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Challenges for machine learning using

medical data
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Henning Muller

» Medical informatics studies in Heidelberg, Germany

s;"ﬁ} Exchange with Daimler Benz research, USA

= PhD in CBIR, computer vision, Geneva, Switzerland (1998 2002)

|
'0’ Exchange with Monash University, Melbourne, AUS gglc\;lgrﬁ?\;g

1()\\8“

= Professor in radiology and medical informatics at the University of
Geneva (2014-)

= Professor in Computer Science at the HES-SO, Hes
— Sierre, Switzerland (2007-) aEen
- Visiting faculty at Martinos Center (2015-2016)
= Member of the Swiss National Research Council ﬁ;
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: Hes so
Overview et do ot e

= Status of medical Al
- And its challenges
* Projects addressing the challenges

- With a bias towards our work
= Open challenges

= Conclusions and discussion

E m ﬂ IF-)|aI(E]§;SO Valais-Wallis



)] VALAIS
T h I f d " I A I Haute Ecole d‘ﬂnme% ?«rmsa O .
e p ro m I S e O m e I Ca Hochschule fdr Wirtschaft & Tourismus B

e *

Geol! Hinton: On Radiology

https://www.youtube.com/watch?v=2HMPRXstSvQ
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ARTIFICIAL INYELLIGENCE
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Realistic expectations A

= https://www.aimyths.org/

With every genuine advance in the field of ‘artificial News About
intelligence,” we see a parallel increase in hype, myths,

misconceptions and inaccuracies. These

misunderstandings contribute to the opacity of Al

systems, rendering them mogical, inscrutable and Al has agency
inaccessible in the eyes of the public.

Al = shiny humanoid robots

@ Representation Superintelligence is coming soon

® Definition The term Al has a clear meaning

Ethics guidelines will save us

We can't regulate Al

Al can be objective/unbiased

Al can solve any problem

E m IF-)|aI(E]§-7SO Valais-W


https://www.aimyths.org/

Advantages of medical data = . bt

» I[mages created under standardized conditions

* Images are always attached to a case and a report
describing it, plus a reason for producing the images

- Metadata exist, and other data on the same patientﬁi -.

 We know the context of the images B
= Much medical knowledge is available

- Coded and maintained in ontologies o
= Much clinical research is done ik

- Medical imaging is estimated to occupy 30% of world storage .
B m B Eigéso Valais-Wallis _:‘



Challenges with medical data . Rt

= Data privacy and ethics can make sharing data hard
* Medical equipment and procedures vary across hospitals

- And equipment changes frequently
= Pixel-level annotations are extremely expensive
- Specialists are needed and often not available (too busy)

= An image is only a very small part in a case with patient
history, temporal data, genetics, text, structured data etc.
- Regions determining a decision are often extremely small

* Needle in a haystack
E m ﬂ IF-)IaIig;SO Valais-Wallis



Challenges for medical Al L.

= Much data are needed, so solutions need to be scalable

- Diversity is required for generalization
- Data sets are very unbalanced

» Continuous learning is required due to changing
equipment and clinical guidelines (half-life of knowledge)

* Pixel level annotations are not available, as expensive
= Combining multiple sources is needed for proper learning
» Results need to be explainable for workflow integration

- Deep learning is a priori a black box

E m HES-SO Valais-Wallis
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/ High Performance Computing (HPC) resources: SURFSARA \

ACADEMIC PARTNERS
(UNIPD, HESSO)
Scientific experience in extracting
knowledge from:
- heterogeneous images
v Ny
/ INDUSTRIAL PARTNERS: )
MEDICAL PARTNERS: ¢
(ONTOTEXT, MICROSCOPEIT)
: Solid industrial experience and market
w":::q“. pm‘;:;:t) <_> opportunities in:
- medical data (imaging a - semantics-based services
5 m%m - advanced Al-based image
& evalua experience \processing solutions J

E E 25]2-1310 Valais-Wallis



Image accessibility L e

= Open data policies of funding agencies make large
medical data sets available

- Particularly NIH is pushing towards this
= TCIA and TCGA are very large repositories TCGA@
- There are many scientific challenges
* [mages from the Biomedical literature are available via

PubMedCentral PubMed
i | | Cuentrgl
- Exponentially increasing :
- Extremely varied, hard to use R— .nll“l

