S3 = {3}
R3 = {8}

Fig. 3. Maximum Cardinality Search applied to the third connected component of
Figure 2 (left) and clique tree with the sets of separators and residues (right).

If the graph is chordal then MCS will provide a numbering of the nodes such
that for each triple of nodes u, v and w, with (u, v), (u,w) 2 E and u has a lower
number than v, w, it happens that (v, w) 2 E. If this is not the case, the graph is
not chordal. A fill-in algorithm tests this condition and adds the required edges
to make the graph chordal. This algorithm runs in O(n + s

0) time, where s
0 is

the number of edges in the final chordal graph. Again, in the worst case, the
complexity is O(n2). These two steps, MCS and fill-in, can be computed to each
connected component separately or to the complete recombination graph with
the same result. The algorithms are applied in Lines 2 and 3 of Algorithm 1.

3.2 Clique Tree

Dynamic Programming is based on the exhaustive exploration of the cliques5

in the chordal graph. The maximum size of a clique in the chordal graph is
an upper bound of its treewidth, and determines the complexity of applying
dynamic programming to find the optimal solution. A clique tree of a chordal
graph is a tree where the nodes are cliques and for any variable appearing in
two of such cliques, the path among the two cliques in the tree is composed of
cliques containing the variable (junction tree property). We can also identify a
clique tree with a tree-decomposition of the chordal graph [4]. This clique tree
will determine the order in which the variables can be eliminated.

Starting from the chordal graph provided in the previous steps, we apply an
algorithm by Galinier et al. [13] to find the clique tree (Line 4 in Algorithm 1).

5 We will use the term clique to refer to a maximal complete subgraph, as the cited
literature does. However, the term clique is sometimes used to refer to a complete
subgraph (not necessarily maximal).

unnumbered node with a higher number of numbered neighbors and solving the
ties arbitrarily. Figure 3 (left) shows the result of applying MCS to the third
connected component of Figure 2.

3

7

8

12

13

15

2

5

1

6

3

4

C1 = {7, 12, 13, 15}
S1 = ;
R1 = {7, 12, 13, 15}

C2 = {3, 7, 13}
S2 = {7, 13}
R2 = {3}

C3 = {3, 8}
S3 = {3}
R3 = {8}

Fig. 3. Maximum Cardinality Search applied to the third connected component of
Figure 2 (left) and clique tree with the sets of separators and residues (right).

If the graph is chordal then MCS will provide a numbering of the nodes such
that for each triple of nodes u, v and w, with (u, v), (u,w) 2 E and u has a lower
number than v, w, it happens that (v, w) 2 E. If this is not the case, the graph is
not chordal. A fill-in algorithm tests this condition and adds the required edges
to make the graph chordal. This algorithm runs in O(n + s

0) time, where s
0 is

the number of edges in the final chordal graph. Again, in the worst case, the
complexity is O(n2). These two steps, MCS and fill-in, can be computed to each
connected component separately or to the complete recombination graph with
the same result. The algorithms are applied in Lines 2 and 3 of Algorithm 1.

3.2 Clique Tree

Dynamic Programming is based on the exhaustive exploration of the cliques5

in the chordal graph. The maximum size of a clique in the chordal graph is
an upper bound of its treewidth, and determines the complexity of applying
dynamic programming to find the optimal solution. A clique tree of a chordal
graph is a tree where the nodes are cliques and for any variable appearing in
two of such cliques, the path among the two cliques in the tree is composed of
cliques containing the variable (junction tree property). We can also identify a
clique tree with a tree-decomposition of the chordal graph [4]. This clique tree
will determine the order in which the variables can be eliminated.

Starting from the chordal graph provided in the previous steps, we apply an
algorithm by Galinier et al. [13] to find the clique tree (Line 4 in Algorithm 1).

5 We will use the term clique to refer to a maximal complete subgraph, as the cited
literature does. However, the term clique is sometimes used to refer to a complete
subgraph (not necessarily maximal).

Recombination graph Clique tree

Dynastic Potential Crossover

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 34

What if we have too many variables to
enumerate?

We put a limit 𝛽 on the number fo variables that are fully
enumerated
The remaining ones are taken in block from the parents

This makes the operator is Quasi-Optimal…
…and makes the time complextiy to be:

unnumbered node with a higher number of numbered neighbors and solving the
ties arbitrarily. Figure 3 (left) shows the result of applying MCS to the third
connected component of Figure 2.

3

7

8

12

13

15

2

5

1

6

3

4

C1 = {7, 12, 13, 15}
S1 = ;
R1 = {7, 12, 13, 15}

C2 = {3, 7, 13}
S2 = {7, 13}
R2 = {3}

C3 = {3, 8}
S3 = {3}
R3 = {8}

Fig. 3. Maximum Cardinality Search applied to the third connected component of
Figure 2 (left) and clique tree with the sets of separators and residues (right).

If the graph is chordal then MCS will provide a numbering of the nodes such
that for each triple of nodes u, v and w, with (u, v), (u,w) 2 E and u has a lower
number than v, w, it happens that (v, w) 2 E. If this is not the case, the graph is
not chordal. A fill-in algorithm tests this condition and adds the required edges
to make the graph chordal. This algorithm runs in O(n + s

0) time, where s
0 is

the number of edges in the final chordal graph. Again, in the worst case, the
complexity is O(n2). These two steps, MCS and fill-in, can be computed to each
connected component separately or to the complete recombination graph with
the same result. The algorithms are applied in Lines 2 and 3 of Algorithm 1.

3.2 Clique Tree

Dynamic Programming is based on the exhaustive exploration of the cliques5

in the chordal graph. The maximum size of a clique in the chordal graph is
an upper bound of its treewidth, and determines the complexity of applying
dynamic programming to find the optimal solution. A clique tree of a chordal
graph is a tree where the nodes are cliques and for any variable appearing in
two of such cliques, the path among the two cliques in the tree is composed of
cliques containing the variable (junction tree property). We can also identify a
clique tree with a tree-decomposition of the chordal graph [4]. This clique tree
will determine the order in which the variables can be eliminated.

