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Challenges for real products -

1. Managing a data science and engineering project

Management @

2. Search, optimization, and learning

3. Needs of real projects: scalability, dynamism, robustness, multiple
objectives, restrictions, and self-control

4. Examples of real products and services

S5. Modern techniques for real applications

Challenges for real Applications
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Management of a DS project (l) -

e The typical data science project is an engineering procedure:
start, steps, end

e Full of informed decisions on whether to continue based on pre-
defined criteria

e Goal: optimize resource utilization, get high-quality results and
maximize benefits

Management @
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Management of a DS project (ll) O

1. Data acquisition - acquiring data from internal and external
sources

Management @

2. Data preparation (‘data wrangling”) - involves cleaning the data
and reshaping it into a readily usable

3. Hypothesis and modeling - applying ML techniques to all data
(MS: model selection). MS involves to identify training/test sets

. Evaluation and interpretation - comparing model performances

o Steps 2-3-4 are repeated; as the understanding of data and
business becomes clearer

Challenges for real Applications
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8] Maonagement of a DS project (1) _

o. Deployment - the project is run in a production environment. It
could include fast-tweaks after deployment, based on the
continuous deployment model.

Management

6. Operations (maintenance) - This phase could also follow a
DevOps model which gels well with the continuous deployment
model, given the rapid time-to-market requirements in big data
projects. Steps S and 6 are mixed usually (like agile software in
software engineering).

/. Optimization - This could be triggered by failing performance, or
due to the need to add new data sources and retraining the
model, ...

Challenges for real Applications
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Challenges for real Applications
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Management

8] Exomples O

In which step is the activity done? (1. Data acquisition, 2. Data
preparation, 3. Hypothesis and modeling, 4. Evaluation & Interpretation, S.
Deployment, 6. Operations, and 7. Optimization)

A.- Removing outliers

B.- Calculating vehicle speed from its positions

C.- Running the complete system on a Docker infrastructure for testing
D.- Splitting the dataset into train and test set

E.- Deploy improved version of the model

F.- Rebooting the complete system after an unrecoverable failure

G.- Applying cross-validation

H.- Tuning the model parameters

l.- Examining which models can be applied to the data

J.- Obtaining values from car's sensors (OBD-)




8 You should now also on () CRISP-DM <

e CRoss Industry Standard Process for Data Mining (CRISP-DM):

Business understanding

Data understanding

Data preparation

Modeling

Evaluation

Deployment

o lerory of assets (expertise/maturity):
1. Library of business use case
2. Data requirements
3. Minimum data quality requirements
4,

e Data scientists are likely to have limited
business domain expertise. They need to be
paired with business people and those with expertise in
understanding the data.

Management

NI RN
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8] You should now also on (Il) DevOps O

e Set of practices to reduce the time between committing a change
to a system and the change being placed into normal production,
while ensuring quality

e |t uses different sets of tools (toolchains) rather than a single one

e Steps - Coding + Building + Testing + Packaging + Releasing +
Configuring + Monitoring

Management
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' DevOps .
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Other models having seven steps

01

BUSINESS UNDERSTANDING
Ask relevant questions and define
objectives for the problem that
needs to be tackled.

Management @

Too new!
Standards just
born...

02

DATA MINING

Gather and scrape the
data necessary for the
praject.

DATA SCIENCE
LIFECYCLE

sudeep.co

06

PREDICTIVE
MODELING

Train machine learning
models, evaluate their
performance, and use
them to make predic-

tions.

03

DATA CLEANING

Fix the inco

05 04

FEATURE ENGINEERING
Select important features and
wonstrucl more meaningful
ones using the raw data that

you have.

Challenges for real Applications

Data Science and Engineering | (MUII)




Management @
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Other models having six steps (l)

Data Analytics Lifecycle

Operationalize

Communicate
Results

Is the model robust
enough? Have we
failed for sure?

Do | have enough
information to draft an
analytic plan and share for
peer review?

Discovery

Do | have
enough good
quality data to
start building

the model?

Model
Planning

Model Do | have a good idea
Building about the type of model
to try? Can | refine the

analytic plan?




Other models having six steps (ll)

Step-1 Step-2
Data Acqusition D' ( Data Preparations

I

Management @
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Management @

Model

Training

Model
Optimization

Model
Evaluation

Other models a smaller number of steps @

Data
It always starts
with some data ... &

Deployment

Data Manipulation

Data Blending

Missing Values Handling
Feature Generation
Dimensionality Reduction
Feature Selection

Outlier Remowval
MNarmalization
Partitioning

Model Training

Bag of Models

Model Selection
Ensemble Models
Own Ensemble Model
External Models
Import Existing Models
Model Factory

Parameter Tuning
Parameter Optimization
Regularization

Model Size

Mo lterations

Performance Measures
Accuracy

ROC Curve
Cross-Validation

Files & DBs
Dashboards
REST API

50L Code Export
Reporting




Other models a smaller number of steps @

Data Science Process

Management @

+ D'D:}
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CHTAIN SCRUB

O S E M N

Gather data from  Clean data to formats Find significant patterns  Construct modelsto  Put the results into
relevant sources that machine and trends using predict and forecast good use
unoerstanas statistical methods
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Models having a larger number of steps!