E m B IF-)|aI:Z]§-1$20 Valais-Wallis




Unbalanced data sets Hes B

= Differing frequencies of the relevant classes need to be
taken into account

- At cancer screen even high-risk people are ~1% positive
- Sensitivity and specificity as measures, not accuracy

« Weight between false positives and false negatives varies
- Some cases may occur once/twice per year in large hospitals

= Rare cases is what is more commonly described in articles
- Images from articles can thus help (at least in theory)

- Variety of imaging parameters and laboratories is very high '
E m ﬂ IF-)|ES-120 Valais-Wallis -:0



Hes SO/ Wt

Challenges with PubMed s e s D
= >20°'000°000 images in 2022, many graphs, charts
» | ook-alikes is a problem, and compound figures

- Very varied and sometimes strange content needs removal
= Compound figures need to be separated

- Cuttlng sub figures apart makes content accessible
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Making the images usable Tt A
= Removing very small images & strange aspect ratios
» Classify figures into figure types

- Using image data and also text, remove non-relevant images
= Detect and cut compound figures into their parts

- Classify these into figure types again
» Filter human vs. animal tissue and specific organs
» Check diseases or grading/staging images

- Classes for machine learning

E m HES-SO Valais-Wallis
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Advantages of literature images . ki

» Rare images (unusual, untypical) are generally used for
articles and case descriptions

- A few typical cases but mainly extreme cases
- Creates critical mass for rare diseases

* I[mages are from many laboratories and thus contain
many image variations (staining, scanners)

- Increase generalizability of learned models thanks to this
diversity

= Exponentially increasing content

E m B IF:IEJEQ%O Valais-Wallis



Hes.-so// i
Image harmonization for radiomics ==&

» Different scanners produce different images

- Many protocols, construction kernels, producers, voxel sizes, ...

« Strong influence on features extracted

. . Vincent Andrearczyk, Adrien Depeursinge, and Henning Mdller, Neural
o H OW Ca n We h a rm O n IZe th IS? Network Training for Cross-Protocol Radiomic Feature Standardization

in Computed Tomography Journal of Medical Imaging, 2019.

(a);

- Deep learning!

= Phantom study with
17 scanners

- 10 solid textures

- Features invariant to scanner

E m ‘;n HES-SO Valais-Wallis
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Measuring CT variability £ -
» Many CT parameter variations stemming from:
- Acquisition protocols (radiation dose, ...) ;
- Image reconstruction parameters
- Image resolution (slice thickness, overlap, ...)

= Variability has a strong influence on the
analysis & comparison of radiomics features

medium
smooth

» Patient studies evaluating image/feature
stability entail ethical concerns with multiple
exposures to radiation

Traverso et al. (2018) Repeatability and reproducibility of radiomic features: a systematic review. International Journal of
Radiation Oncology Physics 102. -
Solomon et al. (2014) Quantum noise properties of CT images with anatomical textured backgrounds across reconstruction .v‘

E E ﬂ Eaig'go Valais-Wallis  /50rithms: FBP and SAFIRE. Medical Physics 41, 091908.



Hes

3D printed phantom S

* Phantoms allow repeated radiation exposure

= Highly controlled acquisitions
- No patient movement
- No breathing
- Precise positioning

= Limitations
- In density (-100 HU to1000 HU)
- Small blocks are glued (artifacts)

E m HES-SO Valais-Wallis
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First results

Radiomic features (%) s
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Oscar Jimenez-del-Toro, Christoph Aberle, Michael Bach, Roger Schaer, Markus Obmann, Kyriakos,
Ender Konukoglu, Bram Stieltjes, Henning Muller, Adrien Depeursinge, The discriminative power and
reproducibility of radiomics features with CT variations: Task-based analysis in a realistic CT liver phantom,
Investigative Radiology, 2021.
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Stability vs. discriminative power:::: e
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IBST: ez,

image biomarker standardisation initiative

* [mage Biomarker Standardization Initiative

- Define all visual features used in radiomics

« And compare implementations on the same data
Digital phantoms
* When there are differences then check the implementations

- Installment 1 is finished, .. ...

« Simple statistical (texture) features
- Installment 2 is under way Q
* Filter banks (Wavelets, Gabor, ...)