Starting from the chordal graph provided in the previous steps, we apply an
algorithm by Galinier et al. [13] to find the clique tree (Line 4 in Algorithm 1).

5 We will use the term clique to refer to a maximal complete subgraph, as the cited
literature does. However, the term clique is sometimes used to refer to a complete
subgraph (not necessarily maximal).

Algorithm 2 Optimal O↵spring Computation
1: for all cliques Ci of the clique tree in post-order do
2: for xSi 2 {0, 1}|Si| do

3: value[xSi] = �1
4: for xRi 2 {0, 1}|Ri| do

5: aux = 0
6: for f 2 FCi do

7: aux = aux + f(x)
8: end for

9: for children cliques C0 of Ci do

10: aux = aux + value[xC0];
11: end for

12: if aux > value[xSi] then
13: value[xSi] = aux
14: variable[xSi] = xRi

15: end if

16: end for

17: end for

18: end for

complexity of Algorithm 2 to 22� . Since � is a predefined constant decided by the
user of the algorithm, the exponential factor turns into a constant. The operator
is not anymore an optimal recombination operator, and this is the reason why we
call it quasi-optimal. In the cases where � � |Ci| for all the cliques, the operator
will still return the optimal o↵spring. The next theorem presents the complexity
of DPX.

Theorem 1. Given a function in the form of (1) with m subfunctions, the com-

plexity of DPX with a constant bound � for the number of exhaustively explored

variables is O(4�(n+m) + n
2).

Proof. We have seen in Section 3.1 that the complexity of Maximum Cardinal-
ity Search, the fill-in procedure and the clique tree construction is O(n2). The
assignment of subfunctions to cliques can be done in O(n +m) time, using the
variable ordering found by MCS to assign the subfunctions that depends on each
visited variable to the only clique where the variable is a residue. The complexity
of the dynamic programming computation is:

O

X

i

(|FCi |+ |children(Ci)|)2|Ci|

!
= O

22�

X

i

(|FCi |+ |children(Ci)|)
!

= O

4�(m+

X

i

|children(Ci)|)
!

= O(4�(m+ n)),

Dynastic Potential Crossover

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 36

Problems and Instances
An NK Landscape is a pseudo-Boolean optimization problem with objective function:

where each subfunction f(l) depends on variable xl and K other variables

MAX-SAT consists in finding an assignment of variables to Boolean (true and false)
values such that the maximum number of clauses is satisfied

A clause is an OR of literals: x1 ∨ ¬x2 ∨ x3

r = 1 n
r = 2

�n
2

�

r = 3
�n
3

�

r
�n
r

�

Ball
Pr

i=1

�n
i

�

S1(x) = f(x� 1)� f(x)

Sv(x) = f(x� v)� f(x) =
mX

l=1

(f (l)(x� v)� f (l)(x)) =
mX

l=1

S(l)(x)

S4(x) = f(x� 4)� f(x)

S1,4(x) = f(x� 1, 4)� f(x)

S1,4(x) = S1(x) + S4(x)

S1(x) = f (1)(x� 1)� f (1)(x)

S2(x) = f (1)(x� 2)� f (1)(x) + f (2)(x� 2)� f (2)(x) + f (3)(x� 2)� f (3)(x)

S1,2(x) = f (1)(x�1, 2)�f (1)(x)+f (2)(x�1, 2)�f (2)(x)+f (3)(x�1, 2)�f (3)(x)

S1,2(x) 6= S1(x) + S2(x)

f(x) =
NX

l=1

f (l)(x)

1

x1

x2

x3x4

x5

x6

x7

x8 x9

x10

(a) Sample VIG

x1

x2

x3x4

x5

x6

x7

x8 x9

x10

(b) Selected and adjacent variables

x1

x2

x3x4

x5

x6

x7

x8 x9

x10

(c) Sample random VIG

Figure 1: A sample Variable Interaction Graph with two changing variables
(left) and the set of variables and adjacent variables (right).

Random model

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 37

DPX Statistics with NKQ Landscapes

45-character paper description goes here

improvement, logarithm of explored solutions and percentage of crossover runs where an optimal
o�spring is returned. The figures are averages over 10 000 samples (1 000 crossover operations
in each of the 10 instances for each value of K).

Table 1: Average runtime of crossover operators for random NKQ Landscapes with n =10 000
variables. Time is in microseconds (µs) for UX and in milliseconds (ms) for the rest. The
Hamming distance between parents, h, is expressed in percentage of variables.

h UX NX PX APX DPX (ms)

% µs ms ms ms � = 0 � = 1 � = 2 � = 3 � = 4 � = 5

K = 2
1 73 1.2 0.5 1.0 0.8 0.9 0.8 0.8 0.8 0.9
2 95 2.3 0.9 2.5 2.1 2.3 2.4 2.0 2.1 1.9
4 93 2.3 1.4 4.5 2.9 2.8 2.9 2.5 2.5 2.4
8 120 2.3 2.2 7.2 6.3 6.9 6.3 5.8 5.8 5.7

16 113 1.2 2.8 7.1 5.5 5.9 5.8 5.8 5.4 5.3
32 154 1.7 9.3 12.7 22.1 22.8 23.5 23.3 24.6 23.3

K = 3
1 92 1.7 0.6 1.5 1.0 1.0 1.0 1.0 0.9 1.0
2 87 2.4 1.2 3.5 1.8 1.6 2.0 1.7 1.6 1.7
4 97 2.8 1.9 6.3 3.1 3.1 3.1 2.7 2.4 2.7
8 125 2.8 3.0 8.3 4.7 4.9 5.7 5.6 4.5 4.9

16 120 1.9 5.1 9.1 9.7 10.5 10.1 10.9 11.0 11.3
32 143 2.2 5.9 16.0 251.4 257.5 256.4 273.1 267.5 263.8

K = 4
1 79 2.8 0.9 1.9 1.1 1.1 1.3 1.4 1.0 1.2
2 96 3.8 1.7 4.4 1.7 1.9 2.1 1.8 1.5 1.6
4 93 3.4 2.2 7.1 3.2 3.3 3.5 3.6 3.2 3.5
8 99 3.5 4.8 11.6 5.6 5.7 5.4 6.0 6.8 7.0