Data
science
process

Management @
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Search, Optimization, and Learning (16

Search

= =
Gl
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Optimization -

I

Meaningful

Structure Image
Compression

Customer Retention
Discovery

Classification

Big data Dimensionality Feature Idenity Fraud

ificati Diagnostics
Visualistaion Reduction Elicitation Detection Classification &

Advertising Popularity
Prediction

Learning Learning Weather

Machine s

Growth
Prediction

Recommender Unsupervised Supervised

Syscems

Clustering

Targetted

Marketing Market

Forecasting

Customer

== | carning

Estimating
life expectancy

Learning

Le O r n i n 9 Reinforcement




SOL 3
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Optimization problems are everywhere!l @

Logistics, transportation, supply change management
Manufacturing, production lines |
Timetabling aby,
Cutting & packing Za bR
Computer networks and telecomm

Health
Videogames TR
Software (SBSE) LA T D
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+l Optimization problems O

L

S.O

e Most general form:

Miny ex,,, | (%)

Terminology:
e f: X,; — R:fitness function, objective function, usually real-valued
e min & max by replacement f & —f
e x. control or optimization parameters
o integer/discrete, continuous, or mixed-integer problems
e X: usually vector space or unbound set

e X,; C X: admissible or feasible set

o Xg,q = X:unconstrained problem
o Xgq # X: constrained problem

Challenges for real Applications
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A taxonomy of modern Al techniques (19}

SOL 3

Optimization Algorithms

A —
~ N
Exacts Ad-hoc Heuristics Metaheuristic
c A A
9 r i) ' N
§ § Calculus Enumerative Trajectory Population
S5 A
< < Wan N\
o i Direct Indirect — DP —SA —EA
o — B&B — VNS —ACO
g é — Newton —TS _ PSO
() N3]
GO — Greedy
Eé nature inspired in red
(O Nl




Q Evolutionary Algorithm 120

S.O.L

t:=0 Recombination
C e . Ineach
initialize(P(t)) Selectlon
evaluate(P(t)) ‘
P’(t) := selection(P(t)) o
P’(t) := reconbination(P’(t))
P(t+1) := replacenent(P(t), P’ (t))
t = t+l

e Based on the ideas of Darwinian Evolution theory
while not end condition do
P’(t) := mutation(P’(t)) Mutation
evaluate(P’(t)) Replacement (O
end while

In order to use one EA several steps of instantiation are needed:
e Problem: genotype (encoding) and fitness function

e Operators and their parameters

e Stopping criterion

Challenges for real Applications
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] Evolutionary Algorithm: examople (1) (21

L

S.O

e 0-1Knapsack problem

Maximize it v;x;

Subject to Y, wix; < W and x; € {0,1}

Challenges for real Applications
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+H Evolutionary Algorithm: example (1)

—

S.O

e Genotype: bit string

0 1 1 1 0 0 0 1 1 0 1 0 1 1

n

e Fitness function: zvixi
i=1

e Stop condition: 100000 evaluations

o(0j1(1{1{0|0(0(1j1|0f(1}0]1

e Population: 1 {1/1]ofo|1|1]|1|lo|1|l0o|1|0]1

o Size: 100
o Random generated 2 (1j0]j1]1j0j1]0|1]0]J1/0]1]O0

e Selection: Random 99 |ojofof1|1]|of1f{1|l1]o|1]|1]1

e Replacement: Worst

Challenges for real Applications
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+] Fvolutionary Algorithm: example (1) (23

L

S.O

e Crossover / recombination: SPX (simple p|>oint crossover)
I
(oJoJolt ]t ]iJolifolofoli]ol1]1
NN BN N BN
KN EN NN KN BN BN N

e Mutation:; bit-flip

Challenges for real Applications
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Multimodal
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pace and GA operators
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+] Search space and GA operators

Population generation

Selection

Crossover

Mutation

Replacement

Challenges for real Applications

Data Science and Engineering | (MUII)




? Search space and Neighbourhood

2l Current solution

Challenges for real Applications
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+ Particle Swarm Optimization (I) 127

_I
O
0p)

Challenges for real Applications
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e Particle Swarm Optimization (PSO) is a population based

metaheuristic inspired in the social behavior of birds W|th|n Q ﬂock
It was initially designed for continuous
optimization problems, but can be used
in discrete ones also

In PSO, each potential solution is called
a particle and the population of
particles is called a swarm _ | |
In this algorithm, each particle position ———

P; is updated each generation k by means of this equation (V' is its

velocity):

k+1 k k+1
Pi ST Pi + Ui




+H Particle Swarm Optimization (Il) 126

L

O
M ¢ The velocity of the particle is given by the expression:
o pe
gq o
k+1 K K best Y B
Vi T E W U +C1 T Gpest T C20 T Dy S
Algorithm 1 Pseudocode of PSO @ o

[: initializeSwarm()

11: end while

Challenges for real Applications

)

= 2: locateLeader(D)

Tgu 3: while !stopCondition() or g < maxGenerations do
= 4; for each particle x, do

< 5: updateVelocity(v;) // Equation 2
2 6: updatePosition(p;,) / Equation 1
Ll ; :

° 7 evaluate(pﬁ/)

C .

o 8: update(bpf/)

() . ]

o 9: end for

2 10: updateLeader(b,)

(9]

g

O

o)




Simulated Annealing (29

SOL 3

e |tis based on annealing in metallurgy

e SAis a hill-climbing method

e |t accepts worse solutions to avoid getting stuck in local optima,
according a criterion (y is new solution and x the old one):

(7))
5 fX)-f)
S _ Y
= d(0,1 1
=2 rand(0,1) < min\l,e T
U —
—_ D
6’_ > Algorithm 1 Simulated annealing algorithm
Q. g 1: procedure SA(f, N, Q. 1%, Ty)
< (@) 2 k+0
.g E Xmin £ F
6‘ o 4 foin = f(Xmin)
@ ) 5 T« Ty
Nt E 6: while stopping criterion is not satisfied do
() 7 #* + rand (N(x*,T))
s LICJ 8 .\J‘ kg
o 9 if rand(0,1) < min{1,exp{ \_fi.\‘( ) — _f(\"]];’?l}} then
Y— O ket ‘.
cC 10: Xy
8 O 11 else
[0) 12: Al K
o) 8 13: if f(o* 1) < fron then
cCs 14: X 4 !
9 6 15: Jmin + f(Xmin)
6’ n I6: ke k+1
C _9 17: Ti41 + temperature is updated
U 8 18: return Xuin




