
Challenges for Real Applications

Data Science and Engineering (I)
Master's Degree in Computer Engineering
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1. Managing a data science and engineering project

2. Search, optimization, and learning

3. Needs of real projects: scalability, dynamism, robustness, multiple 
objectives, restrictions, and self-control

4. Examples of real products and services

5. Modern techniques for real applications

Challenges for real products 2
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● The typical data science project is an engineering procedure:
start, steps, end

● Full of informed decisions on whether to continue based on pre-
defined criteria

● Goal: optimize resource utilization, get high-quality results and
maximize benefits

● Money is an issue, but realistic hypotheses and ideas are a must
● The data science life-cycle:

1. Data acquisition
2. Data preparation
3. Hypothesis and modeling
4. Evaluation & Interpretation
5. Deployment
6. Operations
7. Optimization

Management of a DS project (I) 3
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1. Data acquisition – acquiring data from internal and external
sources

2. Data preparation (“data wrangling”) - involves cleaning the data
and reshaping it into a readily usable

3. Hypothesis and modeling – applying ML techniques to all data
(MS: model selection). MS involves to identify training/test sets

4. Evaluation and interpretation – comparing model performances

● Steps 2-3-4 are repeated; as the understanding of data and
business becomes clearer

Management of a DS project (II) 4
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5. Deployment – the project is run in a production environment. It
could include fast-tweaks after deployment, based on the
continuous deployment model.

6. Operations (maintenance) – This phase could also follow a
DevOps model which gels well with the continuous deployment
model, given the rapid time-to-market requirements in big data
projects. Steps 5 and 6 are mixed usually (like agile software in
software engineering).

7. Optimization – This could be triggered by failing performance, or
due to the need to add new data sources and retraining the
model, …

Management of a DS project (III) 5
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In which step is the activity done? (1. Data acquisition, 2. Data
preparation, 3. Hypothesis and modeling, 4. Evaluation & Interpretation, 5.
Deployment, 6. Operations, and 7. Optimization)

A.- Removing outliers
B.- Calculating vehicle speed from its positions
C.- Running the complete system on a Docker infrastructure for testing
D.- Splitting the dataset into train and test set
E.- Deploy improved version of the model
F.- Rebooting the complete system after an unrecoverable failure
G.- Applying cross-validation
H.- Tuning the model parameters
I.- Examining which models can be applied to the data
J.- Obtaining values from car’s sensors (OBD-II)

Examples 6
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● CRoss Industry Standard Process for Data Mining (CRISP-DM):
1. Business understanding
2. Data understanding
3. Data preparation
4. Modeling
5. Evaluation
6. Deployment

● Library of assets (expertise/maturity):
1. Library of business use case
2. Data requirements
3. Minimum data quality requirements
4. …

● Data scientists are likely to have limited 
business domain expertise. They need to be 
paired with business people and those with expertise in 
understanding the data. 
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● Set of practices to reduce the time between committing a change
to a system and the change being placed into normal production,
while ensuring quality

● It uses different sets of tools (toolchains) rather than a single one
● Steps – Coding + Building + Testing + Packaging + Releasing +

Configuring + Monitoring

You should now also on (II) DevOps 8
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Too new!
Standards just

born…
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No operations?
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. Search, Optimization, and Learning 16

Search Optimization

Learning
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. Optimization problems are everywhere! 17

● Logistics, transportation, supply change management
● Manufacturing, production lines
● Timetabling
● Cutting & packing
● Computer networks and telecommunications
● Health
● Videogames
● Software (SBSE)

… even in data science (data fitting, NN training, feature selection…)
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. Optimization problems 18

● Most general form:
𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥 ∈𝑋𝑋𝑎𝑎𝑎𝑎 𝑓𝑓(𝑥𝑥)

Terminology:
● 𝑓𝑓: 𝑋𝑋𝑎𝑎𝑎𝑎 → 𝑅𝑅: fitness function, objective function, usually real-valued
● 𝑚𝑚𝑚𝑚𝑚𝑚 ↔ 𝑚𝑚𝑚𝑚𝑚𝑚 by replacement 𝑓𝑓 ↔ −𝑓𝑓
● 𝑥𝑥: control or optimization parameters

