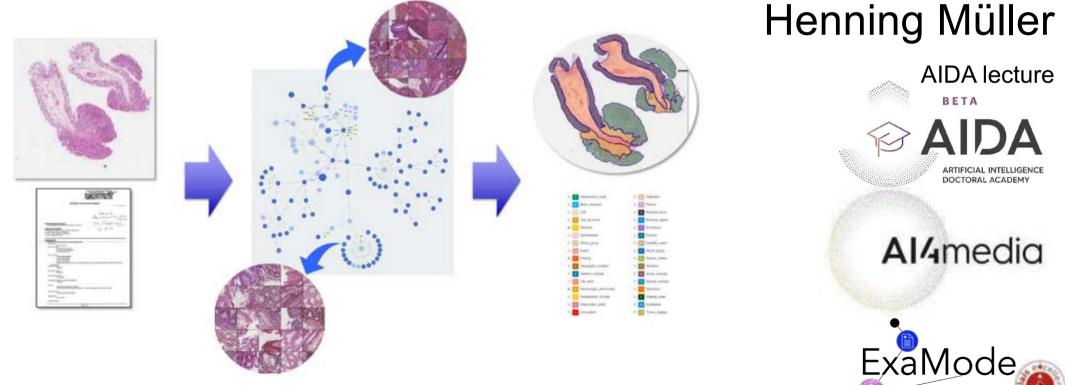


Challenges for machine learning using medical data



Henning Müller

HES-SO Valais-Wallis Page 2

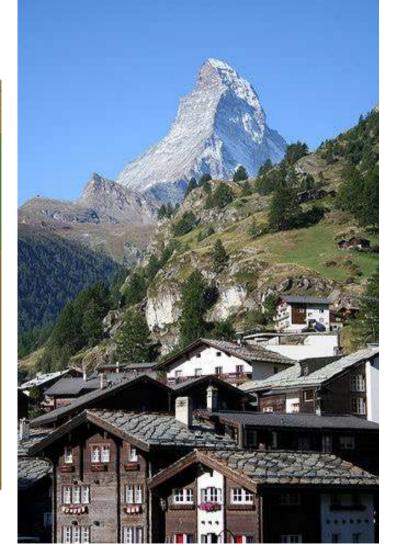
Medical informatics studies in Heidelberg, Germany

Exchange with Daimler Benz research, USA

- PhD in CBIR, computer vision, Geneva, Switzerland (1998-2002)
 - Exchange with Monash University, Melbourne, AUS
- Professor in radiology and medical informatics at the University of Geneva (2014-)
- Professor in Computer Science at the HES-SO, Sierre, Switzerland (2007-)

- Visiting faculty at Martinos Center (2015-2016)
- Member of the Swiss National Research Council

Hes·so



461

Σ 📶 🔤 🗶 HES-SO Valais-Wallis Page 3

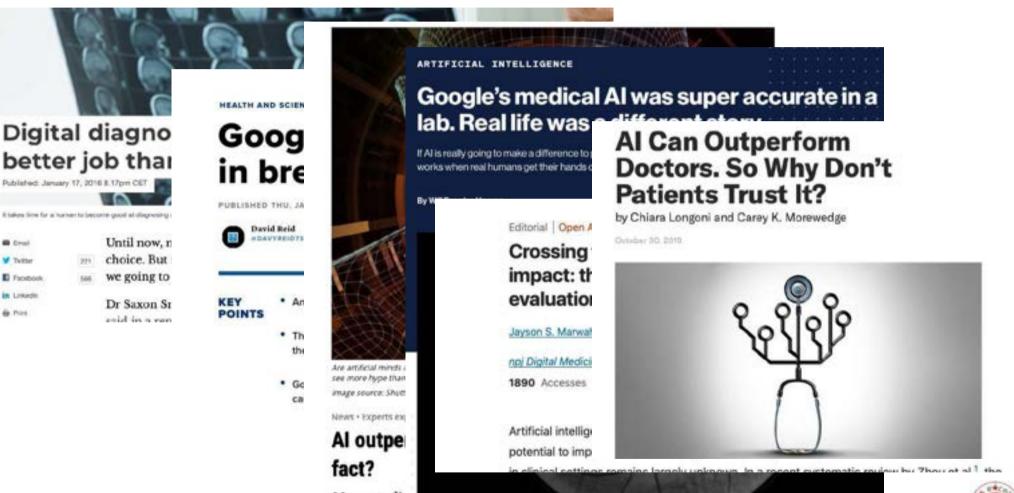
Overview

- Status of medical AI
 - And its challenges
- Projects addressing the challenges
 - With a bias towards our work
- Open challenges
- Conclusions and discussion

