Dynastic Potential Crossover Operator

Francisco Chicano

chicano@lcc.uma.es

Joint work with

Gabriela Ochoa, Darrell Whitley and Renato Tinós

Outline

- Gray-Box Optimization
- Variable Interaction Graph (VIG)
- Recombination Operators
- Dynastic Potential Crossover
- Experimental Results
- Conclusions

SLS 2020 workshop Held in conjunction with PPSN 2020

Gray-Box Optimization

Gray-Box (vs. Black-Box) Optimization

For most of real problems we know (almost) all the details

Gray-Box Structure: MK Landscapes

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020)

SLS 2020 workshop Held in conjunction with PPSN 2020

Variable Interaction Graph

Variable Interaction

• Partial "derivative" (difference) of a pseudo-Boolean function

$$\Delta_i f(x_1, x_2, \dots, x_n) = f(x_1, x_2, \dots, 1_i, \dots, x_n) - f(x_1, x_2, \dots, 0_i, \dots, x_n)$$

We say that x_i and x_j interact when $\Delta_i f$ depends on x_j

- In terms of Walsh coefficients:
 - x_i and x_j interact if there exist a nonzero Walsh coefficient with index containing both i and j

$$f = \sum_{a \in \mathbb{B}^n} w_a \psi_a.$$
 Walsh expansion

Variable Interaction Graph

• A graph where the nodes are the variables and there is an edge between two nodes if the variables interact

• Example:

$$f(x_1, x_2, x_3, x_4) = x_1 x_2 + x_2 x_3 + x_2 x_4 + x_3 x_4$$

$$\Delta_1 f(x) = f(1, x_2, x_3, x_4) - f(0, x_2, x_3, x_4) = x_2$$

Variable Interaction Graph (VIG)

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020)

Variable Interaction Graph

We will asume that x_i and x_j interact when they appear together in the same subfunction^{*}

If x_i and x_j don't interact: $\Delta_{ij} = \Delta_i + \Delta_j$

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020)

SLS 2020 workshop Held in conjunction with PPSN 2020

Recombination Operators

Recombination Operators (in EAs)

Partition Crossover

The recombination graph is a subgraph of VIG containing only the differing variables

Partition Crossover takes all the variables in a component from the same parent

The contribution of each component to the fitness value of the offspring is independent of each other

FOGA 2015: Tinós, Whitley, C.

MAX-SAT instance atco_enc3_opt1_13_48 (SAT competition 2014)

EvoCOP 2017: Chen and Whitley

Articulation Points Partition Crossover

Articulation Points Partition Crossover (APX) identifies articulation points in the recombination graph

It implicitly considers all the solutions PX would consider if one or none articulation point is removed from each connected component

GECCO 2018: C., Ochoa, Whitley, Tinós

SLS 2020 workshop Held in conjunction with PPSN 2020

Dynastic Potential Crossover

(DPX)

Dynastic Potential

Set of solutions that can be generated by a stochastic recombination operator

If h(x,y) is the Hamming distance between solutions x and y... Single point crossover DP size: 2 h(x,y)z-point crossover DP size: O($h(x,y)^z$) for z << n Uniform crossover DP size: $2^{h(x,y)}$

Largest DP size for a recombination operator with the gene transmission property:

Optimal Recombination Operator

Produces the best solution in the largest dynastic potential...

...exploring the "hyperplane" defined by the common variables $(2^{h(x,y)} \text{ solutions})$

х

It can be done in $O(4^\beta(n+m)+n^2)$ time in a gray-box setting for low-epistasis functions using DPX

It requires time O(2ⁿ) in a black-box setting

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020)

Eremeev, Kovalenko (2013)

We compute the optimum using dynamic programming by eliminating the variables

Hammer, Rosenberg, Rudeanu (1963)

When one variable remains we take its best value and reconstruct the solution (optimal child)

In general, we have to build a *clique tree* (*junction tree*)

Tarjan, Yannakakis (1984)

Galinier, Habib, Paul (1995)