○ integer/discrete, continuous, or mixed-integer problems
● 𝑋𝑋: usually vector space or unbound set
● 𝑋𝑋𝑎𝑎𝑎𝑎 ⊂ 𝑋𝑋: admissible or feasible set

○ 𝑋𝑋𝑎𝑎𝑎𝑎 = 𝑋𝑋: unconstrained problem
○ 𝑋𝑋𝑎𝑎𝑎𝑎 ≠ 𝑋𝑋: constrained problem
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. A taxonomy of modern AI techniques 19

Optimization Algorithms

Calculus TrajectoryEnumerative

SA

Exacts Metaheuristic

Population

VNS
EA
ACO

DP
B&B

TS

Ad-hoc Heuristics

PSO

nature inspired in red

Direct Indirect

Newton
Greedy
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. Evolutionary Algorithm 20

● Based on the ideas of Darwinian Evolution theory

In order to use one EA several steps of instantiation are needed:
● Problem: genotype (encoding) and fitness function
● Operators and their parameters
● Stopping criterion

t := 0
i n i t i a l i z e ( P( t ) )
e va l ua t e ( P( t ) )
while not e nd c ondi t i on do

P’ ( t )  : = s e l e c t i on( P( t ) )
P’ ( t )  : = r e c ombi na t i on( P’ ( t ) )
P’ ( t )  : = mut a t i on( P’ ( t ) )
e va l ua t e ( P’ ( t ) )
P( t +1)  : = r e pl a c e me nt ( P( t ) ,  P’ ( t ) )
t  : = t +1

end while
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. Evolutionary Algorithm: example (I) 21

● 0-1 Knapsack problem

Maximize ∑𝑖𝑖=1𝑛𝑛 𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖

Subject to ∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 ≤ 𝑊𝑊 and 𝑥𝑥𝑖𝑖 ∈ {0,1}
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. Evolutionary Algorithm: example (II) 22

● Genotype: bit string

● Fitness function:

● Stop condition: 100000 evaluations

● Population:
○ Size: 100
○ Random generated

● Selection: Random
● Replacement: Worst

�
𝑖𝑖=1

𝑛𝑛

𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖

0 1 1 1 0 0 0 1 1 0 1 0 1 1 1

0 0 1 1 1 0 0 0 1 1 0 1 0 1 1 1

1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 0

2 1 0 1 1 0 1 0 1 0 1 0 1 0 1 1

…

99 0 0 0 1 1 0 1 1 1 0 1 1 1 0 0



C
ha

lle
ng

es
 fo

r 
re

al
 A

pp
lic

at
io

ns
Da

ta
 S

ci
en

ce
 a

nd
 E

ng
in

ee
rin

g 
I (

M
U

II)
S.

O
.L

. Evolutionary Algorithm: example (III) 23

● Crossover / recombination: SPX (simple point crossover)

● Mutation: bit-flip

0 0 1 1 0 0 1 1 1 1 0 1 1 0 1

0 0 0 1 1 1 0 1 0 0 0 1 0 1 1

0 0 1 1 0 0 1 1 1 0 0 1 0 1 1

0 0 0 1 1 1 0 1 0 1 0 1 1 0 1

0 0 1 1 0 0 1 1 1 1 0 1 1 0 1

0 0 0 1 0 0 1 1 1 1 1 1 1 0 1
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. Search space 24

Unimodal

Multimodal

Deceptive
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. Search space and GA operators 25

Population generation

Selection

Crossover
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. Search space and GA operators 25

Population generation

Selection

Crossover

Mutation

Replacement
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. Search space and Neighbourhood 26

Current solution Neighbours
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N(x) = x ± 1 N(x) = x ± 2
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. Particle Swarm Optimization (I) 27

● Particle Swarm Optimization (PSO) is a population based
metaheuristic inspired in the social behavior of birds within a flock