Geoff Hinton: On Radiology

https://www.youtube.com/watch?v=2HMPRXstSvQ

Medical AI in the media



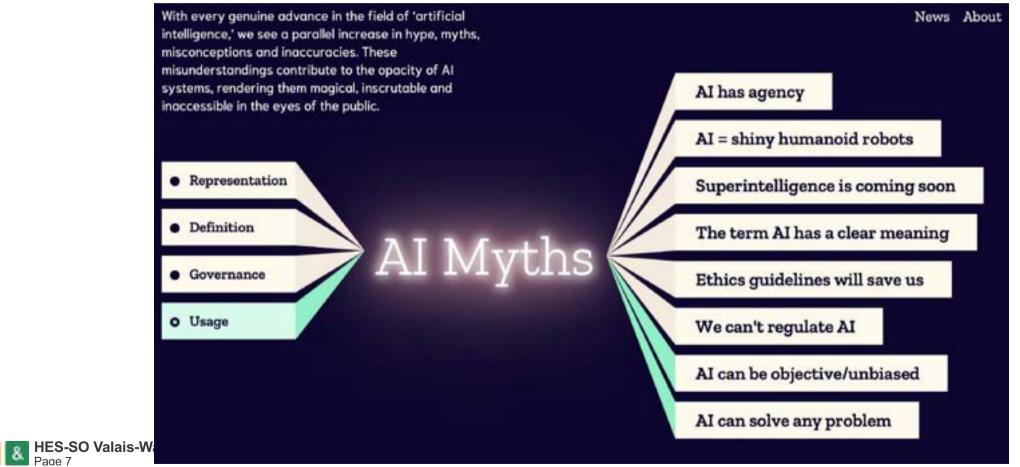
Hes.so VALAIS

Haute Ecole de Gestion & Tourisme D Hochschule für Wirtschaft & Tourismus

Many studies claiming that artyrcial intelligence (AI) is as good as (or better than) human experts at interpreting medical images are of poor quality and are arruphly exaggerated posing a risk for the safety of

Realistic expectations

https://www.aimyths.org/



Advantages of medical data

Riding the wave

a from the riving tide of scientific dat

- Images created under standardized conditions
- Images are always attached to a case and a report describing it, plus a reason for producing the images
 - Metadata exist, and other data on the same patient
 - We know the context of the images
- Much medical knowledge is available
 - Coded and maintained in ontologies
- Much clinical research is done

HES-SO Valais-Wallis

Page 8

- Medical imaging is estimated to occupy 30% of world storage

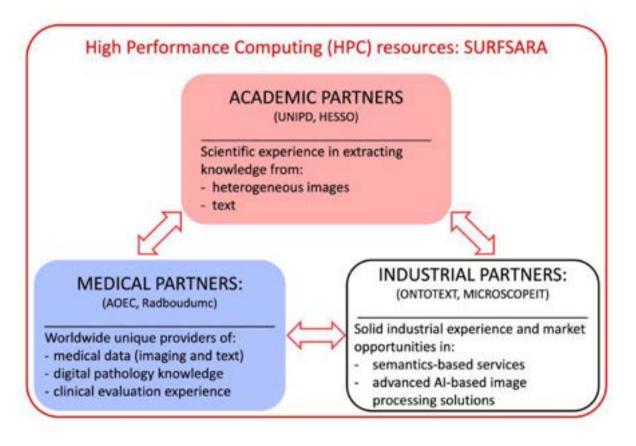
Challenges with medical data

- Data privacy and ethics can make sharing data hard
- Medical equipment and procedures vary across hospitals
 - And equipment changes frequently
- Pixel-level annotations are extremely expensive
 - Specialists are needed and often not available (too busy)
- An image is only a very small part in a case with patient history, temporal data, genetics, text, structured data etc.
 - Regions determining a decision are often extremely small
 - Needle in a haystack

Challenges for medical AI

- Much data are needed, so solutions need to be scalable
 - Diversity is required for generalization
 - Data sets are very unbalanced
- Continuous learning is required due to changing equipment and clinical guidelines (half-life of knowledge)
- Pixel level annotations are not available, as expensive
- Combining multiple sources is needed for proper learning
- Results need to be explainable for workflow integration
 - Deep learning is a priori a black box

Examode consortium



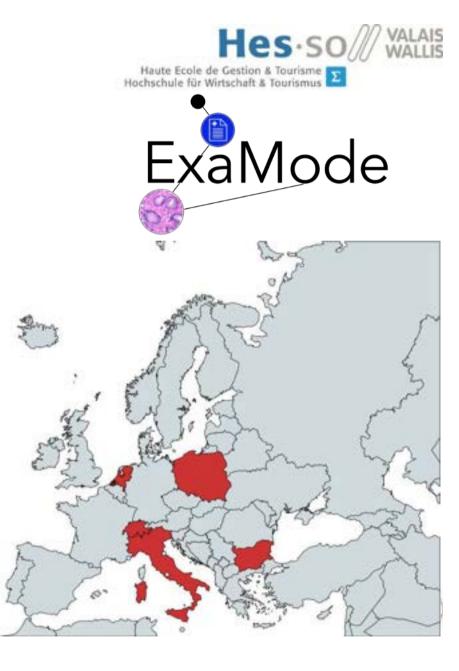


Image accessibility

- Open data policies of funding agencies make large medical data sets available
 - Particularly NIH is pushing towards this
- TCIA and TCGA are very large repositories
 - There are many scientific challenges
- Images from the Biomedical literature are available via PubMedCentral
 - Exponentially increasing
 - Extremely varied, hard to use