16 116 2.7 3.7 11.2 31.7 31.9 32.8 33.3 34.0 36.2
32 143 2.8 5.2 18.0 596.7 601.9 587.8 598.9 683.0 692.4

K = 5
1 68 3.2 0.9 2.6 1.4 1.5 1.5 1.4 1.4 1.3
2 82 3.7 1.8 5.2 2.1 2.3 2.3 2.1 2.2 2.0
4 85 4.2 3.5 8.7 3.6 3.9 3.8 3.9 4.0 4.1
8 119 4.3 5.4 13.3 8.0 8.1 8.2 9.5 10.9 9.9

16 113 3.0 4.1 12.8 90.7 83.0 103.0 92.2 101.3 107.5
32 139 3.7 5.8 19.4 1 000.5 1 034.0 1 041.1 1 020.3 1 089.9 1 021.7

Regarding the runtime, we observe some clear trends that we will comment in the following.
Uniform crossover is the fastest algorithm (less than 200µs in all the cases). It randomly selects
one parent for each di�ering bit and this can be done very fast. The other operators are based
on the VIG and they require more time to explore it and compute the o�spring. Their runtime
can be best measured in milliseconds. NX, PX and APX have runtimes between less than one
millisecond to 20 ms. DPX is clearly the slowest crossover operator when the parent solutions

Evolutionary Computation Volume x, Number x 15

45-character paper description goes here

improvement, logarithm of explored solutions and percentage of crossover runs where an optimal
o�spring is returned. The figures are averages over 10 000 samples (1 000 crossover operations
in each of the 10 instances for each value of K).

Table 1: Average runtime of crossover operators for random NKQ Landscapes with n =10 000
variables. Time is in microseconds (µs) for UX and in milliseconds (ms) for the rest. The
Hamming distance between parents, h, is expressed in percentage of variables.

h UX NX PX APX DPX (ms)

% µs ms ms ms � = 0 � = 1 � = 2 � = 3 � = 4 � = 5

K = 2
1 73 1.2 0.5 1.0 0.8 0.9 0.8 0.8 0.8 0.9
2 95 2.3 0.9 2.5 2.1 2.3 2.4 2.0 2.1 1.9
4 93 2.3 1.4 4.5 2.9 2.8 2.9 2.5 2.5 2.4
8 120 2.3 2.2 7.2 6.3 6.9 6.3 5.8 5.8 5.7

16 113 1.2 2.8 7.1 5.5 5.9 5.8 5.8 5.4 5.3
32 154 1.7 9.3 12.7 22.1 22.8 23.5 23.3 24.6 23.3

K = 3
1 92 1.7 0.6 1.5 1.0 1.0 1.0 1.0 0.9 1.0
2 87 2.4 1.2 3.5 1.8 1.6 2.0 1.7 1.6 1.7
4 97 2.8 1.9 6.3 3.1 3.1 3.1 2.7 2.4 2.7
8 125 2.8 3.0 8.3 4.7 4.9 5.7 5.6 4.5 4.9

16 120 1.9 5.1 9.1 9.7 10.5 10.1 10.9 11.0 11.3
32 143 2.2 5.9 16.0 251.4 257.5 256.4 273.1 267.5 263.8

K = 4
1 79 2.8 0.9 1.9 1.1 1.1 1.3 1.4 1.0 1.2
2 96 3.8 1.7 4.4 1.7 1.9 2.1 1.8 1.5 1.6
4 93 3.4 2.2 7.1 3.2 3.3 3.5 3.6 3.2 3.5
8 99 3.5 4.8 11.6 5.6 5.7 5.4 6.0 6.8 7.0

16 116 2.7 3.7 11.2 31.7 31.9 32.8 33.3 34.0 36.2
32 143 2.8 5.2 18.0 596.7 601.9 587.8 598.9 683.0 692.4

K = 5
1 68 3.2 0.9 2.6 1.4 1.5 1.5 1.4 1.4 1.3
2 82 3.7 1.8 5.2 2.1 2.3 2.3 2.1 2.2 2.0
4 85 4.2 3.5 8.7 3.6 3.9 3.8 3.9 4.0 4.1
8 119 4.3 5.4 13.3 8.0 8.1 8.2 9.5 10.9 9.9

16 113 3.0 4.1 12.8 90.7 83.0 103.0 92.2 101.3 107.5
32 139 3.7 5.8 19.4 1 000.5 1 034.0 1 041.1 1 020.3 1 089.9 1 021.7

Regarding the runtime, we observe some clear trends that we will comment in the following.
Uniform crossover is the fastest algorithm (less than 200µs in all the cases). It randomly selects
one parent for each di�ering bit and this can be done very fast. The other operators are based
on the VIG and they require more time to explore it and compute the o�spring. Their runtime
can be best measured in milliseconds. NX, PX and APX have runtimes between less than one
millisecond to 20 ms. DPX is clearly the slowest crossover operator when the parent solutions

Evolutionary Computation Volume x, Number x 15

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 38

DPX Statistics with NKQ Landscapes

45-character paper description goes here

Table 2: Average quality improvement ratio of crossover operators for random NKQ Landscapes
with n =10 000 variables. The numbers are in parts per thousand (‰). The Hamming distance
between parents, h, is expressed in percentage of variables.

h UX NX PX APX DPX (‰)

% ‰ ‰ ‰ ‰ � = 0 � = 1 � = 2 � = 3 � = 4 � = 5

K = 2
1 -0.58 -0.55 4.92 4.93 4.92 5.04 5.04 5.04 5.04 5.04
2 -0.79 -0.81 9.89 9.99 9.95 10.38 10.39 10.39 10.39 10.39
4 -1.13 -1.11 19.28 19.96 19.70 21.21 21.23 21.23 21.23 21.23
8 -1.56 -1.54 35.04 39.19 38.15 42.80 42.92 42.92 42.92 42.92