= All information is available at: https://theibsi.github.io

_ . Zwanenburg, A., et al. (2020). The image biomarker standardization initiatfve: standardized
En| HES-SO Valais-Wallis  yantitative radiomics for high-throughput image-based phenotyping. Radiology, 295(2), 328-338.



: . Hes so
Continuous learnin g B s bt el

= Add new annotated samples regularly to update
algorithms (for example with new machines)

- Avoid catastrophic forgetting

» By adapting to a few specific cases or outliers
» Regular feedback loop

- With clinicians using Al

Pianykh, O.S., Langs, G., Dewey, M., Enzmann, D.R., Herold, C.J., Schoenberg, S.O. and Brink, J.A., 2020. Continuous learning Al in
B m B ;'ES;T;O Valais-Wallis radiology: implementation principles and early applications. Radiology, 297(1), pp.6-14.
aae
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Weakly supervised learning
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Teacher/student parndigm approaches:
M—mw

Stident training variants:

Studest trabniog variant 1 Stodeot traimiog varfamt 11
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Weakly supervised learning

from reports

Input data

Free-Ter! feports
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Private data
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First results on multimodal data..ccccviae

'4

Clindcal images and reports
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Unleashing the potential of
digital pathology data by
training computer-aided
diagnosis modeils without
human annotations
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Clinical workflow and Al e

= A clinician orders an image

» A radiologist/pathologists produces and views the image
and writes a report based on the question and anamnesis

- Much data on the patient (environment, prior diseases, genetics,
blood tests, development of a condition, ...)

- Differential diagnosis, under much time pressure
= Any Al needs to be integrated into the workflow and tools

- Adding evidence, identifying bias, uncertainty, ...

« Explaining the decisions and their context

E m B IF-)|aI(E]§-2%O Valais-Wallis _:6



Hes so

Inte 'p retabill Ity of Dee P L earnin g e O e et

Make decisions understandable & remove black box image

Input T1 contrast MRI Guided-backprop Grad-CAM

Make sure that decisions are sound
Explain why things may not be working

In medicine it is particularly important to make sure that
results can be explained & reproduced

- High impact of wrong decisions
There are many approaches interpretability
- 2D projections, PCA, TSNE

- CI@%%&%R}@“O” maps, saliency, ... P



: - Hes
A taxonomy for explainability — ccsssniee
* Many terms have been used in slightly different ways for Al:
iInterpretability, explainabillity, transparency, accountability,
fairness, (opacity) ...
- Bias, reliability, robustness, uncertainty, confidence

= A workshop was held in the summer of 2021 on this with
views from several domains: legal, technical, philosophical,
social, cognitive, ethical, ...
- https://taxonomyinterpretableai.wordpress.com

. . M Graziani, L Dutkiewicz, D Calvaresi, J Pereira Amorim, K Yordanova, M Vered, R Nair,
[ | E U p p g h y P Henriques Abreu, T Blanke, V Pulignano, JO. Prior, L Lauwaert, W Reijers, A
IS re a rl n t e Wa Depeursinge, V Andrearczyk, H Muller, A Global Taxonomy of Interpretable Al: Unifying
the Teani:&l\ y for thT.TechnicaI and the Social Sciences, Artificial Intelligence Reviews, 2022.

- GDPR on data protection an policy
« Limit the strong risks of Al and its use and abuse

E m B HES-SO Valais-Wallis -:6
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Taxonomy

BHEES
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Interpretable Al terminology

Main terms and domains
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Hes: so

» |dentify existing clinical features and check how the
decision layers correlate to these features

|
BEE

- I.e.: nuclei size, internal heterogeneity, borders, ...
- How much can a decision be explained with these?

Trained network Bot 4
it‘ :'-,l’\ 3
' ' —a .. Bos ! G ’. large C_i
B A e
s o/ S P
."*'%; Noarsumor | -l
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N | 2
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M Graziani, V Andrearczik, H Miller, Concept attribution: Explaining CNN decisions to physicians, Computers in Medicine and Biology, 2020.
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Improve with interpretabllity o

» Pre-trained models often include scale invariance

* In medical applications this can be problematic, as scale
carries information

Bounding-boxes to
measure scale

M. Graziani, T. Lompech, H. Mdller, A.
Depeursinge, V. Andrearczyk, On the
Scale Invariance in State of the Art
CNNs Trained on ImageNet, MDPI
Make, 2021.