Variable Neighbourhood Search (30}

SOL 3

e VNS is a stochastic algorithm with a set of neighbourhood
structures are defined,

e Each iteration: shaking, local search and move

e VNS explores a set of neighbourhoods to get different local optima

(7))
S and escape from local optima
46 I | Procedure Algorithm of variable neighborhood search:
g ) begin  Ovteatrve Initial selution
O.% find the best solution found x;
< 2 | -
6’ = while (k < k) do \ 2 e
o2 randomly generate a new solution y € Ni(x); [ ;o g & -
t o if (f(x) > f(y)) then
ou X =Yy
Y= O
c k=1,
8 (o] €——__ Landecape 2 (Nelghbarhood 2)
o else . )
(- § k=Fk+ 1; --;.‘,-";.;:I;;;:I:.pl T » First local optimum
8 ‘O endif (landscape 1) .
6' (‘g endwhile Sgarch space
6 g end




“1 Real problems pose real challenges

Reality is challenging:

Challenges

e Large scale, every is really big
e Time consuming and real time
e Dynamic, everything changes in time

e Uncertainty in all tasks and phases

T0

e Complex relations, interdependences
e Several goals at the same time

e Human preferences and interfaces

e Lots of restrictions (legal, technical...)

e Mobile plus desktop applications

Challenges for real Applications
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“] Scalability (32)

Scalability is the property of a system to handle a growing amount
of work by adding resources to the system

SCALABLE

Challenges

(7]

5
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“] Dynamism and Uncertainty (33)

Dynamism: the problem conditions change over the time in an
unpredictable way
Uncertainty: the problem involves imperfect or unkown information

D> NI AMIST

A {cedback looP for CKO

Challenges

B

Challenges for real Applications

Data Science and Engineering | (MUII)




4] Robustness Q

Robustness: the performance is stable after adding some noise to

Challenges

the environment

Output

Robust
process
window

S

Quality target

Ais.e Design Parametar

variable

Challenges for real Applications
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“1 Multiple Objectives W

Green dominates yellow. Red are non-dominated.

Challenges

Multi-Objective Optimization:
No single “optimum” solution

BAD

—

'Y — Higher-level
) - Decision Making

Objective 2

OBIECTIVE B

ety

Objective 2
-

\ The Chosen Solution

GOOD

GOOD —_— OBJECTIVE A

Chypective |

Challenges for real Applications
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4] Constraints

Types of Data Types of Constraints

... many types of constrains ... A. Gene Expression Flux Capacity- Boolean (On/Of)

W 4 yj_b?mlnsvjsyj_‘{imax
where ¥ ={0,1}
Flux Capacity- Continuous

Challenges

B. Protein Expression p;Y; min _ v < p- v
where p; = [0,1]
Thermodynamic Constraints
ifv; =0then AG; <0
C. Metabolite Concentration ifv; =0then AG; =20
HO, — o
. - AG,=AG; + RTYS,;InC,
woi~, ° o i
% % Molecular Crowding Constraints
onm o 2“{’ . Vj S 1
J

D. Kinetic Parameters

Km Distribution for Kinetic Constraints
Enzymes in BRENDA
k

-C
= "I (Bigchemical)

Ky * G
001 04 1- 10 100- V;

Sij ;
04 4 10 100 1000 J kll_[Cl WEEHEELE

Km (mM) Values for EC 2.2.1.6 i

No. of Enzymes
ocIRBED
=

Challenges for real Applications
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41 AutoML

Challenges

-

Best Individual Proportion

Challenges for real Applications
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&

Photo Dataset

EXD

Generate predictions
with a REST API

Cloud AutoML Vision Rest API

Deploy Serve




%) An example (1) D

Problem:

- Gene selection and cancer classification of DNA
- Microarray, feature selection

Objectives:

- Maximize accuracy of prediction

(]

c

0

-+

=+ Minimize the number of selected genes

&% + Maximize sensibility and specificity ( ROC factors)

< c .

é g Phases. o Solution (S). Provided by % iiiii é;lb-setAE\‘r;l-l.;a_tnlo;;ili
: E» o FeOtu re SeleCt|On Metaheuristic (PSO, GA) SVM — Classification
2= - Trainin 5 o Gross

o g e ]

- -+ Validation caay | M |

cC ¢ . . N [ 1011001 ] .

oo - Fitness calculation Fitness(S)=Accuracy &
5o I e el
03




) An examople (I ©

Fitness:
+ Monobjective: aggregative: (alpha*100/accuracy + beta * #features)
- Multiobjective:

2 (accuracy, #features) or 3 (sensibility, specificity, #features)
Classification:
- SVM
+ K-means
Validation:

9
Q
S
o
X

L

* Leave one out cross-validation |, space .\
o . ey m“:"lww‘% ',j:‘"- X

- 10-fold cross-validation
g )

lgorithms (for feature selection): L .

I
L
it

T
RN
At
R
sty
I

Reth

v

- PSO variant
- GA variant

Challenges for real Applications
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) An examople (I11)

Challenges for real Applications Example

Data Science and Engineering | (MUII)

Instances:

A 4

« Large scale datasets of well-known caoncer DNA Microarrays:
Leukemiaq, Colon, Prostate, Lung, Ovarian, Breast (e.g. breast 24481
genes and 97 patient samples)

Results: comparison against other techniques (S.O.T.A)

97.38(3) |97.27(4)| 100(25) - 100(4)| 100(2) | 87.44(4) - -
86.35(4) 195.86(4) - - - - 79.38(67) - -
100(2) 100(3) [99.41(10)(94.12(37)| 97(7) | 98(4) 93.55(4) | 85.48(-) 94(4)
99.00(4) 199.49(4) - - - - 98.34(6) - -
99.44(4) | 98.83(4) - - 99.21(75)
98.66(4) | 98.65(4) 88.88(20) - -

Leukemia Gene Subset:
PSO: KO1383, U03056, J04130 vs GA: L40379, S85963, U83192, 249099
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Advanced techniques and technologies @

1. Complex problems need advanced tools
“j
2. Measuring efficacy and efficiency ‘

4. Algorithm hybridization, or how new techniques can help

Management @

3. Parallel hardware, or how new technology helps

. Practical Examples

Challenges for real Applications
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Real problems need more than you expect / know@

e Graduate students know some tools to deal with engineering apps

e Most graduate programs offer a small sample of algorithms and
technologies

e Graduate students then only know very basic concepts

e Real problems seldom admit the constraints of basic tools

e A complex real application needs advanced algorithms and
technologies

e Research in algorithms, software, Al, and new technologies is full of
them

e Just few techniques that can be used as described in books

e To work well, they need to be improved...