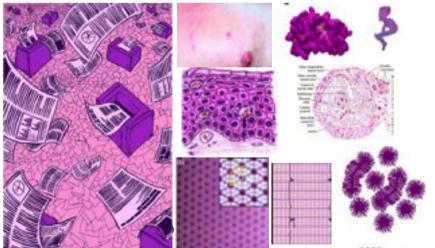
Hes

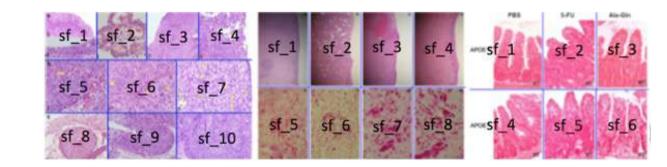
Unbalanced data sets

- Differing frequencies of the relevant classes need to be taken into account
 - At cancer screen even high-risk people are ~1% positive
 - Sensitivity and specificity as measures, not accuracy
 - Weight between false positives and false negatives varies
 - Some cases may occur once/twice per year in large hospitals
- Rare cases is what is more commonly described in articles
 - Images from articles can thus help (at least in theory)
 - Variety of imaging parameters and laboratories is very high

Challenges with PubMed

- >20'000'000 images in 2022, many graphs, charts
- Look-alikes is a problem, and compound figures
 - Very varied and sometimes strange content needs removal
- Compound figures need to be separated
 - Cutting sub figures apart makes content accessible





Making the images usable

- Removing very small images & strange aspect ratios
- Classify figures into figure types
 - Using image data and also text, remove non-relevant images
- Detect and cut compound figures into their parts
 - Classify these into figure types again
- Filter human vs. animal tissue and specific organs
- Check diseases or grading/staging images
 - Classes for machine learning

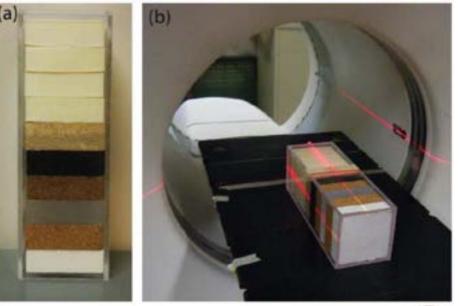
Advantages of literature images of auto Ecole de Gestion & Tourismus

- Rare images (unusual, untypical) are generally used for articles and case descriptions
 - A few typical cases but mainly extreme cases
 - Creates critical mass for rare diseases
- Images are from many laboratories and thus contain many image variations (staining, scanners)
 - Increase generalizability of learned models thanks to this diversity
- Exponentially increasing content

Hes-so Image harmonization for radiomics de Gestion & Tourisme

- Different scanners produce different images
 - Many protocols, construction kernels, producers, voxel sizes, ...
 - Strong influence on features extracted
- How can we harmonize this?
 - Deep learning!
- Phantom study with 17 scanners
 - 10 solid textures
 - Features invariant to scanner

Vincent Andrearczyk, Adrien Depeursinge, and Henning Müller, Neural Network Training for Cross-Protocol Radiomic Feature Standardization in Computed Tomography, Journal of Medical Imaging, 2019.



Σ 📶 🔀 🚷 HES-SO Valais-Wallis Page 17

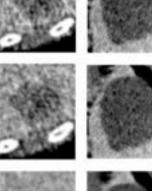
Measuring CT variability

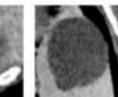
Liver metastasis

- Many CT parameter variations stemming from:
 - Acquisition protocols (radiation dose, ...)
 - Image reconstruction parameters
 - Image resolution (slice thickness, overlap, ...)
- Variability has a strong influence on the analysis & comparison of radiomics features
- Patient studies evaluating image/feature stability entail ethical concerns with multiple exposures to radiation

Traverso et al. (2018) *Repeatability and reproducibility of radiomic features: a systematic review.* International Journal of Radiation Oncology Physics **102**.

Solomon et al. (2014) Quantum noise properties of CT images with anatomical textured backgrounds across reconstruction HES-SO Valais-Wallis Page 18 algorithms: FBP and SAFIRE. Medical Physics 41, 091908.





Liver cyst

i30f medium smooth

B26f medium

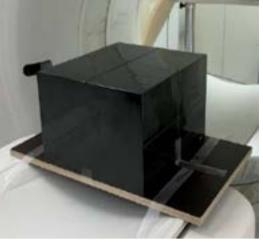
smooth ASA

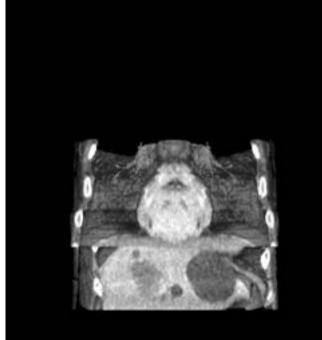
B30f medium

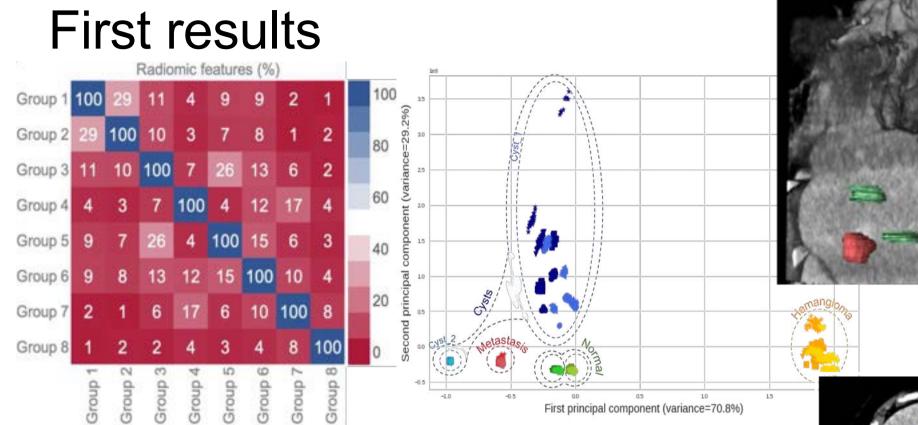
smooth

3D printed phantom

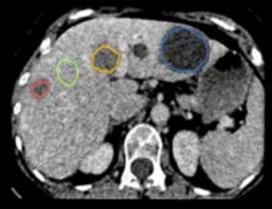
- Phantoms allow repeated radiation exposure
- Highly controlled acquisitions
 - No patient movement
 - No breathing
 - Precise positioning
- Limitations
 - In density (-100 HU to1000 HU)
 - Small blocks are glued (artifacts)