16 -2.08 -2.07 53.43 70.87 75.03 85.72 86.21 86.21 86.21 86.21
32 -2.72 -2.71 34.41 42.09 108.86 123.98 134.38 137.29 138.78 139.76

K = 3
1 -0.64 -0.65 5.57 5.62 5.60 5.84 5.84 5.84 5.84 5.84
2 -0.92 -0.91 10.93 11.33 11.18 12.02 12.03 12.03 12.03 12.03
4 -1.29 -1.26 20.10 22.50 21.95 24.50 24.57 24.57 24.57 24.57
8 -1.72 -1.77 30.80 40.40 43.67 49.37 49.66 49.66 49.66 49.66

16 -2.39 -2.37 21.30 25.45 63.04 70.96 77.15 79.14 80.21 80.96
32 -2.85 -2.85 6.55 7.38 59.15 63.68 76.87 83.34 86.36 88.23

K = 4
1 -0.74 -0.74 6.02 6.18 6.12 6.51 6.52 6.52 6.52 6.52
2 -1.04 -1.04 11.47 12.48 12.20 13.46 13.48 13.48 13.48 13.48
4 -1.42 -1.40 18.98 23.81 24.25 27.38 27.50 27.50 27.50 27.50
8 -1.92 -1.95 17.30 21.78 41.39 46.48 49.29 50.46 51.32 52.04

16 -2.47 -2.55 6.92 7.93 41.63 45.38 53.90 57.24 58.91 59.98
32 -3.15 -3.13 1.35 1.95 40.98 42.14 46.88 53.52 58.04 60.35

K = 5
1 -0.79 -0.78 6.38 6.72 6.61 7.18 7.18 7.18 7.18 7.18
2 -1.10 -1.10 11.46 13.40 13.17 14.77 14.81 14.81 14.81 14.81
4 -1.53 -1.56 15.06 20.38 26.44 29.58 30.06 30.14 30.16 30.17
8 -2.07 -2.06 8.07 9.56 31.18 34.54 39.26 41.02 41.98 42.67

16 -2.68 -2.66 2.19 2.90 30.14 31.61 37.08 41.51 43.48 44.83
32 -3.15 -3.13 0.28 0.77 32.42 32.82 34.18 36.64 40.31 44.05

the percentage of runs in which the logarithm of explored solutions is h. In the case of PX and
APX the increase in h does not always imply an increase in the number of explored solutions:
there is a value of h for which the logarithm of explored solutions reaches a maximum and
then decreases with h. The number of explored solutions in these two operators is proportional
to the number of connected components in the recombination graph. Starting from an empty
recombination graph the number of connected components increases as new random variables
are added, what explains why the logarithm of explored solutions in PX and APX increases with
h for low values of h. At some critical value of h, the number of connected components starts
to decrease because the new variables in the recombination graph join connected components,

Evolutionary Computation Volume x, Number x 17

45-character paper description goes here

Table 2: Average quality improvement ratio of crossover operators for random NKQ Landscapes
with n =10 000 variables. The numbers are in parts per thousand (‰). The Hamming distance
between parents, h, is expressed in percentage of variables.

h UX NX PX APX DPX (‰)

% ‰ ‰ ‰ ‰ � = 0 � = 1 � = 2 � = 3 � = 4 � = 5

K = 2
1 -0.58 -0.55 4.92 4.93 4.92 5.04 5.04 5.04 5.04 5.04
2 -0.79 -0.81 9.89 9.99 9.95 10.38 10.39 10.39 10.39 10.39
4 -1.13 -1.11 19.28 19.96 19.70 21.21 21.23 21.23 21.23 21.23
8 -1.56 -1.54 35.04 39.19 38.15 42.80 42.92 42.92 42.92 42.92

16 -2.08 -2.07 53.43 70.87 75.03 85.72 86.21 86.21 86.21 86.21
32 -2.72 -2.71 34.41 42.09 108.86 123.98 134.38 137.29 138.78 139.76

K = 3
1 -0.64 -0.65 5.57 5.62 5.60 5.84 5.84 5.84 5.84 5.84
2 -0.92 -0.91 10.93 11.33 11.18 12.02 12.03 12.03 12.03 12.03
4 -1.29 -1.26 20.10 22.50 21.95 24.50 24.57 24.57 24.57 24.57
8 -1.72 -1.77 30.80 40.40 43.67 49.37 49.66 49.66 49.66 49.66

16 -2.39 -2.37 21.30 25.45 63.04 70.96 77.15 79.14 80.21 80.96
32 -2.85 -2.85 6.55 7.38 59.15 63.68 76.87 83.34 86.36 88.23

K = 4
1 -0.74 -0.74 6.02 6.18 6.12 6.51 6.52 6.52 6.52 6.52
2 -1.04 -1.04 11.47 12.48 12.20 13.46 13.48 13.48 13.48 13.48
4 -1.42 -1.40 18.98 23.81 24.25 27.38 27.50 27.50 27.50 27.50
8 -1.92 -1.95 17.30 21.78 41.39 46.48 49.29 50.46 51.32 52.04

16 -2.47 -2.55 6.92 7.93 41.63 45.38 53.90 57.24 58.91 59.98
32 -3.15 -3.13 1.35 1.95 40.98 42.14 46.88 53.52 58.04 60.35

K = 5
1 -0.79 -0.78 6.38 6.72 6.61 7.18 7.18 7.18 7.18 7.18
2 -1.10 -1.10 11.46 13.40 13.17 14.77 14.81 14.81 14.81 14.81
4 -1.53 -1.56 15.06 20.38 26.44 29.58 30.06 30.14 30.16 30.17
8 -2.07 -2.06 8.07 9.56 31.18 34.54 39.26 41.02 41.98 42.67

16 -2.68 -2.66 2.19 2.90 30.14 31.61 37.08 41.51 43.48 44.83
32 -3.15 -3.13 0.28 0.77 32.42 32.82 34.18 36.64 40.31 44.05

the percentage of runs in which the logarithm of explored solutions is h. In the case of PX and
APX the increase in h does not always imply an increase in the number of explored solutions:
there is a value of h for which the logarithm of explored solutions reaches a maximum and
then decreases with h. The number of explored solutions in these two operators is proportional
to the number of connected components in the recombination graph. Starting from an empty
recombination graph the number of connected components increases as new random variables
are added, what explains why the logarithm of explored solutions in PX and APX increases with
h for low values of h. At some critical value of h, the number of connected components starts
to decrease because the new variables in the recombination graph join connected components,

Evolutionary Computation Volume x, Number x 17

F. Chicano, G. Ochoa, D. Whitley and R. Tinós

selected. Then, the group of selected variables is taken from one of the parents and inserted into
the other to form the o�spring.