Management @

How do we improve them?

Challenges for real Applications
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Important questions O

What is the computational complexity of your algorithm?

Measure it as O(n) O(logn) O(n:logn) O(n?) O(N3) ... O(2") ... O(n!) ... O (") ...
How much simple is a technique? Occam'’s razor principle applies

If more complex than one with similar behaviour, then not interesting
How measure complexity: computational, software, understanding...?

In terms of input, branches, length of description, time to learn it, ...
What is defining the limits of a technique or a technology?

lts complexity, but also its accuracy in solving a problem, its robustness...
How a technique could be improved? And a technology?

New design (operations, concepts), new implementation, latest hardware, ...
Similarities to other existing tools? Do they inspire to improve?

See the basics of the tool, similar structure, know on cross-fertilization
Can we quantify all the decisions? Identify all the needed steps?

Data driven decision making, always measure ... scientific method

Management @

Challenges for real Applications
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8] Always measure:; efficacy measures

Challenges for real Applications

Data Science and Engineering | (MUII)

Management

MSE - Mean Squared Error:

e Risk measure (quality of estimator)

1w _
MSE = = (v = 1)’

i=1

N M
. . . 1
Logarithmic Loss: Loy = —zz% < 1og(pi))
e Penalising the false classification N =

j=1

# correct predictions

Accuracy =
Accuracy Y # input samples

Positive Negative

0.8
TP FP

Confusion Matrix —

o
o

FN TN

Negative  Positive
True positive rate

o
i

Area under de curve (AUC)
e How well the test separates the group
being tested into 2 classes?

o
[N

o
o

e TPR=TP/(TP+FN) FPR=FP/(FP + TN) 00 02 04 06

False positive rate




8] Always measure; efficiency measures O
% Wall Clock Time Speedup  _
? . T:tend_tstort T1
3 User time Sm — T_
CPU time m

Communication time
Memory usage
Size of data files

Memory

Memory

Profile in Instruments
Use Usage Comparison
B MemoryTest
13.4MB
13.4mB S
1 Free
1.0GB T /0 -1.59 GB

Battery consumption (phone)
Kwh consumption (data center)

NN

Challenges for real Applications
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Statistical analysis mandatory

-~ Data sets:
\_ X1,X2,...Xn _/

-

T

Normality test
(Kolmogorov-Smirnov test)

Management @

'l'rue’/""" ™ False
0 = T
C Normal Variables Non-Normal Variables
9 (Mean comparison, (Median comparison,
"6 Parametric tests) Non-Parametric tests)
g D) 2 data > 2 data
o—v & " ¥ independent data N M Witney test
Q— Levene test and Analysis of variance | e bilsb i ‘
< ¢ Student t-test (ANOVA)
— 1 depende At 5 o
6 o l, RIS T TS .]| Wilcoxon or Sign tests ‘
(0] P
O c Post hoc mean comparison
“ 5 it =2 dependent dat: -
o tests 2 dependent data | Friedman test |
L C { i .
o W I
= _8 Equality of Variance = 2 independent l""ﬂl Kruskal-Wallis test ‘
8 O (Levene test)
C 8 True . False
()] '% a T
>0 Duncan, Student- lamhane tests
o) (e} Newman- Keuls (SNK ),
1= = - erron
O O and/or Bonferroni tests
(@)




Parallelism: parallel algorithms plus HW @

SOL 3

e [Even very advanced algorithms reach a maximum efficiency. This happens
in large problem instances, or when using simulators, or in real time
scenarios, or in web services for clients, ...

e Advances in parallel hardware like clusters, multicores, GPUs, cloud, etc.
allow to make more than one step per unit time in the used techniques

e Sometimes you are not only looking for reduced times, but for new types of
techniques that search for different solutions ot the same time
collaborating

e Sometimes you have a multicore or a lab full of cores: explode them !ll

e Thus, you can make new techniques and also run them faster, both !lI

— Problems not solved before,
OO now become solvable by
using parallel tools

Challenges for real Applications

Data Science and Engineering | (MUII)




H Parallelism: parallel algorithms plus HW O

Ml Parallelism and Metaheuristics:

Challenges for real Applications

Data Science and Engineering | (MUII)

The increasing availability of new kinds of CPUs and the parallel noture of
metaheuristics have allowed the fast development of porollel metaheuristics

Advantages: .M)I S”ACQHEFI,(\Z t!!:cghcp)!?g(t)gr

e Allow to tackle more complex prob ems/instances
e Allow to reduce the execution time
e Allow to improve quality of the found solutions

JkQ’

FIWILEY
e T
A s o iy

Parallel
Metaheuristics - e
/IN Class of Algori

Parallel Genetic

Algorithms

I“L]A/h

Design




High performance computing and folks

SOL 3

Medical devices

Technical
Computing Internet of Things (loT)

Autonomous vehicles )
High-Performance

Data Analysis (HPDA)

Genomics

Personalised medicine High-frequency trading

Computer-aided design Remote observation

Materials design
(e.g., nanoscale)