Oscar Jimenez-del-Toro, Christoph Aberle, Michael Bach, Roger Schaer, Markus Obmann, Kyriakos, Ender Konukoglu, Bram Stieltjes, Henning Müller, Adrien Depeursinge, The discriminative power and reproducibility of radiomics features with CT variations: Task-based analysis in a realistic CT liver phantom, Investigative Radiology, 2021.



E 🚾 📨 🚷 HES-SO Valais-Wallis Page 20

Stability vs. discriminative powerflaute Ecole de Gestion & Tourisme D

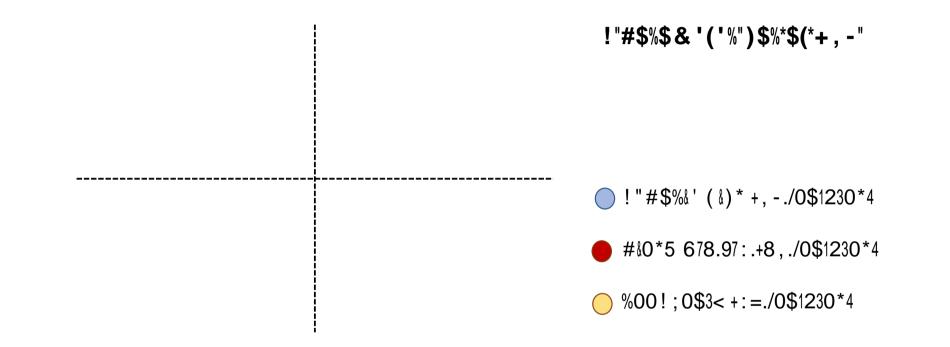
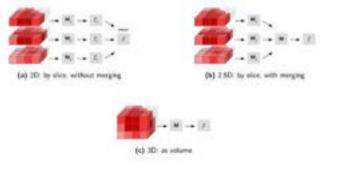


image biomarker standardisation initiative

Image Biomarker Standardization Initiative

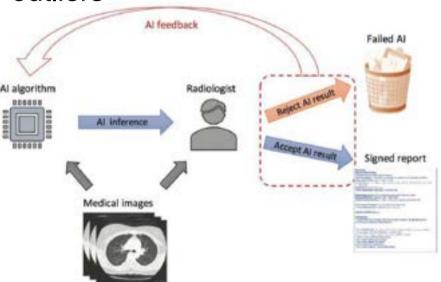
- Define all visual features used in radiomics
 - And compare implementations on the same data **Digital phantoms**
 - When there are differences then check the implementations
- Installment 1 is finished,
 - Simple statistical (texture) features
- Installment 2 is under way
 - Filter banks (Wavelets, Gabor, ...)

quantitative radiomics for high-throughput image-based phenotyping. Radiology, 295(2), 328-338.



Continuous learning

- Add new annotated samples regularly to update algorithms (for example with new machines)
 - Avoid catastrophic forgetting
 - By adapting to a few specific cases or outliers
- Regular feedback loop
 - With clinicians using AI

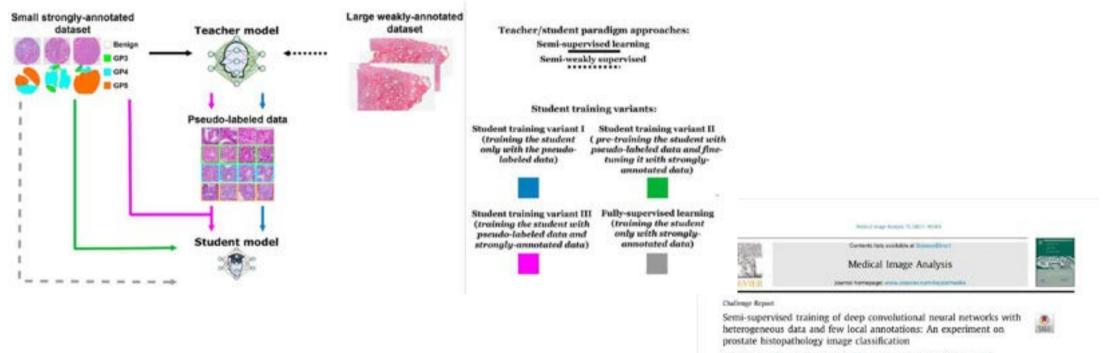


Pianykh, O.S., Langs, G., Dewey, M., Enzmann, D.R., Herold, C.J., Schoenberg, S.O. and Brink, J.A., 2020. Continuous learning AI in radiology: implementation principles and early applications. *Radiology*, 297(1), pp.6-14.