E m l'-ﬂ HES-SO Valais-Wallis
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Scale ratio r

Pruning strategy that removes the layers where
invariance is learned to improve the transfer

uned CNNY

MAE = 54,93

— |

Significant improvements in
performances after pruning
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* I[mprove visualizations of regions that
are relevant for the decision of a DNN

- LIME is commonly used to highlight

- §
Semi-agomatic Inteachve
contdurs labeled ontours _selection,

ety 'S g

Explanations for Histopathology: Improved
Understandability and Reliability,

MICCAI conference proceedings 2021,
Springer LNCS, Strasbourg, France, 2021.
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The importance of user tests! . Ehaks

» Most systems are scripts run under laboratory conditions
- Does not give many indications of routine use

» I[mpact of the system is hard to measure

- Better decisions, more confidence, faster, satisfaction?
= What is the influence on the patient?

- Better treatment? Longer survival? Quality of life?
= User tests are more complex to set up but can really help

= Al and users are usually best together

E m E HES-SO Valais-Wallis  https://news.harvard.edu/gazette/story/2020/11/risks-and-benefits-of-an-ai-revolution-in-medicine/ :6
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Scientific challenges

= Cooperation, Coopetition, Competition
= Many data sets are now available
- Also many medical data sets
= Strong baselines help to judge quality
- Not only the results count!

= Challenges can be run without sharing
confidential data

- Provide VMs or Docker containers . .\ m

Jimenez-del-Toro, Oscar, et al. "Cloud-based evaluation of anatomical structure segmentation and landmark detection

E E ﬂ HES-SO Valais-Wallis algorithms: VISCERAL anatomy benchmarks." IEEE transactions on medical imaging 35.11 (2016): 2459-2475.
Paae 37




Some more best practices

Hes-

= Reporting for scientific challenges in medical imaging

BIAS (Biomedical Image Analysis challengeS)

Avoid bias, use the right measures
Use meaningful data sets and scenarios
How to chose the best evaluation metrics

/l’l) OSC (FI scorn)

s B
1 B

- IMNAK)
- !
d -

< A

\

DSCIAR) =

o~

|

PR

T IRARS ) SPUREE BT

|

((b) hoU (Jeccard index)
|

Al+lB

-y

\

- e

> >

o
‘B

A B
+Bl-ANB

-]

v

\

J

Maier-Hein, L., Eisenmann, M., Reinke, A., Onogur, S., Stankovic, M., Scholz, P., Arbel, T., Bogunovic, H., Bradley, A.P., Carass, A. and
Feldmann, C., 2018. Why rankings of biomedical image analysis competitions should be interpreted with care. Nature communications, 9(1),

pp.1-13.

Maier-Hein, L., Reinke, A., Kozubek, M., Martel, A.L., Arbel, T., Eisenmann, M., Hanbury, A., Jannin, P., Muller, H., Onogur, S. and Saez-

Rodriguez, J., 2020. BIAS: Transparent reporting of biomedical image analysis challenges. Medical image analysis, 66, p.101796.

Reinke, Annika, et al. "Common limitations of image processing metrics: A picture story." arXiv preprint arXiv:2104.05642 (2021).

HES-SO Valais-Wallis
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Hes so// il
Tasks and measures T i

Semantic segmentation Object detection Instance segmentation
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Certification of medical SW e .H,.?S‘.a B

» Any use of Al in medicine needs to be certified (CE, FDA)
- Software is a “medical device”
FIoA

- Unless only for a research study
- Avoid risks for the patient, tedious process

» [n-vitro diagnostics is more complex since 2022

- Transition period for already certified tools
= Expensive to do, so not usable for research tools

E m HES-SO Valais-Wallis
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= Medical Al is an extremely interesting domain
- With high impact on people’s lives!
= Al in medical imaging has many challenges remaining!

- Some can be addressed relatively easily
- Many will require much more research
= Consequences of (wrong) decisions are important

» Run user tests (also on prospective data)
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= More information can be found at

- http://medgift.hevs.ch/
- http://publications.hevs.ch/

Horizon 2020
- EuroPe.an. European Union funding
Commission for Research & Innovation

= Contact: Henning.mueller@hevs.ch
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