Machine learning
Deep learning
Data centres and
network design
optimisation

Intelligence
Scalable graph theory
Renewable energy

Challenges for real Applications

Data Science and Engineering | (MUII)




SOL 3

Challenges for real Applications

Data Science and Engineering | (MUII)

Hardware is important (1)
Grid and cloud Cluster
: : GPU
omputlng putlng

33




+ Design vs implementation, not the same (12

L

S.O

e Node in a distributed EA g
t:=0 ':r DDD OO '
initialize(P(t)) P g
evaluate(P(t)) .sf‘“b &/ \“\;x
while not end condition do F_‘g:’éb /} N
P’(t) := selection(P(t)) & . &
P’ (t) := reconbination(P’(t)) e o <
P’(t) := nutation(P’(t)) Slaves
evaluate(P’(t))
P(t+1) := replacenent(P(t), P’ (t))
<<Communication with neighbours >>
t = t+l
end while

...........

..........

Challenges for real Applications

Data Science and Engineering | (MUII)




l#] Hybridization: a good way to build techniques @

0
©))
§ Hybridization is the inclusion of problem-dependent information in
§ the algorithm, but also combining fields, operations, datq,
technologies, frameworks ...
:
Types 8
. WeOk . CHC § ES ]
e Strong — M
°7]
.

Reproducnon)q—( Improve  |41—(SIMULATED ANNEALING)

GENETIC ALGORITHM

HYBRID ALGORITHM

Challenges for real Applications

Data Science and Engineering | (MUII)




“] Hybridizin

Challenges

Machine Learning (ML}
applications

.

o8
=N
D =
=
S
L &=
=
& 8
=

o ML with metaheuristics

Improving ML
techniques

- Parameter fine-tuning
- Initialization

- Population management

lobal hybridization

- Reduction of search space

- Algorithm selection
- Hyperheuristics
- Cooperative strategies

- Mew types of metaheuristics

- Local search

Challenges for real Applications

Data Science and Engineering | (MUII)

Optimization + Learning

Metaheuristics HYbrlds = ML + MetaH

applications

Tuning ML tools

Surrogate systems

Collaboration processes

| - Classification | ‘
- Regression \
- Clustering

| - Rule mining




\“] Building Blocks
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%] Academic problem domains

L)
Q
S
o
X

Lu

Mathematical Optimization:
- Rastrigin, Rosenbrock, Mishra’s Bird...

Combinatorial optimization:
- Routes, scheduling, graphs...

Domain dependent benchmarks:
- Multiobjective

- Temporal series

- Data mining

- Neuronal network training

« Unscheduled tasks
. Scheduled tasks

TIME
Know on standard benchmarking!!!

Challenges for real Applications

Data Science and Engineering | (MUII)




Sectoral domains: Telecoms in this case w

Radio Network Design  GSM Frequency Assignment MANETSs

Example g

o .
}g Cc2 BJ e @) ITS system Surveillance system

- A3 'AZ WAz" Route before lﬂ‘“f;‘:‘:’@. 2L » ‘,
A9 % 6@7 &

mmwo - 0
A

DT

\MQ e E Wireless terminal

7

e Ej_%ﬁ« AN Disaster area/Military network

B

First Order Nelghbors L
&) second Order Ne elghbors ‘
( Comin gl om T2!) 4

Sensor Network Layout Location Area in 4G/5G VANETS

Challenges for real Applications

)
>3
(@)
C
'C
o
Rcovm 20 Rcomm 40
%7 //\\Rllnformatlon Disseminatio
S DIRICOM = A‘ cident!
L o '
¥o) Rsens 20
C
O
(0]
U ———
GC) -
g Rsens 40 [i; s
O Website
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O
O




] Every single domain is a good target

Designing Quantum Circuits

Data Based (Data Mining, Query Optimization)

Dynamic Optimization Problems (DOPs)

Tasks Scheduling in Operating Systems

Genomics (Fragment assembly, protein structure)

a0l [0
a1l o

al4] o B 7 ?—
co 5':’

Challenges for real Applications

Data Science and Engineering | (MUII)




%) Parallelism, Hybridization, and a real application

GENE EXPRESSION DATA MATRIX

MICROARRAY -
Samples Gene expression levels For each subGPS0 Siin 1,....m}
(ScannEd Data) I |Ff ITTITTITT] *»P <do in parallel>
- | ¥ - Sm
5 | Si+1
auanTIFicaTION | EEEEEEEEEEREE R Si
DATA
R Y
0 Gene subset selection _ —_—
A solution (particle) looking for —»(Gene selection () and training SYN
C , = -
o B maximizing the classification —_— = T 1 —
— with a small number of genes f o 1
-+ v T 10 fold cross-validation
o = Bl datasegt i-— |- ———»{ Compute fitness(j)
g ) Supervised classification — I Three parent mask-based crossover
Q. Z (SVM, KNN, HNN, ...) : (3PMBCX) and mutation
Q— D T Tttt ettt - < ¥
¢ e - - ~—
< = : "‘Pi_’”_'“'e bomeal ditn PARTICLE SWARM OPTIMIZATION ! |, valdation ~—] < Migration?
—_— . ?.codlfylng e S etiE *Optimization algorithm modeling bird . dalasel | T
(@] 8 1 EF B flocking self-organizing behavior 1 - : 1 Yes
! 4 *Embedding feature (gene) selection | [ | Migrate j lo Si+1 from 5i-1
[l E : ﬂ hani 1 | ‘
o ! ! b 5 | mechanism \ |
2 ! : " . S/ : <3 : | Compute new swarm 57
oW , ! ,
. : Test
e ==
Y- 0 | ST e (New particle position: ) | dataset : /”/*\“\NG
(7)) o ! a new subset of genes has || S . Stop?
) ! 1 ! %
Q W : been produced by PSO || : I e
() 1) . ! ; i _ __—\r—_____
C C | - | ! I = =
Q 9 0 ) Dalial st il te : [ !.--.p Best particle test evaluation ) —
~ © ! in the swarm i o e .
- () | T e I
o I\ | o i 1
N 5 T T T T T TS oooooooooooooomoooos ’
()
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Real Use Cases