Algorithm 1 Pseudocode of DPX

Input: two parents x and y

Output: one offspring z

- 1: Compute the Recombination Graph of x and y as in [6]
- 2: Apply Maximum Cardinality Search to the Recombination Graph [12]
- 3: Apply the fill-in procedure to make the graph chordal [12]
- 4: Apply the Clique Tree construction procedure [13]
- 5: Assign subfunctions to cliques in the clique tree
- 6: Apply Dynamic Programming to find the offspring (see Algorithm 2)
- 7: Build z using the tables filled by Dynamic Programming

EvoCOP 2019: C., Ochoa, Whitley, Tinós

Recombination graph

Clique tree

$$C_{1} = \{7, 12, 13, 15\}$$

$$S_{1} = \emptyset$$

$$R_{1} = \{7, 12, 13, 15\}$$

$$C_{2} = \{3, 7, 13\}$$

$$S_{2} = \{7, 13\}$$

$$R_{2} = \{3\}$$

$$C_{3} = \{3, 8\}$$

$$S_{3} = \{3\}$$

$$R_{3} = \{8\}$$

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020)

What if we have too many variables to enumerate?

We put a limit β on the number fo variables that are fully enumerated

The remaining ones are taken in block from the parents

This makes the operator is **Quasi-Optimal**...

...and makes the time complexity to be:

$$O(4^{\beta}(n+m)+n^2)$$

SLS 2020 workshop Held in conjunction with PPSN 2020

Experimental Results

Problems and Instances

An NK Landscape is a pseudo-Boolean optimization problem with objective function:

$$f(x) = \sum_{l=1}^{N} f^{(l)}(x)$$

where each subfunction $f^{(l)}$ depends on variable x_l and K other variables

MAX-SAT consists in finding an assignment of variables to Boolean (true and false) values such that the maximum number of clauses is satisfied

A clause is an OR of literals: $x_1 \vee x_2 \vee x_3$

DPX Statistics with NKQ Landscapes

Table 1: Average runtime of crossover operators for random NKQ Landscapes with n = 10000 variables. Time is in microseconds (μ s) for UX and in milliseconds (ms) for the rest. The Hamming distance between parents, h, is expressed in percentage of variables.

h	UX	NX	PX	APX	DPX (ms)					
$% = \frac{1}{2} $	$\mu { m s}$	ms	ms	ms	$\beta = 0$	$\beta = 1$	$\beta = 2$	$\beta = 3$	$\beta = 4$	$\beta = 5$
						K = 2				
1	73	1.2	0.5	1.0	0.8	0.9	0.8	0.8	0.8	0.9
2	95	2.3	0.9	2.5	2.1	2.3	2.4	2.0	2.1	1.9
4	93	2.3	1.4	4.5	2.9	2.8	2.9	2.5	2.5	2.4
8	120	2.3	2.2	7.2	6.3	6.9	6.3	5.8	5.8	5.7
16	113	1.2	2.8	7.1	5.5	5.9	5.8	5.8	5.4	5.3
32	154	1.7	9.3	12.7	22.1	22.8	23.5	23.3	24.6	23.3
						K = 5				
1	68	3.2	0.9	2.6	1.4	1.5	1.5	1.4	1.4	1.3
2	82	3.7	1.8	5.2	2.1	2.3	2.3	2.1	2.2	2.0
4	85	4.2	3.5	8.7	3.6	3.9	3.8	3.9	4.0	4.1
8	119	4.3	5.4	13.3	8.0	8.1	8.2	9.5	10.9	9.9
16	113	3.0	4.1	12.8	90.7	83.0	103.0	92.2	101.3	107.5
32	139	3.7	5.8	19.4	1 000.5	1 0 3 4.0	1 041.1	1 020.3	1 089.9	1 021.7

DPX Statistics with NKQ Landscapes

Table 2: Average quality improvement ratio of crossover operators for random NKQ Landscapes with $n = 10\,000$ variables. The numbers are in parts per thousand (‰). The Hamming distance between parents, h, is expressed in percentage of variables.