Two di�erent kinds of NP-hard problems are used in the experiments: NKQ Landscapes,
an academic benchmark which allows us to parameterize the density of edges in the VIG by
changing K; and MAX-SAT instances from the MAX-SAT Evaluation 20174 Random NKQ
(“Quantized” NK) landscapes (Newman and Engelhardt, 1998) can be seen as Mk Landscapes
with one subfunction per variable (m = n). Each subfunction fl depends on variable xl and
other K random variables, and the codomain of each subfunction is the set {0, 1, . . . , Q � 1},
where Q is a positive integer. Thus, each subfunction depends on exactly k = K + 1 variables.
The values of the subfunctions are randomly generated. Random NKQ landscapes are NP-hard
when K � 2. The parameter K determines the higher order nonzero Walsh coe�cients in its
Walsh decomposition, which is a measure of the “ruggedness” of the landscape (Hordijk and
Stadler, 1998). Regarding MAX-SAT, we used the same instances as Chicano et al. (2018)5 to
allow the comparison with APX. They are 160 unweighted and 132 weighted instances.

The computer used for the experiments is one multicore machine with four Intel Xeon CPU
(E5-2680 v3) at 2.5 GHz, summing a total of 48 cores, 188 GB of memory and Ubuntu 16.04
LTS. The source code of all the algorithms and operators used in the experiments can be found
at https://github.com/jfrchicanog/EfficientHillClimbers.6

Section 4.1 answers RQ1 and Section 4.2 answers RQ2. In Section 4.3 we include a local
optima network analysis of the best overall algorithm identified in Section 4.2 to better understand
its behaviour.

4.1 Crossover comparison

This section will present the experiments to answer RQ1: how does DPX perform compared to
APX, PX, NX and UX in terms of runtime and quality of o�spring? In the case of DPX we
use values for � from 0 to 5. The optimization problem used is random NKQ Landscapes with
n = 10 000 variables, K = 2, 3, 4, 5 and Q = 64. For each value of K we generated 10 di�erent
instances, summing a total of 80 NKQ Landscapes instances. In each of them we randomly
generated 6 000 pairs of solutions with di�erent Hamming distance between them and applied all
the crossover operators. Six di�erent values of Hamming distance h were used, generating 1 000
pairs of random solutions for each Hamming distance. Expressed in terms of the percentage of
di�ering variables, the values for h are 1%, 2%, 4%, 8%, 16% and 32%. Two metrics were
collected in each application of all the crossover operators: runtime and quality improvement
over the parents. The crossover runtime was measured with nanoseconds precision (expressed in
the tables in an appropriate multiple) and the quality of the o�spring is expressed with a relative
measure of quality improvement. If x and y are the parent solutions and z is the o�spring we
define the quality improvement ratio (QIR) in a maximization problem as:

QIRf (x, y, z) =
f(z)�max{f(x), f(y)}

max{f(x), f(y)} , (8)

that is, the fraction of improvement of the o�spring compared to the best parent. All the
experiments were run with a memory limit of 5GB of RAM. In the case of PX, APX and
DPX we also collected the number of implicitly explored solutions, expressed with its logarithm
and the fraction of runs in which the crossover behaves like an optimal recombination (returns
the best solution in the largest dynastic potential). Tables 1 to 4 present the runtime, quality of

4http://mse17.cs.helsinki.fi/benchmarks.html.
5The list of instances is at https://github.com/jfrchicanog/EfficientHillClimbers.
6A file with instructions can be found here: https://github.com/jfrchicanog/EfficientHillClimbers/

blob/dpx-ecj/src/test/resources/ecj-reviewers.md

14 Evolutionary Computation Volume x, Number x

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 39

DPX Statistics with NKQ Landscapes

F. Chicano, G. Ochoa, D. Whitley and R. Tinós

Table 3: Average logarithm in base 2 of the solutions explored by PX, APX and DPX for random
NKQ Landscapes with n =10 000 variables. The Hamming distance between parents, h, is
expressed in percentage of variables.

h PX APX DPX (log2)

% log2 log2 � = 0 � = 1 � = 2 � = 3 � = 4 � = 5

K = 2
1 97.1 97.3 97.2 100.0 100.0 100.0 100.0 100.0
2 188.1 190.3 189.3 199.9 200.0 200.0 200.0 200.0
4 352.9 368.1 362.0 399.5 400.0 400.0 400.0 400.0
8 613.5 703.3 679.7 796.8 800.0 800.0 800.0 800.0

16 873.6 1 220.6 1 311.2 1 586.5 1 600.0 1 600.0 1 600.0 1 600.0
32 660.7 828.3 2 055.6 2 399.2 2 586.9 2 636.5 2 661.3 2 677.4

K = 3
1 94.1 95.2 94.7 100.0 100.0 100.0 100.0 100.0
2 176.5 184.3 181.2 199.8 200.0 200.0 200.0 200.0
4 306.6 352.3 341.2 398.4 400.0 400.0 400.0 400.0
8 437.3 602.5 663.0 793.2 799.9 800.0 800.0 800.0

16 351.5 426.4 1 019.5 1 174.7 1 271.0 1 300.4 1 316.0 1 326.9
32 141.5 155.1 1 099.0 1 179.1 1 395.2 1 499.5 1 547.6 1 576.8