Data Science and Engineering (l)
Master's Degree in Computer Engineering

[@loele)

AP L uersin / ETS. INGENIERIA
22 5 B l" INFORMATICA

UNIVERSIDAD DE MALAGA




Learn more in going for real applications @

1. Feature selection

Management @

2. Neuroevolution

3. Surrogate models

4. Real applications

Challenges for real Applications

Data Science and Engineering | (MUII)




Feature selection a

e T[he computational ability of machine learning models depends a
lot on the feature set.

e Retaining the significant features vastly improves the learning
time, and also improves accuracy.

e |n feature selection, we find the optimal feature subset that
contributes most to our predicted variable.

e Advantages:

o Improve generalization of models by reducing overfitting of data.
o Remove unnecessary/redundant data. .

o Curtail the Curse Of Dimensionality Feature Selection

@)

Opt|m|ze troining time Full Feature Set .. ... .
Identify Useful Features ..><><...>< ><><.><
Selected Feature Set ..

Management @

Challenges for real Applications

Data Science and Engineering | (MUII)




Feature selection as optimization problem@

s = Random solution

(oftfe]1]ofofofs]t]of1]ofs]1]1]

\ 4 fe

at
f = Evaluate(s’) }%
accuracy /Machine Learning Model\

s’ = Neighbor(s)

(of1]1]1]ofofz]of1]o]o]ofs]1]1]

Management @

) 4

return best solution

Challenges for real Applications

— y \ features, data (train, test) e
2 f = Evaluate(s’) L
< rac
- accuracy e
- o
C

2

E true

0 0

= S=S

()

O

C

(0]

3,

(9p)

S

O

&




8] Feqture selection as optimization problem@

e Solution encoding:

o The solution can be implemented as a bit string.

o The solution’s length is taken as the number of features in the
dataset.

o 0/1indicates the presence/absence of the ith feature in the solution.

Management

oj1/1(1j0/{0|0O|21(1|0O(1|0|1 1)1

e Fitness function:

o Number of features selected (nof)
o Model accuracy (acc)

e Approaches:

o Multiobjetive
o Aggregate function:

MaxFeatures —nof

maxf = a- +(1—-—a)-acc

MaxFeatures

Challenges for real Applications

Data Science and Engineering | (MUII)
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Forward propagation of inputs

|. Forward-propagate Input Signal

0D,
a{/W;; N
Wik
N
aj—>
A

7 2y N\

/-Jﬁ

y C a, = guby + Zig(b; + Zaw)wy)
T

Input value 1 ¥4 N/

4

SOL 3

Row ID Study Hrs Sleep Hrs Quiz Exam
1 12 6 TBH 935

<

II. Back-propagate Error Signals

V ”“\\\fﬂ\
Input value 2 y Output value \} Efay 1)
QL (=t
t C= 1/2(?- y)z O = g (zoE (apty)
VvV 0; = gi'(z) Xy
Input value m Ill. Calculate Parameter Gradients
Actual value

/
(4‘7;\'
k
@—\‘FGDO(:_}E (@ )

OE/ow; = a,d;
OE/0owy, = a0y

IV. Update Parameters
wy; = wy; - 7{(OE/0 wy)
Wi = Wy - 7(OE/Owy)
for learning rate n

Challenges for real Applications
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Backpropagation of errors

SOL 3

I f '-
. H | ‘ f -n‘r +? X

O
®
O

@ O\O o

(7))

(-

9

o _

e £ = \ -y

<2

3l - |

.l o, - ] y=y)w, « Prone to local optima

O  Not appropriate for complex NN
& o . « Oscillations

%é il (v —v")y(- ”E wh(=h)yw ° Depends on structural functions
= 2 WY | ' T T | ;  Need unfolding in deep learning
£ 3

(O Na




Neuroevolution Q

SOL 3

Step #2: Select

Step #3: Breed new population

Crossover &
Mutation

Step #1: Evaluate Step #4: Repeat

Challenges for real Applications

Data Science and Engineering | (MUII)




Encoding weights vs. backpropagation @

INPUT ENCODING
(a-n)...(m-n)(a-o)...(m-o)(a-p)..(m-p)(n-q)(o-q)(p-q)...(n-z)(0-z)(p-z)

SOL 3

e Solution encoding:

o List of float numbers

o Mapping between
poisition in list and
weight in NN

Input Layer

Hidden Layer

e Fitness function:

Output Layer o Model accuracy

©)
Z
<
%
=
X
14
%
L
Z
-l
2
-]
L
Z

INPUT-OUTPUT ENCODING
(a-n)...(m-n)(n-q)...(n-z)(a-o0)..(m-o0)(0-q)...(o-z)(a-p)...(m-p)(p-q)...(p~z)

Challenges for real Applications

Data Science and Engineering | (MUII)




SOL 3

Challenges for real Applications

Data Science and Engineering | (MUII)

Evolving NN

structuresll! @

ANN
- - Network siructure — -l Netwark weights -
1 i 0 1 W, B | W B,
— N B
———— § ——— — [ -—

1: represents active neuron

(0: represents inactive neuron

(i) Mixed-coding scheme

#genome

1
lgene: #1 [000001001]
|

[gene: #2 (001100001
I

|gene: #3 000100100|
I

[gene: #4 [000000011]
I

Genotype

(1) Active neuron

o Inactive newron

Output ¢
= Active connection

000000000 00 -
e ><

Activation Function

+ 00: t_anh

* 01: sigmoid
Unit Size . . . . nes . .