$$QIR_f(x, y, z) = \frac{f(z) - \max\{f(x), f(y)\}}{\max\{f(x), f(y)\}}$$

h	UX	NX	РХ	APX		DPX (‰)				
%	%00	%00	%00	%00	$\beta = 0$	$\beta = 1$	$\beta = 2$	$\beta = 3$	$\beta = 4$	$\beta = 5$
	K = 2									
1	-0.58	-0.55	4.92	4.93	4.92	5.04	5.04	5.04	5.04	5.04
2	-0.79	-0.81	9.89	9.99	9.95	10.38	10.39	10.39	10.39	10.39
4	-1.13	-1.11	19.28	19.96	19.70	21.21	21.23	21.23	21.23	21.23
8	-1.56	-1.54	35.04	39.19	38.15	42.80	42.92	42.92	42.92	42.92
16	-2.08	-2.07	53.43	70.87	75.03	85.72	86.21	86.21	86.21	86.21
32	-2.72	-2.71	34.41	42.09	108.86	123.98	134.38	137.29	138.78	139.76
					K	=5				
1	-0.79	-0.78	6.38	6.72	6.61	7.18	7.18	7.18	7.18	7.18
2	-1.10	-1.10	11.46	13.40	13.17	14.77	14.81	14.81	14.81	14.81
4	-1.53	-1.56	15.06	20.38	26.44	29.58	30.06	30.14	30.16	30.17
8	-2.07	-2.06	8.07	9.56	31.18	34.54	39.26	41.02	41.98	42.67
16	-2.68	-2.66	2.19	2.90	30.14	31.61	37.08	41.51	43.48	44.83
32	-3.15	-3.13	0.28	0.77	32.42	32.82	34.18	36.64	40.31	44.05

DPX Statistics with NKQ Landscapes

Table 3: Average logarithm in base 2 of the solutions explored by PX, APX and DPX for random NKQ Landscapes with n = 10000 variables. The Hamming distance between parents, h, is expressed in percentage of variables.

h	PX	APX		$DPX (log_2)$					
$% = \frac{1}{2} $	\log_2	\log_2	$\beta = 0$	$\beta = 1$	$\beta = 2$	$\beta = 3$	$\beta = 4$	$\beta = 5$	
			K = 2						
1	97.1	97.3	97.2	100.0	100.0	100.0	100.0	100.0	
2	188.1	190.3	189.3	199.9	200.0	200.0	200.0	200.0	
4	352.9	368.1	362.0	399.5	400.0	400.0	400.0	400.0	
8	613.5	703.3	679.7	796.8	800.0	800.0	800.0	800.0	
16	873.6	1 220.6	1 311.2	1 586.5	1 600.0	1 600.0	1 600.0	1 600.0	
32	660.7	828.3	2055.6	2 399.2	2 586.9	2636.5	2661.3	2677.4	
				K =	5				
1	85.4	91.1	89.1	99.9	100.0	100.0	100.0	100.0	
2	142.0	172.4	168.5	199.2	200.0	End	Idvna	stic no	toptial (21600
4	175.4	246.1	332.2	390.6	398.2	Fui	i uyila	suc po	
8	113.2	132.7	420.5	470.8	530.8		expi	ored in	5.3 ms
16	38.9	47.6	449.0	469.0	542.8	601.9	627.7	645.3	
32	7.5	13.7	534.0	539.3	559.3	595.7	649.7	703.5	

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020)

Experiments in Search Algorithms

Two Algorithms were used:

Steady-state Evolutionary Algorithm (population-based metaheuristic) **DRILS** (trajectory-based metaheuristic)

The parameters of the algorithms were tuned using irace for each class of instances NKQ Landscapes with K=2 and K=5 MAX-SAT (industrial and crafted) instances from MAX-SAT Evaluation 2017

- 160 unweighted
- 132 weighted

Deterministic Recombination and Iterated Local Search (DRILS)

Included in DRILS and EA in NKQ Landscapes

Table 8: Performance of the five recombination operators used in DRILS and EA when solving NKQ Landscapes instances with $n = 10\,000$ variables. The symbols \blacktriangle , \bigtriangledown and = are used to indicate that the use of the crossover operator in the row yields statistically better, worse or similar results than the use of DPX in each algorithm.