● It was initially designed for continuous
optimization problems, but can be used 
in discrete ones also

● In PSO, each potential solution is called 
a particle and the population of 
particles is called a swarm

● In this algorithm, each particle position 
pi is updated each generation k by means of this equation (vi is its 
velocity):

𝑝𝑝𝑖𝑖𝑘𝑘+1 ← 𝑝𝑝𝑖𝑖𝑘𝑘 + 𝑣𝑣𝑖𝑖𝑘𝑘+1
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. Particle Swarm Optimization (II) 28

● The velocity of the particle is given by the expression:

𝑣𝑣𝑖𝑖𝑘𝑘+1 ← 𝑤𝑤 ⋅ 𝑣𝑣𝑖𝑖𝑘𝑘 + 𝑐𝑐1 ⋅ 𝑟𝑟 ⋅ 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 + 𝑐𝑐2 ⋅ 𝑟𝑟 ⋅ 𝑝𝑝𝑖𝑖𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
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. Simulated Annealing 29

● It is based on annealing in metallurgy
● SA is a hill-climbing method
● It accepts worse solutions to avoid getting stuck in local optima,

according a criterion (y is new solution and x the old one):

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 0,1 ≤ min 1, 𝑒𝑒
𝑓𝑓 𝑥𝑥 −𝑓𝑓 𝑦𝑦

𝑇𝑇
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. Variable Neighbourhood Search 30

● VNS is a stochastic algorithm with a set of neighbourhood
structures are defined,

● Each iteration: shaking, local search and move
● VNS explores a set of neighbourhoods to get different local optima

and escape from local optima
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Real problems pose real challenges

Reality is challenging:
● Large scale, every is really big
● Time consuming and real time 
● Dynamic, everything changes in time 
● Uncertainty in all tasks and phases 
● Complex relations, interdependences 
● Several goals at the same time 
● Human preferences and interfaces 
● Lots of restrictions (legal, technical…) 
● Mobile plus desktop applications

31
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Scalability 32

Scalability is the property of a system to handle a growing amount 
of work by adding resources to the system
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Dynamism and Uncertainty

Dynamism: the problem conditions change over the time in an
unpredictable way
Uncertainty: the problem involves imperfect or unkown information

33
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Robustness

Robustness: the performance is stable after adding some noise to 
the environment

34
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Multiple Objectives 35

Green dominates yellow. Red are non-dominated.



Ch
al

le
ng

es
C

ha
lle

ng
es

 fo
r 

re
al

 A
pp

lic
at

io
ns

Da
ta

 S
ci

en
ce

 a
nd

 E
ng

in
ee

rin
g 

I (
M

U
II)

Constraints

… many types of constrains …

36
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AutoML 37
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An example (I)

Problem:
• Gene selection and cancer classification of DNA
• Microarray, feature selection
Objectives:
• Maximize accuracy of prediction
• Minimize the number of selected genes
• Maximize sensibility and specificity ( ROC factors )
Phases:
• Feature selection
• Training
• Validation
• Fitness calculation

38
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An example (II)

Fitness:
• Monobjective: aggregative: (alpha*100/accuracy + beta * #features )
• Multiobjective:

2 (accuracy, #features) or 3 (sensibility, specificity, #features)
Classification:
• SVM 
• K-means
Validation:
• Leave one out cross-validation
• 10-fold cross-validation
Algorithms (for feature selection):
• PSO variant
• GA variant

39



C
ha

lle
ng

es
 fo

r 
re

al
 A

pp
lic

at
io

ns
Da

ta
 S

ci
en

ce
 a

nd
 E

ng
in

ee
rin

g 
I (

M
U

II)
Ex

am
pl

e
An example (III)

Instances:
• Large scale datasets of well-known cancer DNA Microarrays:

Leukemia, Colon, Prostate, Lung, Ovarian, Breast (e.g. breast 24481
genes and 97 patient samples)

Results: comparison against other techniques (S.O.T.A.)