* 0000: 1

* 0001: 16
¢ 0010: 32

> ayer Type
* 00: Dense N
* 01: LSTM

Py A4

Faculty Phenotype

Tnput b-lﬁ: =
SR

- Inactive connection

Input laver (i) Hidden layer () Output layer (k)

(ii) The configurations of three-layer feedforward ANN




4] Surrogate models

Challenges for real Applications

Data Science and Engineering | (MUII)

Challenges

e A lot of engineering problems require experiments and/or
simulations to evaluate design objective and constraint functions
as a function of design variables.

e A single simulation can take many minutes, hours, or even days to
complete, thus rendering them infeasible in practice.

Surrogate models are a statistical
model to accurately approximate
the simulation output.

This trained model can be deployed

to replace the original computer
simulation.

Design P
parameters < - _ .
X, « Sensitivity
analysis
Xo - Optimization
. + Risk analysis
X
-~/

~ = V. Expensive, since it involves many

= = ¢ simulation runs

=

Cheap, since training and employing
a surrogate model |s not axpansive

I;r'.JI'I:.I:'H

(x?. flz?))

Training

Qutput

n

2

YN




“] Surrogate models ®

0

o

g L

9 Sampling | [—| Sampling:

E (Design of experiments) | e Raondom

~ 1 }o Latin hypercube

. |

B[ ] — ~ Construct model
= e Model selection
25 1 e Tuning parameters
o= e Feature selection?
< g [ Construct }
oo surrogate model

o ¢ 2 SIS Utilization:
ou } e Only surrogate model
o 5 _ _ e Mixed model:

o UL surrogate + simulation
cC C

o2
=3 e New samples?
£ 3
O N




! Real Applications: An example

S

p—

Examp

Challenges for real Applications
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" Problem w

Challenges for real Applications

Data Science and Engineering | (MUI)

L)
Q
S
o
X

L

City evolution:
o Nowadays, cities are growing in the number of inhabitants, many of
whom are arriving at the city for the first time
o By 2050 the human population will reach ¢ billion with 75% of the
world's inhabitants living in towns and cities

As consequence, the number of vehicles in streets is continuously

iIncreasing, offecting all aspects of daily life:
Traoffic jams i

Pollution

Security

Stress

Economic losses

o O O O O O




" Potential Solutions

e “Classic” solutions:

Example

o Infrastructures
o Promote the use of public transportation or green vehicles (bikes)
o Promote the use of car-sharing (VAO lanes)

o Limiting car access to city centers
e ‘“Intelligent” solutions:

o Provide real-time and accurate data to citizens to make informed
decisions (troffic intensity, free park slots, ...)

o Automatic assistance tools: adaptative and/or customized routes

o Better tuning of existing elements: routes and frequencies of public

transportation, troffic light timing...

Challenges for real Applications

Data Science and Engineering | (MUII)




© Proposal

L)
Q
S
o
X

Lu

* Reduce the traffic joms

* Minimize the waiting times in red lights
* Faster routes

* Reduce the gas emissions

Challenges for real Applications

Data Science and Engineering | (MUII)




%) Traffic Control Signhals (18

e First, we need to study the elements, constraints, and regulations
in the problem domain

Example

e Multiple sources of information:
o International regulations. (l.e., U.S. Transport Department):
m  Manual on Uniform Traffic Control Devices (862 pages)
m [roffic Signal Timing Manual (274 pages)
o National regulations. (l.e., DGT):
s Regulacion semafdrica (32 pages)
m Cruces semafdéricos y sincronismo (32 pages)
o Specialized personnel (city traffic managers)
o Scientific literature

Challenges for real Applications

Data Science and Engineering | (MUII)

e Information filtering




%) Traffic Control Sighals

9
Q
5 | tant ts:
S e Importan C'oncep S.
L o Intersections

o Cycle

o Phases

o Traffic light schedule or plan

Challenges for real Applications

Data Science and Engineering | (MUII)




%) Traffic Control Signals 20

8 e More information:
- o The duration of phases and cycles can be modified
o The phases CANNOT be modified /f
o Recommended duration of a cycle: 60-120 seconds i/
o Yellow phases (before red light): 4 seconds Green wave

o Minimum duration of some phases (i.e., red phases at crosswalks
should allow to safely cross the road => minimum duration=1m/s * 4
m/lane * #lanes)

o Promote green waves in important avenues

o Traoffic-dependent planes (time, weekday, season,... )

Challenges for real Applications
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% How are traffic lights configured? &

Example

e Location/type:
o Some locations are mandatory according to regulations
o Other locations are recommended but not mandatory

e Phases of traoffic lights:

o Regulations establish a procedure to set
the phases

e Duration of phases/cycles:

It is defined by city traffic managers according to some constraints
Usually, it is manually done in each intersection

Based on experience and accumulated knowledge

There are dynamic systems (they react to current traoffic). Problem:
Quick changes that don't improve traffic

Challenges for real Applications
o O O O
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" How are troffic li

ohts configured?

SCURCERVA

Example

[0
o/PEz de Plata 1008

o) =y CTAS NTNAS
CRISTO DE LA : \%
CAPUCHINOS EPIDEMIA % Fe HACIENDA HP
L oVicents ;)c,)q . .
CRUCE 1.01 5
Colegio Cerrado =
de Calderén %
E
PARQUE DEL o
MORLACO o
“n Va\
Parri
Corpy
) ‘
E| Balneario - . e sl
Bafios del Carmen
——

« 3 traffic flows
« 6 troffic lights:

fase 1y 2 fase 4

« 4 for vehicles (1 for bus)
« 2 for citizens

Challenges for real Applications
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How are traffic lights configured? (23]