	K = 2		K = 5			
	Statistical difference	Quality	Statistical difference	Quality		
DRILS						
DPX		0.9997		0.9972		
APX	$0 \blacktriangle 8 \triangledown 2 =$	0.9995	$0 \blacktriangle 7 \triangledown 3 =$	0.9947		
РХ	$0 \blacktriangle 10 \triangledown 0 =$	0.9990	$0 \blacktriangle 7 \triangledown 3 =$	0.9949		
NX	$0 \blacktriangle 10 \triangledown 0 =$	0.9786	$0 \blacktriangle 10 \triangledown 0 =$	0.9934		
UX	$0 \blacktriangle 10 \triangledown 0 =$	0.9790	$0 \blacktriangle 10 \triangledown 0 =$	0.9935		
EA						
DPX		0.9795		0.8132		
APX	$0 \blacktriangle 10 \triangledown 0 =$	0.9568	$1 \blacktriangle 0 \bigtriangledown 9 =$	0.8890		
РХ	$0 \blacktriangle 10 \triangledown 0 =$	0.9445	$10 \blacktriangle 0 \bigtriangledown 0 =$	0.9085		
NX	$0 \blacktriangle 10 \triangledown 0 =$	0.8803	$0 \blacktriangle 1 \triangledown 9 =$	0.7811		
UX	$0 \blacktriangle 10 \triangledown 0 =$	0.9313	$0 \blacktriangle 1 \triangledown 9 =$	0.8407		

Included in DRILS and EA in MAX-SAT

Table 9: Performance of the five recombination operators used in DRILS and EA when solving MAX-SAT instances. The symbols \blacktriangle , \triangledown and = are used to indicate that the use of the crossover operator in the row yields statistically better, worse or similar results than the use of DPX.

	Unweighted		Weighted			
	Statistical difference	Quality	Statistical difference	Quality		
DRILS						
DPX		0.9984		0.9996		
APX	$14 \blacktriangle 91 \triangledown 57 =$	0.9973	$15 \blacktriangle 86 \triangledown 31 =$	0.9984		
PX	$8 \blacktriangle 103 \triangledown 55 =$	0.9968	$25 \blacktriangle 80 \triangledown 27 =$	0.9982		
NX	$2 \blacktriangle 126 \triangledown 28 =$	0.9946	$1 \blacktriangle 126 \triangledown 5 =$	0.9915		
UX	$0 \blacktriangle 124 \triangledown 40 =$	0.9953	$1 \blacktriangle 126 \triangledown 5 =$	0.9930		
EA						
DPX		0.9644		0.9583		
APX	$52 \blacktriangle 68 \triangledown 40 =$	0.9604	$43 \blacktriangle 63 \triangledown 26 =$	0.9649		
РХ	$17 \blacktriangle 107 \triangledown 36 =$	0.9095	$8 \blacktriangle 109 \triangledown 15 =$	0.9057		
NX	$18 \blacktriangle 101 \triangledown 41 =$	0.8980	$18 \blacktriangle 103 \triangledown 11 =$	0.8786		
UX	$27 \blacktriangle 96 \triangledown 37 =$	0.9134	$18 \blacktriangle 99 \triangledown 15 =$	0.8989		