Leukemia Gene Subset:
PSO: K01383,  U03056, J04130 vs GA: L40379, S85963, U83192, Z49099

40

Dataset GPSO GA Huerta et 
al.

Juliusdoti
r et al.

Deb et 
al.

Guyon et 
al. Yu et al. Liu et al. Shen et 

al.
Leukemia 97.38(3) 97.27(4) 100(25) - 100(4) 100(2) 87.44(4) - -

Breast 86.35(4) 95.86(4) - - - - 79.38(67) - -
Colon 100(2) 100(3) 99.41(10) 94.12(37) 97(7) 98(4) 93.55(4) 85.48(-) 94(4)
Lung 99.00(4) 99.49(4) - - - - 98.34(6) - -

Ovarian 99.44(4) 98.83(4) - - - - - 99.21(75) -
Prostate 98.66(4) 98.65(4) - 88.88(20) - - - - -



Advanced Tools

Data Science and Engineering (I)
Master's Degree in Computer Engineering
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1. Complex problems need advanced tools

2. Measuring efficacy and efficiency

3. Parallel hardware, or how new technology helps

4. Algorithm hybridization, or how new techniques can help

5. Practical Examples

Advanced techniques and technologies 2
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● Graduate students know some tools to deal with engineering apps
● Most graduate programs offer a small sample of algorithms and

technologies
● Graduate students then only know very basic concepts
● Real problems seldom admit the constraints of basic tools
● A complex real application needs advanced algorithms and

technologies
● Research in algorithms, software, AI, and new technologies is full of

them
● Just few techniques that can be used as described in books
● To work well, they need to be improved...

How do we improve them? 

Real problems need more than you expect / know 3
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What is the computational complexity of your algorithm?
Measure it as O(n) O(logn) O(n∙logn) O(n2) O(n3) ... O(2n) ... O(n!) … O (nn) ... 

How much simple is a technique? Occam’s razor principle applies
If more complex than one with similar behaviour, then not interesting 

How measure complexity: computational, software, understanding...? 
In terms of input, branches, length of description, time to learn it, ... 

What is defining the limits of a technique or a technology?
Its complexity, but also its accuracy in solving a problem, its robustness... 

How a technique could be improved? And a technology?
New design (operations, concepts), new implementation, latest hardware, ... 

Similarities to other existing tools? Do they inspire to improve? 
See the basics of the tool, similar structure, know on cross-fertilization

Can we quantify all the decisions? Identify all the needed steps?
Data driven decision making, always measure ... scientific method 

Important questions 4
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MSE – Mean Squared Error:
● Risk measure (quality of estimator)

Logarithmic Loss:
● Penalising the false classification

Accuracy

Confusion Matrix

Area under de curve (AUC)
● How well the test separates the group 

being tested into 2 classes?
● TPR = TP/(TP + FN) FPR = FP/(FP + TN)

Always measure: efficacy measures 5
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Wall Clock Time
● T = tend – tstart

Always measure: efficiency measures 6

𝑆𝑆𝑚𝑚 =
�𝑇𝑇1
�𝑇𝑇𝑚𝑚User time

CPU time
Communication time
…

Speedup

Memory usage
Size of data files

Battery consumption (phone)
Kwh consumption (data center)
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. Parallelism: parallel algorithms plus HW 8

● Even very advanced algorithms reach a maximum efficiency. This happens
in large problem instances, or when using simulators, or in real time
scenarios, or in web services for clients, …

● Advances in parallel hardware like clusters, multicores, GPUs, cloud, etc.
allow to make more than one step per unit time in the used techniques

● Sometimes you are not only looking for reduced times, but for new types of
techniques that search for different solutions at the same time
collaborating

● Sometimes you have a multicore or a lab full of cores: explode them !!!
● Thus, you can make new techniques and also run them faster, both !!!