K = 4
1 90.2 93.0 91.9 99.9 100.0 100.0 100.0 100.0
2 161.2 179.0 173.7 199.5 200.0 200.0 200.0 200.0
4 247.0 324.7 332.8 397.4 400.0 400.0 400.0 400.0
8 238.2 305.8 580.8 674.0 713.9 729.6 740.9 750.4

16 119.7 134.1 651.3 710.3 831.5 878.1 901.3 915.9
32 31.1 39.5 719.8 737.4 812.0 914.8 983.3 1 018.2

K = 5
1 85.4 91.1 89.1 99.9 100.0 100.0 100.0 100.0
2 142.0 172.4 168.5 199.2 200.0 200.0 200.0 200.0
4 175.4 246.1 332.2 390.6 398.2 399.4 399.8 399.9
8 113.2 132.7 420.5 470.8 530.8 552.6 564.4 572.8

16 38.9 47.6 449.0 469.0 542.8 601.9 627.7 645.3
32 7.5 13.7 534.0 539.3 559.3 595.7 649.7 703.5

instead of generating new ones. The exact value of h at which this happens is approximately
n/(K + 1) for the adjacent NKQ Landscapes (Chicano et al., 2017). It is di�cult to compute
this value for the random NKQ Landscapes that we use here, but the critical value must be a
decreasing function of K. This dependence of the critical value with K can also be observed in
Table 3: the value of h at which the number of explored solutions is maximum decreases from
h = 1600 to h = 400 when K increases from 2 to 5.

Regarding the fraction of runs in which full dynastic potential exploration is achieved, PX
and DPX with � = 0 behaves the same and achieve full exploration for some pairs of parents
only when K  3. APX is slightly better and DPX is the best when � � 1, behaving like an

18 Evolutionary Computation Volume x, Number x

F. Chicano, G. Ochoa, D. Whitley and R. Tinós

Table 3: Average logarithm in base 2 of the solutions explored by PX, APX and DPX for random
NKQ Landscapes with n =10 000 variables. The Hamming distance between parents, h, is
expressed in percentage of variables.

h PX APX DPX (log2)

% log2 log2 � = 0 � = 1 � = 2 � = 3 � = 4 � = 5

K = 2
1 97.1 97.3 97.2 100.0 100.0 100.0 100.0 100.0
2 188.1 190.3 189.3 199.9 200.0 200.0 200.0 200.0
4 352.9 368.1 362.0 399.5 400.0 400.0 400.0 400.0
8 613.5 703.3 679.7 796.8 800.0 800.0 800.0 800.0

16 873.6 1 220.6 1 311.2 1 586.5 1 600.0 1 600.0 1 600.0 1 600.0
32 660.7 828.3 2 055.6 2 399.2 2 586.9 2 636.5 2 661.3 2 677.4

K = 3
1 94.1 95.2 94.7 100.0 100.0 100.0 100.0 100.0
2 176.5 184.3 181.2 199.8 200.0 200.0 200.0 200.0
4 306.6 352.3 341.2 398.4 400.0 400.0 400.0 400.0
8 437.3 602.5 663.0 793.2 799.9 800.0 800.0 800.0

16 351.5 426.4 1 019.5 1 174.7 1 271.0 1 300.4 1 316.0 1 326.9
32 141.5 155.1 1 099.0 1 179.1 1 395.2 1 499.5 1 547.6 1 576.8

K = 4
1 90.2 93.0 91.9 99.9 100.0 100.0 100.0 100.0
2 161.2 179.0 173.7 199.5 200.0 200.0 200.0 200.0
4 247.0 324.7 332.8 397.4 400.0 400.0 400.0 400.0
8 238.2 305.8 580.8 674.0 713.9 729.6 740.9 750.4

16 119.7 134.1 651.3 710.3 831.5 878.1 901.3 915.9
32 31.1 39.5 719.8 737.4 812.0 914.8 983.3 1 018.2

K = 5
1 85.4 91.1 89.1 99.9 100.0 100.0 100.0 100.0
2 142.0 172.4 168.5 199.2 200.0 200.0 200.0 200.0
4 175.4 246.1 332.2 390.6 398.2 399.4 399.8 399.9
8 113.2 132.7 420.5 470.8 530.8 552.6 564.4 572.8

16 38.9 47.6 449.0 469.0 542.8 601.9 627.7 645.3
32 7.5 13.7 534.0 539.3 559.3 595.7 649.7 703.5

instead of generating new ones. The exact value of h at which this happens is approximately
n/(K + 1) for the adjacent NKQ Landscapes (Chicano et al., 2017). It is di�cult to compute
this value for the random NKQ Landscapes that we use here, but the critical value must be a
decreasing function of K. This dependence of the critical value with K can also be observed in
Table 3: the value of h at which the number of explored solutions is maximum decreases from
h = 1600 to h = 400 when K increases from 2 to 5.

Regarding the fraction of runs in which full dynastic potential exploration is achieved, PX
and DPX with � = 0 behaves the same and achieve full exploration for some pairs of parents
only when K  3. APX is slightly better and DPX is the best when � � 1, behaving like an

18 Evolutionary Computation Volume x, Number x

Full dynastic potential (21600)
explored in 5.3 ms

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 40

Experiments in Search Algorithms
Two Algorithms were used:

Steady-state Evolutionary Algorithm (population-based metaheuristic)

DRILS (trajectory-based metaheuristic)

The parameters of the algorithms were tuned using irace for each class of instances

NKQ Landscapes with K=2 and K=5
MAX-SAT (industrial and crafted) instances from MAX-SAT Evaluation 2017

• 160 unweighted

• 132 weighted

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 41

Deterministic Recombination and
Iterated Local Search (DRILS)

GECCO ’17, July 15-19, 2017, Berlin, Germany F. Chicano et al.

Algorithm 1 HiReLS
1: stack ;
2: while not stopping condition do
3: current HBHC(random());
4: current.level 0;
5: if stack.isEmpty() or stack.peek().level > 0 then
6: stack.push(current);
7: else
8: pxSuccess true;
9: while !stack.isEmpty() and pxSuccess and

stack.peek().level = current.level do
10: top stack.pop();
11: child PX(top, current);
12: pxSuccess child , top and child , current;
13: if pxSuccess then
14: current HBHC(child);
15: current.level++;
16: end if
17: end while
18: if pxSuccess then
19: stack.push(current);
20: end if
21: end if
22: end while

PX PX PX

PX

level-0

level-1

Random solutions

Figure 3: An illustration of HiReLS. Filled circles are local
optima and curly arrows represent the HBHC.