Example a

Cruce: 01010 PLAN: m
() Descripcion: Juan Sebastian Elcano - ¢/ Wicente Espinel s t h Ot O re C h O S e n
Comentario:
SELECCION HORARIA - VERANO 2015
PLAN Actual 003 [ ESTRUCTURA 1 TCicLo: 100 [ DESFASE 60 ] SUB 1 LABORABLE
:\fﬁLSO ‘ T : ﬂ — - 7] . | : ml Fo'f‘org Pr;” Cisc;‘ Sg;‘zg"
;cuﬁnﬂogm 7] 18 3 Iaz :35 ] s? 5 23; B gfgg :g ;g g::::
TEAPO 10 =J 40 4 50 .. i) 9013 4100 630 20 115 Oeste-Simultaneo (118 a 115)
9 B Fies : G Y 500 s Oeste
c 1 | w7 W Gesto
9 e e R iz 1l | SUB 1 SABADO
46 g " L ¥ : [__Hom Plan Ciclo Sentido
S= ¢ |IIIZZZZIZZI | o ——— oest
pr] 10:00 5 110 QOeste
Q= N iiiiisiisissiissss izl B R 1400 ! 100 Oesle
Q5 _ :
b g e — - W/W /?/ 7 : 22:30 7 100 Oeste
= SUB 1 DOMINGO
-_— = L. ) - -
S g | R 277777707 | e i
=y N T Oote
L C L T Oesto
qg % [] ambar iecormiares = vomsa ot mapie s amsae 1t Protoossin Fiayo |et. Rapkdo | Ambar ind ggg 270 1(1)3 g:z{:
m C D Ambar ot Dotee (sabda verds| g Rogo | Amear Inl. Proteccian m Ambar e, Datie (sakda varde] -' -
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) Proposed system (24

e Automatically generated cycle and phase times:

L)
Q
S
o
X

Lu

o Those times must respect the constraints

e Simultaneously consider all traffic lights in the city or the area
defined by the traffic control center

e Obtain different plans (offline) according to traffic intensity

e The final goalis to obtain more fluid traffic that reduces the
pollution

Challenges for real Applications
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) Modeling the problem (25

e Given the following input data:

o Intersections to improve (location, phases)
o And the traffic flows

L)
Q
S
o
X

L

e Objective: to find the configuration (duration for the phases) that
outperforms the rest of the existing configurations

e Questions:

o What is computationally a solution (representation)?

o When is a configuration better than another one (from a numerical
point of view)?
Where do we get the information from?
How do we find the best?

Challenges for real Applications
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) Solution encoding

Example

e List of numbers (duration of phases):

Challenges for real Applications
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) Solution encoding (27

e Restrictions not met by default:

L)
Q
S
o
X

Lu

o Yellow phases to 4
o Cycles > 60 and <120
o Green Wave Promotion

e Other alternative representations:

o Each intersection: cycle time + percentage that each phase occupies
o Reduce the number of traoffic lights:

m Cluster the intersections into groups

m Only one in the group is optimized

m [herest are small variants of the optimized
o Others?

Challenges for real Applications
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% Solution fitness (28

L)
Q
S
o
X

L

e To compare solutions, we need quantitative values (fitness)
e The troffic system is very complex

o No (realistic) maothematical models
o Utilization of simulators

e SUMO (Simulator of Urban Mobility)
o Input: Roadmap, traffic flows, traffic light plans
o Output: statistics of the simulation

Vehicles reaching destination: 30

Average trip time: 120
|:> CO2: 543452
Average waiting time: 10

N N N N N N I O N\

SUMO

Challenges for real Applications
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% Solution fitness (29

e Statistics about simulation:
o Number of vehicles that reach their destination during a given
simulation time
o Average trip time

L)
Q
S
o
X

L

e Additional challenge:
o SUMO only calculates statistics for vehicles that reach their
destination

" o Er?:r.-:-..- ITalaVelalea Nl Nl Ve VWA ) W NV B Ve \

g o W Trip duration

:.C:J K’ Wa|t|ng_t|mes Vehicles not

O F ) reaching destination
=51 © Fitne; Tmp + TSW ‘|erNRTSl

<C[)_ o O fObJ ..” _H P'\

TJ’ O C dehicles reaching dest|nat|om/J \Green phases duration
@ o Mu

5 o Derivate values (green waves?)

Y—

n

)

o

c

e

Lo

£

O
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) Realistic data (30’

e Input for our system:

L)
Q
S
o
X

Lu

o City map
o Location of traffic lights
o Vehicle flow according to several factors (time, weekday, or season)

o Constraints in phase duration

N\

e Source of the data: ‘.
o Maps: OpenStreetMap

o Traffic lights: traffic control center of the city

Challenges for real Applications

Data Science and Engineering | (MUII)

o Routes: Mobility department




) Realistic data (31"

e Challenges: Maps and traffic lights

Example

o Incomplete maps: missing road, road directions, traffic lights, ...
o Errorsin conversion (OSM => SUMO)

o Manual correction of the maps. Labour intensive process

. ChOllengeS: RO Utes Intensidad de vehiculos Mayo-i .-

FM Ubicacio I[MDL | IMDS. | IMDD. [IMHPL|HPLM [IMHPS|HFSM [IMHFD| HPDM.

1 |Avda. Juan Sebastiin Elcano - Este 2004 1.aeg| 1388 168] 1200 48] 12:00 28] 13:00

. 2 |Avda. Juan SebastianElcano- Oeste | 20383  17.800]  15.186] _ 1.465 B00] 1278|2100  1.238 200

@) NOt ehough detO”.S 3 Eolhﬁa-&m 16775 15174] 12.606]  1413] 1400  1.250]  1400] 1081  1%00
4 |P-M. Pablo Ruiz Ficasso - Este 10.376 15.571| 12.631]  1.008|  1400]  1.337] 1400  t.044]  1m00
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o Conversion of troffic intensity to troffic flows
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e GA + ANN as surrogate model

P = Random population

— / Surrogate model \

P = Replacement(P, P’)

stop condition

Evaluate(P) : ___s_olution
fitness
> P’ = Evolve(P)
solution
1
Evaluate(P’) F e
|

return best solution
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