Data used in ExaMode

	1.1	· · · · · · · · · · · · · · · · · · ·	Flest set of proprietary data				Final set of curvel publicly available multimodal and multimodia data					
		TASK				Publicly available clinical data			Data from scientific literature			
		10000001	WSb	TMA Images	Test	Searce	Whole Shide	Test	Searce	Images	Test	Seates
	1	Advacentinisme.	2900		Diagnostic seport, structured (table)	ADEC	50	Structured (tuble)	TOGAPalene	3699	Image caption and article text	PMC Cent
	COLON CTERINE CERVIX	Westmann of Lances in	9000		Synoptic report, variationed (table)	fadoutanc	1.1					111111
			40	80	Sinctured (table)	Here University		111-				
			2000		Diagnostic reports, structured (table)		45	Structured (table)	TOGA	962	Image caption and article text	PMC Cert
			2510		Synoptic report	Raboulate		(secon)			and the	
	LUNG	Classification/detection of growth partness related to cancer suggrowthy coces, progressi	2008		Diagnostic report, structured (table)	AGEC	108	Heurnared (MDNc)	TOGA	4151	Image caption and article text	erroren h
	CILLAC	Callac disease detection in duodenal hispoirs	2000		Diagnostic report, emuctaned (table)	ADEC	_			165	Image captors and article text	PMC Cert
			1000		Synoptic report	Refrontere						
	PROSTATI	Glosen gading		-			.50	Structured (MDAC)	TOGA	1925	Image caption and article test	PMC Cest
	Additional	data sources from publicly hie datasets (Table 2)					12441		Various	2156		Various
		TOTAL	20540	- 10			12686	1		12085		Varias
	The local data	507- 111		A. 87								
			1200		-10	10002403	1994		e deforming and infittra Tumor ca	1.1.1	25	

Weakly supervised learning



Nicosió Marini¹⁸¹⁷, Sebastun Otilora¹⁰², Henning Müller¹⁴, Mashedo Atzori¹⁴⁷

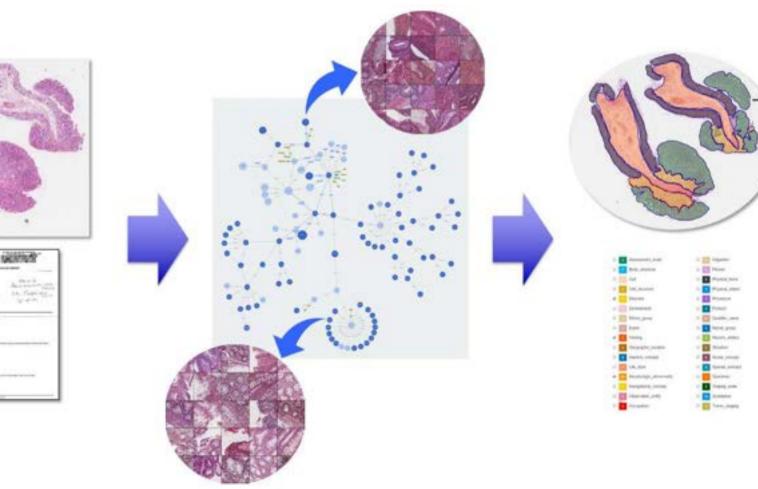
Indexession Section Technology of Applied Research Milloyn Research and 2014 Whitel, Schwarter E. Kone Mill Schwarter "Sector Schwarters Professional Section Section (2014) Section 2014 Technology of Section Section 310 Section 2014 Technology of Technology of Section 2014 Section 21 Technology 2 Technology 2014 Technology and Technology of Section 2014 Section 21 Technology 2 Technology 2014 Technology 2014 Section 2014 Section 2014 Section 2014 Section 2014 Technology 2014 Section 2014 Section 2014 Technology 2014 Section 2014 Sect

ARTICLE INFO

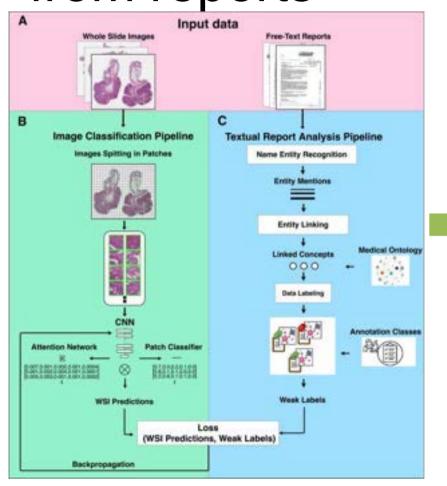
terista loomuu	Constitutional sets
Recented 7 August 2000	particularly for its
Recented 24 Jane 2011	4% that generative
Recented 8 Jane 2011	and the ball of its
Recented 8 Jane 2011	integer worksite its
KUL KURAN KURAN KURAN	chiles to showing antenuity analysis practiciper service age sequention pri- and afters experi-
Reveals'	advaters is deep
Description and participart	eti o talli se arti
Resp Increases	nancted is course