Source Code in GitHub

https://github.com/jfrchicanog/EfficientHillClimbers

Search or jump to	Pull requests iss	ues Marketplace Explore	↓ +- 🔞-				
Į	ifrchicanog / EfficientHillClimbe Code Issues Image: I	uests 0 III Projects 0 II	Ounwatch → 2 ★ Star 2 % Fork 0 Wiki Insights ☆ Settings				
	This repository contains the implemen	tation of several efficient hill cl	imbers for pseudo-Boolean k-bounded functions				
EfficientHillClimbers / src / main / java / neo /	landscape / theory / apps / pseudoboolean /		III README.md				
👮 jfrchicanog GECCO 2017	Lat	est commit 5cb8053 14 hours ago					
			Grav-Box Optimization Operators and Algorithms				
a exactsolvers	GECCO 2017	14 hours ago					
experiments	initial branch	14 hours ago	You can find in this repository the source code of the algorithms implemented for the scientific papers listed:				
in hillclimbers	initial branch	14 hours ago	. For size Obiers Ochiele Oches Demellikhigered Deerts Tiele (Ochiel Ochiel Deerthindige Oceanted)				
arsers	initial branch	14 hours ago	 Francisco Chicano, Gabriela Ochoa, Darrell Whitley and Renato Tinos, "Quasi-Optimal Recombination Operator", EvoCOP 2019 (https://doi.org/10.1007/978-3-030-16711-0.9) 				
perturbations	initial branch	14 hours ago					
im problems	initial branch	14 hours ago	Francisco Chicano, Gabriela Ochoa, Darrell Whitley and Renato Tinós, "Enhancing Partition Crossover with				
im px	initial branch	14 hours ago	Articulation Points Analysis, GECCO 2016 (https://doi.org/10.1145/3205455.3205561)				
🖿 util	initial branch	14 hours ago	Francisco Chicano, Darrell Whitley, Gabriela Ochoa and Renato Tinós, "Optimizing One Million Variable NK				
Driver.java	initial branch	14 hours ago	Landscapes by Hybridizing Deterministic Recombination and Local Search", GECCO 2017				
Experiments.java	initial branch	14 hours ago	(https://doi.org/10.1149/30/11/0.30/1203)				
MaxNKStatistics.java	initial branch	14 hours ago	Francisco Chicano, Darrell Whitley and Renato Tinós, "Efficient Hill Climber for Constrained Pseudo-Boolean				
E PBSolution.java	initial branch	14 hours ago	Optimization Problems", GECCO 2016 (https://doi.org/10.1145/2908812.2908869)				
ParseResults.java	initial branch	14 hours ago	 Francisco Chicano, Darrell Whitley and Renato Tinós, "Multi-Objective Pseudo-Boolean Optimization", EvoCOP 2016 (http://dx.doi.org/10.1007/978-3-319-30698-8_7) 				
			In the following sections you will find instructions to run the algorithms in the papers. The name of the jar file generated by this commit is EfficientHillClimbers-0.7-GECC02018.jar				

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020)

Conclusions

- DPX is a very effective crossover operator
- Main drawback: runtime and memory consumption
- "Removing randomness" from metaheuristic algorithms (D. Whitley)
- Take home message: use Gray-Box Optimization if you can

Future Work

- Explore the shape of the connected components in the recombination graph and their relationship with performance
- Find the optimal value of the parameters using the VIG

References (I)

- Chen, W., Whitley, D., 2017. Decomposing SAT Instances with Pseudo Backbones. EvoCOP: 75-90
- Chicano, F., Ochoa, G., Whitley, D., Tinós, R., 2018. Enhancing partition crossover with articulation points analysis. GECCO: 269-276
- Chicano, F., Ochoa, G., Whitley, D., Tinós, R., 2019. Quasi-Optimal Recombination
 Operator. EvoCOP: 131-146
- Eremeev, A. V., Kovalenko, Y. V., 2013. Optimal Recombination in Genetic Algorithms. CoRR abs/1307.5519
- Galinier, P., Habib, M., Paul, C., 1995. Chordal graphs and their clique graphs. In Graph-Theoretic Concepts in Computer Sciences: 358-371
- Hammer, P. L., Rosenberg, I., Rudeanu, S., 1963. On the determination of the minima of pseudo-boolean functions. Stud. Cerc. Mat. 14:359-364
- Radcliffe, N. J., 1994. The algebra of genetic algorithms. Annals of Mathematics and Artificial Intelligence 10(4): 339-384

References (II)

- Tinós, R., Whitley, D., Chicano, F., 2015. Partition Crossover for Pseudo-Boolean Optimization. FOGA: 137-149
- Tarjan, R. E., Yannakakis, M., 1984. Simple linear-time algorithms to test chordality of graphs, test acyclicity and hypergraphs, and selectively reduce acylic hypergraphs. SIAM Journal on Computing 13(3): 566-579

Acknowledgements

Thanks for your attention!!!

SLS 2020 Workshop, Leiden, The Netherlands (5 September 2020)