�en DRILS perturbs the local optimum by randomly �ipping �N
bits, where � is a small fraction (below 0.15 in the experiments).
We call the parameter � the perturbation factor. �is process results
in a so� restart and, a�er applying HBHC, it generates a new local
optimum that should be relative close in Hamming distance to
the previous local optimum. �ese two consecutively generated
local optima can now be recombined using Partition Crossover.
�e o�spring solution can also be improved by HBHC if necessary.
�e process is then iterated: the most recently discovered local
optimum is perturbed and a new local optimum is generated. A

Algorithm 2 DRILS
1: current HBHC(random());
2: while not stopping condition do
3: next HBHC (perturb(current));
4: child PX(current, next);
5: if child = current or child = next then
6: current next;
7: else
8: current HBHC(child);
9: end if
10: end while

PX PX

Figure 4: Graphical illustration of DRILS. Curly arrows rep-
resent HBHCwhile normal arrows represent a perturbation
�ipping �N random bits.

graphical illustration of the algorithm is presented in Figure 4 and
the pseudocode is shown in Algorithm 2.

4 EXPERIMENTAL STUDY
In this section we analyze the performance of our two proposals on
adjacent and random NKQ Landscapes. We will also compare the
performance with one of the best state-of-the-art algorithms for
pseudo-Boolean optimization in a gray-box se�ing: the Gray-Box
Parameterless Population Pyramid algorithm (GB-P3) [2].

In all the experiments the radius of the neighborhood in the
Hamming Ball Hill Climber was set to 1. �e machine used in
the experiments is a multicore machine with four Intel Xeon CPU
(E5-2670 v3) at 2.3 GHz, a total of 48 cores, 64 GB of memory and
Ubuntu 14.04 LTS. HiReLS and DRILS were implemented in Java 1.6
and the memory usage was limited to 3GB during all the executions.
�e source code is freely available in GitHub2.

4.1 Solving Adjacent NKQ Landscapes
In a �rst experiment we run HiReLS, DRILS and GB-P3 using 50
di�erent instances of the adjacent NKQ Landscapes and 10 indepen-
dent runs per instance. �e stopping condition for all algorithms
is to reach �ve minutes of computation3. �e number of variables
is N = 100, 000, the value for Q is 64 and the value for K = k � 1
was changed from 1 to 5 (10 instances were generated for each
value of K). In the case of DRILS we used di�erent values for the
perturbation factor � : 0.005, 0.01, 0.05, 0.10 and 0.15. In Figures 5
and 6 we plot the average �tness (over 100 samples, 10 instances
and 10 runs) found by the algorithms at each time. For the sake of
clarity we omi�ed the results of DRILS of perturbation factors 0.05
and 0.10 and we only show the plots for K = 1 and K = 5.

2h�ps://github.com/jfrchicanog/E�cientHillClimbers
3�e stopping condition is arbitrary, but most of the algorithms seem to converge a�er
�ve minutes. A stopping condition based on the algorithm progress should be used in
future work.

Hill Climber

Perturbation
(𝝰 N bits flipped)

Random Solution Local Optimum

X X

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 42

Included in DRILS and EA in NKQ LandscapesF. Chicano, G. Ochoa, D. Whitley and R. Tinós

Table 8: Performance of the five recombination operators used in DRILS and EA when solving
NKQ Landscapes instances with n = 10 000 variables. The symbols N, O and = are used
to indicate that the use of the crossover operator in the row yields statistically better, worse or
similar results than the use of DPX in each algorithm.

K = 2 K = 5

Statistical di�erence Quality Statistical di�erence Quality

DRILS
DPX 0.9997 0.9972
APX 0N 8O 2 = 0.9995 0N 7O 3 = 0.9947

PX 0N 10O 0 = 0.9990 0N 7O 3 = 0.9949
NX 0N 10O 0 = 0.9786 0N 10O 0 = 0.9934
UX 0N 10O 0 = 0.9790 0N 10O 0 = 0.9935

EA
DPX 0.9795 0.8132
APX 0N 10O 0 = 0.9568 1N 0O 9 = 0.8890

PX 0N 10O 0 = 0.9445 10N 0O 0 = 0.9085
NX 0N 10O 0 = 0.8803 0N 1O 9 = 0.7811
UX 0N 10O 0 = 0.9313 0N 1O 9 = 0.8407

in DRILS. There are only a few instances (8 in total) where APX and/or PX show a similar
performance. We can observe in Figure 6 (a) that DRILS+DPX obtains the best average quality
at any time during the search when K = 2, followed by PX and APX. UX and NX provide the
worst average quality in this set of instances. We observe in the figure signs of convergence in all
the crossover operators. However, after a careful analysis checking the time of last improvement,
whose distribution is presented in Figure 7 (a), we notice that DRILS with DPX, APX and PX
provides improvements to the best solution after 50 seconds in around 50% of the runs, while
DRILS with UX and NX seems to stuck in 30 to 40 seconds after the start of the search, and
much earlier in some cases. We wonder if this time could be biased by the di�erent runtime of
crossover operators. Perhaps the algorithm produces the last improvement near the end of the
execution for DPX, APX and PX but the previous one was in the middle of the run, earlier than
the last improvement of NX and UX. To investigate this, we show in Figure 7 (b) the distribution
of the average time between improvements for the last three improvements. This time is far
below one second in most of the cases for all the crossover operators, which means that they are
producing better solutions several times per second on average until the time of last improvement,
and there is no bias related to the di�erent crossover runtime.