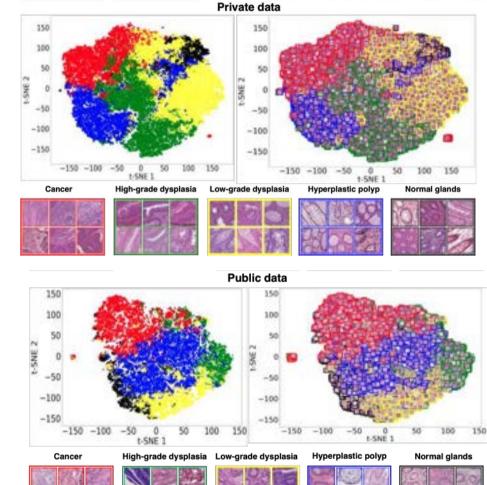
next extension (2016), per trate of the set comparts scalar indexpers for science leaders may classification. However, there are devised refers the training of classification and or no service discours to cold as over, chaining because of the highly between reveal. large datasets with load accompletes of the regions of tensors, and as homophology throughloing concerns the intercounty, analysis of tissue speciments prevented in glass distants with an anset. Egilal parketing concerns the sequences, management and in of depicted laring-biology longer, that are large, larger to earlier at UKDMP. Digital largestiming many are table, introgeneous due for the second of UKDMP. nier is die verdeut NAL as physicum wenig have is ancorer the data. Breate de l'antikag, lorenzging retaugt wei weinig armitele faituret on two derefficiele met werder britten, macht wier data on vers twentgemens. Lange anname of data an anale take gesentate weit. The page-primers a taket geprach is trait. Obto ma

Project status



Weakly supervised learning from reports



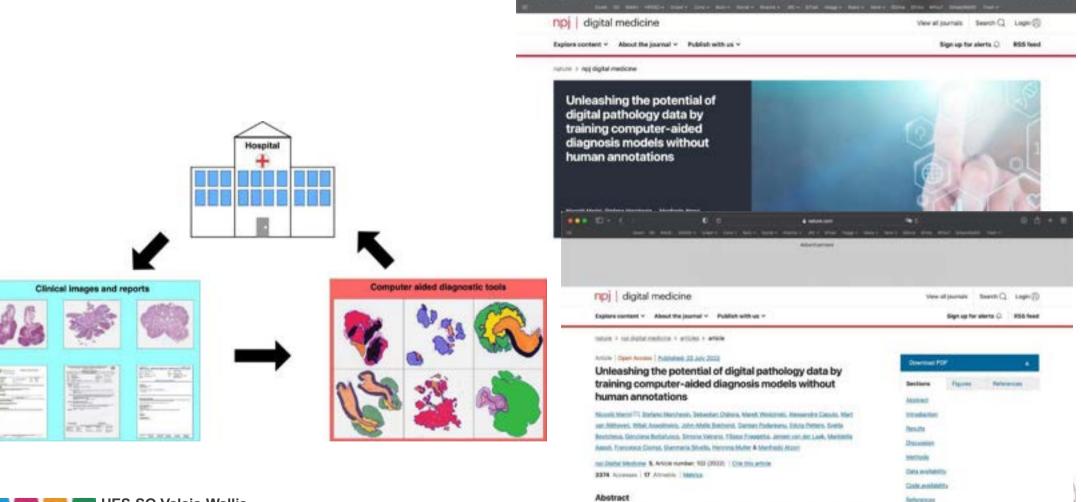


Hes.so VALAIS Haute Ecole de Gestion & Tourisme 2

Astronom discovered

The digitalization of clinical workflows and the increasing performance of deep learning

First results on multimodal data Hochschule für Wirtschaft & Tourismus



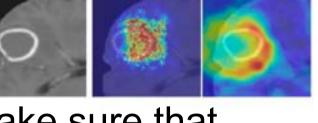
2 📶 🔤 🔕 HES-SO Valais-Wallis Page 28

Clinical workflow and AI

- A clinician orders an image
- A radiologist/pathologists produces and views the image and writes a report based on the question and anamnesis
 - Much data on the patient (environment, prior diseases, genetics, blood tests, development of a condition, ...)
 - Differential diagnosis, under much time pressure
- Any AI needs to be integrated into the workflow and tools
 - Adding evidence, identifying bias, uncertainty, ...
 - Explaining the decisions and their context

Interpretability of Deep Learning

- Make decisions understandable & remove black box image
- Make sure that decisions are sound
- Explain why things may not be working
- In medicine it is particularly important to make sure that results can be explained & reproduced
 - High impact of wrong decisions
- There are many approaches interpretability
 - 2D projections, PCA, TSNE
 - Class activation maps, saliency, ...