Problems not solved before, 
now become solvable by 

using parallel tools
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. Parallelism: parallel algorithms plus HW 9

Parallelism and Metaheuristics:
The increasing availability of new kinds of CPUs and the parallel nature of
metaheuristics have allowed the fast development of parallel metaheuristics

Advantages:
● Allow to tackle more complex problems/instances
● Allow to reduce the execution time
● Allow to improve quality of the found solutions

Design

Implementations
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. High performance computing and folks 10
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. Hardware is important 11
Grid and cloud 

computing

FPGA

Cluster
computing GPU

Manycores Quantum Computers
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. Design vs implementation, not the same 12

● Node in a distributed EA
t := 0
i n i t i a l i z e ( P( t ) )
e va l ua t e ( P( t ) )
while not e nd c ondi t i on do

P’ ( t )  : = s e l e c t i on( P( t ) )
P’ ( t )  : = r e c ombi na t i on( P’ ( t ) )
P’ ( t )  : = mut a t i on( P’ ( t ) )
e va l ua t e ( P’ ( t ) )
P( t +1)  : = r e pl a c e me nt ( P( t ) ,  P’ ( t ) )
<<Communication with neighbours >>

t  : = t +1
end while
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Hybridization: a good way to build techniques

Hybridization is the inclusion of problem-dependent information in 
the algorithm, but also combining fields, operations, data, 
technologies, frameworks …

Types
● Weak
● Strong

13
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Hybridizing ML with metaheuristics 14

Optimization + Learning 

Hybrids = ML + MetaH

Tuning ML tools

Surrogate systems

Collaboration processes
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Building Blocks 15
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e
Academic problem domains

Mathematical Optimization:
• Rastrigin, Rosenbrock, Mishra’s Bird…

Combinatorial optimization:
• Routes, scheduling, graphs…

Domain dependent benchmarks:
• Multiobjective
• Temporal series
• Data mining
• Neuronal network training

Know on standard benchmarking!!!

16
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e
Sectoral domains: Telecoms in this case 17
Radio Network Design

Sensor Network Layout

GSM Frequency  Assignment MANETs

Location Area in 4G/5G VANETS
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e
Every single domain is a good target

Designing Quantum Circuits
Data Based (Data Mining, Query Optimization)
Dynamic Optimization Problems (DOPs)
Tasks Scheduling in Operating Systems
Genomics (Fragment assembly, protein structure)
Games

18
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e
Parallelism, Hybridization, and a real application 19



Real Use Cases

Data Science and Engineering (I)
Master's Degree in Computer Engineering
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1. Feature selection

2. Neuroevolution

3. Surrogate models

4. Real applications

Learn more in going for real applications 2
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● The computational ability of machine learning models depends a 
lot on the feature set. 

● Retaining the significant features vastly improves the learning
time, and also improves accuracy.

● In feature selection, we find the optimal feature subset that
contributes most to our predicted variable.

● Advantages:
○ Improve generalization of models by reducing overfitting of data.
○ Remove unnecessary/redundant data.
○ Curtail the Curse Of Dimensionality
○ Optimize training time

Feature selection 3
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s = Random solution

s’ = Neighbor(s)

f’ = Evaluate(s’)

f’ = Evaluate(s’)

if better

s = s’

stop condfalse

false

true

true return best solution

Machine Learning Model
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● Solution encoding:
○ The solution can be implemented as a bit string. 
○ The solution's length is taken as the number of features in the

dataset. 
○ 0/1 indicates the presence/absence of the ith feature in the solution.

● Fitness function:
○ Number of features selected (nof)
○ Model accuracy (acc)

● Approaches:
○ Multiobjetive
○ Aggregate function:

𝒎𝒎𝒎𝒎𝒎𝒎 𝒇𝒇 = 𝜶𝜶 �
𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 − 𝒏𝒏𝒏𝒏𝒏𝒏

𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴
+ 𝟏𝟏 − 𝜶𝜶 � 𝒂𝒂𝒂𝒂𝒂𝒂
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. Neuroevolution 6



C
ha

lle
ng

es
 fo

r 
re

al
 A

pp
lic

at
io

ns
Da

ta
 S

ci
en

ce
 a

nd
 E

ng
in

ee
rin

g 
I (

M
U

II)
S.