In the more rugged instances (K = 5), shown in Figure 6 (b), DRILS+DPX is the best
performing algorithm after 20 seconds of computation. Before that time DRILS+UX provides
the best performance. We can explain this with the help of Table 1. UX is the fastest crossover
operator, and helps to advance in the search at the beginning. DPX (as well as PX and APX) are
slower operators and, even if they provide better quality o�spring, they slow down the search,
requiring more time to be e�ective. We have to recall here that DRILS includes a hill climber,
what explains why using a random black box operator like UX the quality of the best solution is
still high (above 0.93).

If we analyze the performance of the crossover operators in EA, we observe that DPX is

24 Evolutionary Computation Volume x, Number x

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 43

45-character paper description goes here

case of EA, we observed that it failed to complete the execution in some runs for some instances
when it was combined with DPX. The reason was an out of memory problem, motivated by the
large number of di�ering variables among the solutions in the initial generations. In this case, we
only computed the average quality for instances in which at least 90% of the runs were successful
(nine of the ten runs) and we manually counted the instances with less than 90% successful runs
as significantly worse than EA+DPX for the remaining EA+crossover combinations in Table 9
without performing any statistical test. Nine unweighted instances and five weighted instances
had less than 90% successful EA+DPX runs. Three unweighted instances and no weighted
instance had exactly 90% of successful runs and in the remaining instances EA+DPX ends
successfully in all the runs.

Table 9: Performance of the five recombination operators used in DRILS and EA when solving
MAX-SAT instances. The symbols N, O and = are used to indicate that the use of the crossover
operator in the row yields statistically better, worse or similar results than the use of DPX.

Unweighted Weighted

Statistical di�erence Quality Statistical di�erence Quality

DRILS
DPX 0.9984 0.9996
APX 14N 91O 57 = 0.9973 15N 86O 31 = 0.9984

PX 8N 103O 55 = 0.9968 25N 80O 27 = 0.9982
NX 2N 126O 28 = 0.9946 1N 126O 5 = 0.9915
UX 0N 124O 40 = 0.9953 1N 126O 5 = 0.9930

EA
DPX 0.9644 0.9583
APX 52N 68O 40 = 0.9604 43N 63O 26 = 0.9649

PX 17N 107O 36 = 0.9095 8N 109O 15 = 0.9057
NX 18N 101O 41 = 0.8980 18N 103O 11 = 0.8786
UX 27N 96O 37 = 0.9134 18N 99O 15 = 0.8989

From the results in Table 9 we conclude that both algorithms (DRILS and EA) perform
better, in general, using DPX as the crossover operator. In particular, when DRILS is used only
in very few cases any other crossover operator makes the algorithm to provide a better final
solution. When EA is used, the di�erence is not so clear, but still significant.

Once again, we also observe that the performance of DRILS is better than that of EA.
The maximum average quality in EA is 0.9649 (EA+APX in the weighted instances) while the
average quality of DRILS is always above 0.9915 for all the crossover operators and category of
instances.

We do not expect DRILS or EA to be competitive with state-of-the-art incomplete MAX-
SAT solvers like Loandra9 (Berg et al., 2019), because they are general optimization algorithms.
However, DPX could be useful to improve the performance of some incomplete MAX-SAT
solvers, as PX did in recent work (Chen et al., 2018).

9Loandra was the winner in the unweighted incomplete track of the MAX-SAT Evaluation 2019 and got second
position in the weighted incomplete track.

Evolutionary Computation Volume x, Number x 27

Included in DRILS and EA in MAX-SAT

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 44

Source Code in GitHub
https://github.com/jfrchicanog/EfficientHillClimbers

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 45

Conclusions
• DPX is a very effective crossover operator
• Main drawback: runtime and memory consumption

• “Removing randomness” from metaheuristic algorithms (D. Whitley)

• Take home message: use Gray-Box Optimization if you can

• Explore the shape of the connected components in the recombination graph and their
relationship with performance

• Find the optimal value of the parameters using the VIG

Future Work

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 46

References (I)
• Chen, W., Whitley, D., 2017. Decomposing SAT Instances with Pseudo Backbones.

EvoCOP: 75-90

• Chicano, F., Ochoa, G., Whitley, D., Tinós, R., 2018. Enhancing partition crossover with
articulation points analysis. GECCO: 269-276

• Chicano, F., Ochoa, G., Whitley, D., Tinós, R., 2019. Quasi-Optimal Recombination
Operator. EvoCOP: 131-146

• Eremeev, A. V., Kovalenko, Y. V., 2013. Optimal Recombination in Genetic Algorithms.
CoRR abs/1307.5519

• Galinier, P., Habib, M., Paul, C., 1995. Chordal graphs and their clique graphs. In Graph-
Theoretic Concepts in Computer Sciences: 358-371

• Hammer, P. L., Rosenberg, I., Rudeanu, S., 1963. On the determination of the minima of
pseudo-boolean functions. Stud. Cerc. Mat. 14:359-364

• Radcliffe, N. J., 1994. The algebra of genetic algorithms. Annals of Mathematics and
Artificial Intelligence 10(4): 339-384

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 47

References (II)
• Tinós, R., Whitley, D., Chicano, F., 2015. Partition Crossover for Pseudo-Boolean

Optimization. FOGA: 137-149

• Tarjan, R. E., Yannakakis, M., 1984. Simple linear-time algorithms to test chordality of
graphs, test acyclicity and hypergraphs, and selectively reduce acylic hypergraphs.
SIAM Journal on Computing 13(3): 566-579

Dynastic Potential Crossover Operator (Francisco Chicano)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020) 48

Acknowledgements2. ELEMENTOS DE LA IDENTIDAD

2.2. Versiones de la marca Universidad de Málaga

Esta actualización del manual recoge el uso horizontal de la marca UNIVERSIDAD
DE MÁLAGA tal y como se muestra en la imagen. También se ha corregido el uso
negativo del escudo. En esta versión se respeta el original diseño de la imagen de
“La Paloma”.

VERSIÓN HORIZONTAL EN POSITIVO VERSIÓN VERTICAL EN POSITIVO

VERSIÓN HORIZONTAL EN NEGATIVO VERSIÓN VERTICAL EN NEGATIVO

5

Thanks for your attention!!!