Guided-backprop

Input T1 contrast MRI

Grad-CAM

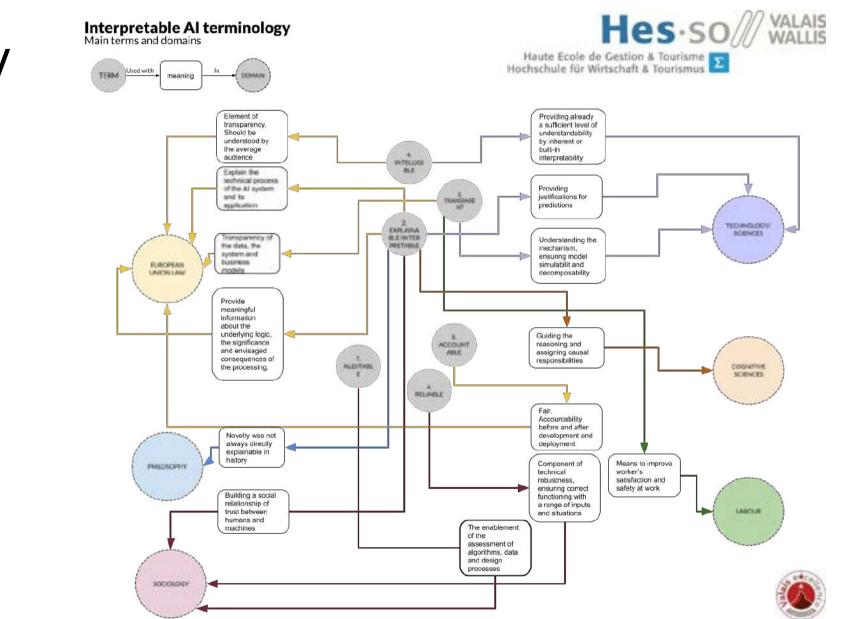
A taxonomy for explainability

- Many terms have been used in slightly different ways for AI: interpretability, explainability, transparency, accountability, fairness, (opacity) ...
 - Bias, reliability, robustness, uncertainty, confidence
- A workshop was held in the summer of 2021 on this with views from several domains: legal, technical, philosophical, social, cognitive, ethical, ...
 - https://taxonomyinterpretableai.wordpress.com
- EU is preparing the way

M Graziani, L Dutkiewicz, D Calvaresi, J Pereira Amorim, K Yordanova, M Vered, R Nair, P Henriques Abreu, T Blanke, V Pulignano, JO. Prior, L Lauwaert, W Reijers, A Depeursinge, V Andrearczyk, H Müller, A Global Taxonomy of Interpretable AI: Unifying the Terminology for the Technical and the Social Sciences, Artificial Intelligence Reviews, 2022.

- GDPR on data protection and Al policy
 - Limit the strong risks of AI and its use and abuse

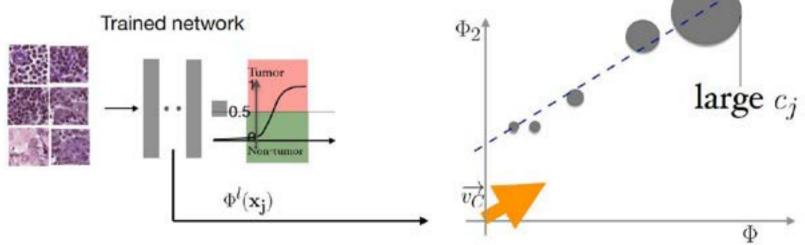
HES-SO Valais-Wallis Race 31



Taxonomy

Regression concept vectors

- Identify existing clinical features and check how the decision layers correlate to these features
 - i.e.: nuclei size, internal heterogeneity, borders, ...
 - How much can a decision be explained with these?

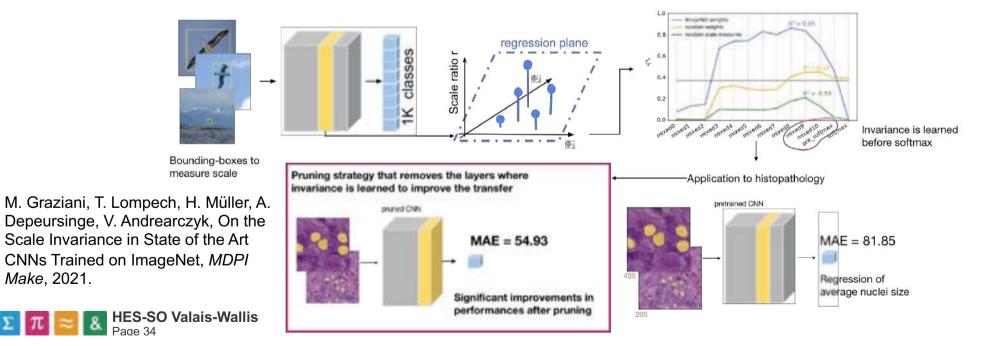


M Graziani, V Andrearczik, H Müller, Concept attribution: Explaining CNN decisions to physicians, Computers in Medicine and Biology, 2020.

Improve with interpretability

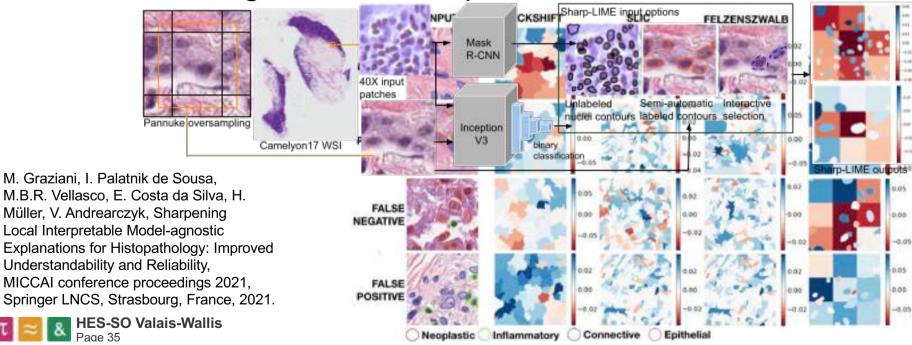
Make, 2021.