O
.L

. Forward propagation of inputs 7
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. Backpropagation of errors 8

• Prone to local optima
• Not appropriate for complex NN
• Oscillations
• Depends on structural functions
• Need unfolding in deep learning
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. Neuroevolution 9
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. Encoding weights vs. backpropagation 10

● Solution encoding:
○ List of float numbers
○ Mapping between

poisition in list and 
weight in NN

● Fitness function:
○ Model accuracy
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. Evolving NN structures!!! 11
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Surrogate models

● A lot of engineering problems require experiments and/or
simulations to evaluate design objective and constraint functions
as a function of design variables.

● A single simulation can take many minutes, hours, or even days to
complete, thus rendering them infeasible in practice.

Surrogate models are a statistical 
model to accurately approximate 
the simulation output. 

This trained model can be deployed 
to replace the original computer 
simulation.

12
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Surrogate models 13

Sampling:
● Random 
● Latin hypercube

Construct model:
● Model selection
● Tuning parameters
● Feature selection?

Utilization:
● Only surrogate model
● Mixed model: 

surrogate + simulation
● New samples?
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e Problem
● City evolution:

○ Nowadays, cities are growing in the number of inhabitants, many of 
whom are arriving at the city for the first time

○ By 2050 the human population will reach 9 billion with 75% of the 
world's inhabitants living in towns and cities

● As consequence, the number of vehicles in streets is continuously 
increasing, affecting all aspects of daily life:
○ Traffic jams
○ Pollution
○ Security
○ Stress
○ Economic losses
○ …

15
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e Potential Solutions
● “Classic” solutions:

○ Infrastructures
○ Promote the use of public transportation or green vehicles (bikes)
○ Promote the use of car-sharing (VAO lanes)
○ Limiting car access to city centers

● “Intelligent” solutions:
○ Provide real-time and accurate data to citizens to make informed 

decisions (traffic intensity, free park slots, …)
○ Automatic assistance tools: adaptative and/or customized routes
○ Better tuning of existing elements: routes and frequencies of public 

transportation, traffic light timing…

16
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e Proposal

Automatic Traffic Control Signals

• Reduce the traffic jams
• Minimize the waiting times in red lights
• Faster routes
• Reduce the gas emissions

17
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e Traffic Control Signals
● First, we need to study the elements, constraints, and regulations 

in the problem domain

● Multiple sources of information:
○ International regulations. (I.e., U.S. Transport Department):

■ Manual on Uniform Traffic Control Devices (862 pages)
■ Traffic Signal Timing Manual (274 pages)

○ National regulations. (I.e., DGT):
■ Regulación semafórica (32 pages)
■ Cruces semafóricos y sincronismo (32 pages)

○ Specialized personnel (city traffic managers)
○ Scientific literature

● Information filtering

18
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e Traffic Control Signals
● Important concepts:

○ Intersections
○ Cycle
○ Phases
○ Traffic light schedule or plan

Intersection

S1
S2
S3
S4

Cycle

Phases

19
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e Traffic Control Signals
● More information:

○ The duration of phases and cycles can be modified

○ The phases CANNOT be modified

○ Recommended duration of a cycle: 60-120 seconds

○ Yellow phases (before red light): 4 seconds

○ Minimum duration of some phases (i.e., red phases at crosswalks 
should allow to safely cross the road => minimum duration = 1 m/s * 4 
m/lane * #lanes)

○ Promote green waves in important avenues

○ Traffic-dependent planes (time, weekday, season,… )

○ …

Green wave

20
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e How are traffic lights configured?
● Location/type:

○ Some locations are mandatory according to regulations
○ Other locations are recommended but not mandatory

● Phases of traffic lights:
○ Regulations establish a procedure to set 

the phases

● Duration of phases/cycles:
○ It is defined by city traffic managers according to some constraints
○ Usually, it is manually done in each intersection
○ Based on experience and accumulated knowledge
○ There are dynamic systems (they react to current traffic). Problem: 

Quick changes that don't improve traffic 

21
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e How are traffic lights configured?

• 3 traffic flows
• 6 traffic lights:

• 4 for vehicles  (1 for bus)
• 2 for citizens

22
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e How are traffic lights configured?
● They generate several traffic light plans that are chosen 

according to: 

○ Season (summer – winter) 

○ Weekday 

○ Time zone (from 3 to 9) 

23
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e Proposed system
● Automatically generated cycle and phase times:

○ Those times must respect the constraints

● Simultaneously consider all traffic lights in the city or the area 
defined by the traffic control center

● Obtain different plans (offline) according to traffic intensity

● The final goal is to obtain more fluid traffic that reduces the 
pollution

24
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e Modeling the problem
● Given the following input data: 

○ Intersections to improve (location, phases)
○ And the traffic flows

● Objective: to find the configuration (duration for the phases) that 
outperforms the rest of the existing configurations 

● Questions: 
○ What is computationally a solution (representation)? 
○ When is a configuration better than another one (from a numerical 

point of view)? 
○ Where do we get the information from? 
○ How do we find the best? 
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e Solution encoding
● List of numbers (duration of phases):
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e Solution encoding
● Restrictions not met by default: 

○ Yellow phases to 4 
○ Cycles > 60 and < 120 
○ Green Wave Promotion 

● Other alternative representations: 

○ Each intersection: cycle time + percentage that each phase occupies 
○ Reduce the number of traffic lights: 

■ Cluster the intersections into groups 
■ Only one in the group is optimized 
■ The rest are small variants of the optimized 

○ Others? 
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e Solution fitness
● To compare solutions, we need quantitative values (fitness)
● The traffic system is very complex

○ No (realistic) mathematical models
○ Utilization of simulators

● SUMO (Simulator of Urban Mobility)
○ Input: Roadmap, traffic flows, traffic light plans
○ Output: statistics of the simulation

Vehicles reaching destination: 30
Average trip time: 120
CO2: 543452
Average waiting time: 10
…

20 8 47 23 30 10 60 4 … 29

SUMO
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e Solution fitness
● Statistics about simulation:

○ Number of vehicles that reach their destination during a given 
simulation time

○ Average trip time
○ Emissions (CO2, CO, NOx, PMx, HC, …)
○ Waiting times in traffic lights

● Fitness value:
○ Only one
○ Combination of several ones
○ Multi-objective approach
○ Derivate values (green waves?)

● Additional challenge:
○ SUMO only calculates statistics for vehicles that reach their 

destination

𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 =
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

𝑉𝑉𝑅𝑅2 + 𝑃𝑃

Trip duration 

Waiting times Vehicles not 
reaching destination

Green phases durationVehicles reaching destination
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e Realistic data
● Input for our system:

○ City map

○ Location of traffic lights

○ Vehicle flow according to several factors (time, weekday, or season)

○ Constraints in phase duration

● Source of the data:

○ Maps: OpenStreetMap

○ Traffic lights: traffic control center of the city

○ Routes: Mobility department
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e Realistic data
● Challenges: Maps and traffic lights

○ Incomplete maps: missing road, road directions, traffic lights, …

○ Errors in conversion (OSM => SUMO) 

○ Manual correction of the maps. Labour intensive process

● Challenges: Routes

○ Not enough details

○ Non-automatable format

○ Conversion of traffic intensity to traffic flows
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e Algorithms
● GA + ANN as surrogate model

P = Random population

P’ = Evolve(P)

Evaluate(P’)

Evaluate(P)

P = Replacement(P, P’)

stop conditionfalse true
return best solution

Surrogate model

solution

solution
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Challenges in 
real-world
problems

Scalability
Dynamism
Uncertainty
Robutness
Multiple Objectives
Contraints

Management 
of DS proyects

Approaches

Efficiency:
Parallelism

Efficacy:
Hybridization

Feature
Selection

Neuro-
evolution

Surrogate
models

Real-world
Application: 

TLSP
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