- Pre-trained models often include scale invariance
- In medical applications this can be problematic, as scale carries information



Visualizations

- Improve visualizations of regions that are relevant for the decision of a DNN
 - LIME is commonly used to highlight regions, but interpretations can be difficult



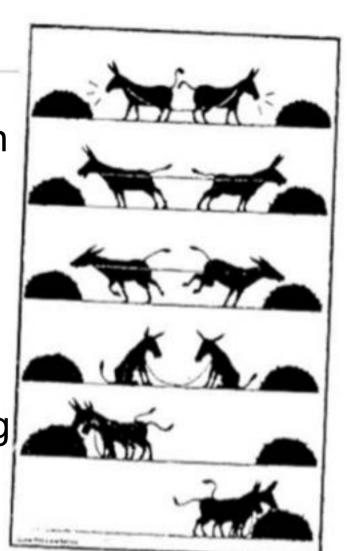
The importance of user tests!

- Most systems are scripts run under laboratory conditions
 - Does not give many indications of routine use
- Impact of the system is hard to measure
 - Better decisions, more confidence, faster, satisfaction?
- What is the influence on the patient?
 - Better treatment? Longer survival? Quality of life?
- User tests are more complex to set up but can really help
- Al and users are usually best together

Scientific challenges

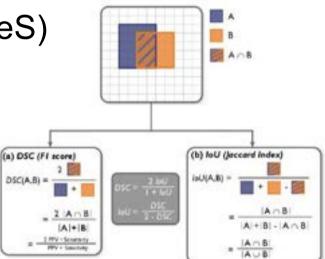
- Cooperation, Coopetition, Competition
- Many data sets are now available
 - Also many medical data sets
- Strong baselines help to judge quality
 - Not only the results count!
- Challenges can be run without sharing confidential data

- Provide VMs or Docker containers



Some more best practices

- Reporting for scientific challenges in medical imaging
 - BIAS (Biomedical Image Analysis challengeS)
 - Avoid bias, use the right measures
 - Use meaningful data sets and scenarios
 - How to chose the best evaluation metrics



Heses

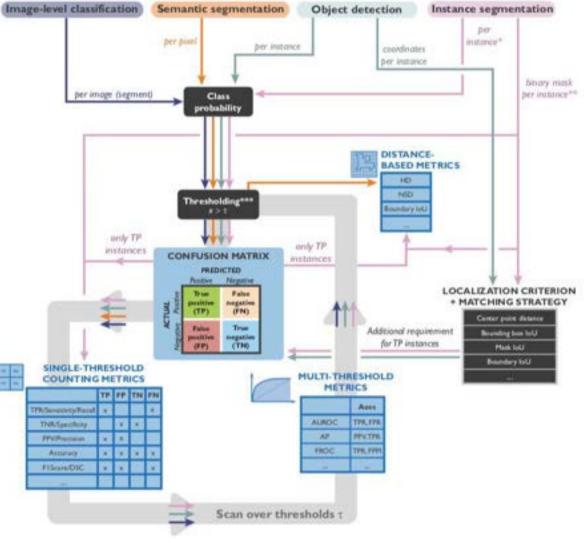
Haute Ecole de Gestion & Tourismus Hochschule für Wirtschaft & Tourismus

- ...

Maier-Hein, L., Eisenmann, M., Reinke, A., Onogur, S., Stankovic, M., Scholz, P., Arbel, T., Bogunovic, H., Bradley, A.P., Carass, A. and Feldmann, C., 2018. Why rankings of biomedical image analysis competitions should be interpreted with care. Nature communications, 9(1), pp.1-13.

Maier-Hein, L., Reinke, A., Kozubek, M., Martel, A.L., Arbel, T., Eisenmann, M., Hanbury, A., Jannin, P., Müller, H., Onogur, S. and Saez-Rodriguez, J., 2020. BIAS: Transparent reporting of biomedical image analysis challenges. *Medical image analysis*, 66, p.101796. Reinke, Annika, et al. "Common limitations of image processing metrics: A picture story." *arXiv preprint arXiv:2104.05642* (2021).

Tasks and measures



Certification of medical SW

- Any use of AI in medicine needs to be certified (CE, FDA)
 - Software is a "medical device"
 - Unless only for a research study
 - Avoid risks for the patient, tedious process
- In-vitro diagnostics is more complex since 2022
 - Transition period for already certified tools
- Expensive to do, so not usable for research tools

Hes.

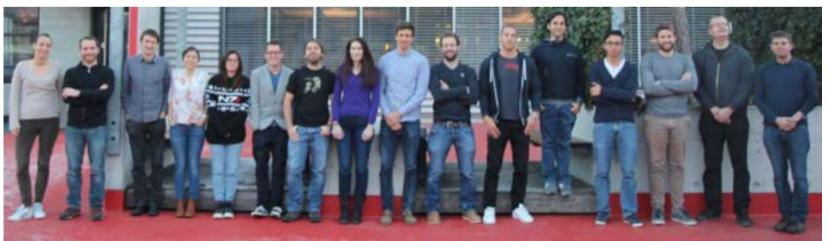
Haute Ecole de Gestion &

Conclusions

- Medical AI is an extremely interesting domain
 - With high impact on people's lives!
- Al in medical imaging has many challenges remaining!
 - Some can be addressed relatively easily
 - Many will require much more research
- Consequences of (wrong) decisions are important
- Run user tests (also on prospective data)

Contact

- More information can be found at
 - http://medgift.hevs.ch/
 - http://publications.hevs.ch/
- Contact: Henning.mueller@hevs.ch



Horizon 2020 European Union funding for Research & Innovation

