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Geometric Learning

Motivations and Background

AIDA course on Geometric Learning - July. 2022

Credits:
Bronstein et al, “Geometric Deep Learning: Grids, 
Groups, Graphs, Geodesics, and Gauges”, 2021

Rodolà, “Geometric Deep Learning”, 2020

WHY GEOMETRIC LEARNING?
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Geometry (non-Euclidean) Pixels (Euclidean)
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WHY GEOMETRIC LEARNING?

3Combinatorial structure (non-Euclidean)

PRELIMINARIES: REPRESENTATION
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WHAT IS A SHAPE?

“There can be no such thing as a mathematical theory of shape. The very notion of 
shape belongs to the natural sciences.“1

For us, shapes are mathematical objects (specifically, manifolds) that can be modeled 
in the continuous setting and brought to the digital world by translating to the discrete 
setting.

51J. Koenderink, “Solid Shape". MIT Press 1990

OTHER NON-EUCLIDEAN OBJECTS

Geometric Learning is not just about shapes.
• Graphs

• Point clouds

• Splines

• Tet-meshes

However, with shapes we touch upon several key notions that are useful for 
understanding all other non-Euclidean structures.
• Manifold hypothesis

• Laplacian and other operators

• Functional spaces

• Parametrization vs. embedding

• … 
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FUNCTIONS OVER ℝ

𝑓:ℝ ↦ ℝ

7

FUNCTIONS OVER ℝ2

8

𝑓: ℝ2 ↦ ℝ
𝑓: 𝑥, 𝑦 ↦ 𝑥2sin(xy)
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FUNCTIONS OVER A SURFACE

9

𝑓:ℳ ↦ ℝ3

ℳ

FUNCTIONS OVER A GRAPH

10

𝑓: 𝒢 ↦ ℝ3
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SHAPES VS IMAGES: DOMAIN

Euclidean (flat) 

11

non-Euclidean (curved)

SHAPES VS IMAGES: REPRESENTATION

Array of pixels 
(uniform grid)

12

Splines Graph

Point cloud Triangle mesh
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SHAPES VS IMAGES: PARAMETRIZATION

Global

13

Local

SHAPES VS IMAGES: TRANSFORMATIONS

Perspective

14

Affine

General (non rigid)
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SHAPES VS IMAGES: CALCULUS

15

+ =

+ = ?

SHAPE REPRESENTATION

Popular representations:
• Triangle meshes

• Point clouds

• Implicit surfaces

Others exist:
• Polygonal meshes (polygons are not restricted to triangles)

• Parametric surfaces

• Voxel grids (Euclidean)

• ---

The choice of a representation is crucial and can make the success or failure of solving 
a task.
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EXAMPLE

17

SHAPE REPRESENTATION: TRIANGLE MESH

A triangle mesh is a collection of connected triangles.

The incidence relations of triangles defines the mesh connectivity (also referred to as 
mesh topology).

In this example, the same underlying surface is discretized with meshes having 
different connectivity:
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SHAPE REPRESENTATION: TRIANGLE MESH

A triangle mesh is a collection of connected triangles.

We will only consider oriented manifold meshes. 
• Each triangle has an orientation

• All triangles should be consistently oriented (e.g., counter-clockwise)

• Each triangle has a normal (i.e., orthogonal) vector consistent with the triangle orientation

19

SHAPE REPRESENTATION: TRIANGLE MESH

We will only consider oriented manifold meshes.
• All edges have at most two incident triangles

• Edges with only one incident triangle form the mesh boundary

• The faces incident to a vertex form a closed or an open fan

20

3 triangles incident to 1 edge
 non-manifold

closed fan open fan

19
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EXAMPLE: NON-MANIFOLD MESHES

21

NORMALS

Normals are unit vectors that are orthogonal to each face
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NORMALS

23

ො𝑛 =
𝑒12 × 𝑒13
𝑒12 × 𝑒13

SHAPE REPRESENTATION: POINT CLOUD

A point cloud is a collection of points in 3D space.
• An oriented point cloud also has a normal vector for each point

• Point clouds are interpreted as point-wise samplings of an underlying unknown continuous surface...

• ...in practice, they come from depth sensors and can be very noisy!

24

Synthetic point cloud (obtained 
by removing mesh connectivity)

Real-world Kinect scan
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IMAGE REPRESENTATION

We represent images as uniform grids of pixels.

Each pixel is associated with a number or a color vector.

25

THE CHALLENGE 
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APPLICATIONS OF GEOMETRIC LEARNING
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APPLICATION: PROTEIN-PROTEIN INTERACTION

Designing protein binder for the PD-L1 protein target

29

Gainza et al, “Deciphering interaction fingerprints from protein molecular surfaces using geometric 
deep learning", Nature Methods 2020

MOLECULE PROPERTY PREDICTION

30

Duvenaud et al, “Convolutional Networks on Graphs for Learning Molecular Fingerprints", NIPS 2015; 
Gomez-Bombarelli et al, “Automatic chemical design using a data-driven continuous representation of 
molecules", ACS Cent. Sci. 2018
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GENERATIVE MODELS

31

MOLECULE GENERATION

Molecules generated with a graph VAE

32

Simonovsky and Komodakis, “Graphvae: Towards generation of small graphs using variational autoencoders", 2017
De Cao and Kipf, “MolGAN: An implicit generative model for small molecular graphs", 2018
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FACE FROM DNA

33Claes et al, “Facial recognition from DNA using face-to-DNA classifiers", Nature Communications 2019

PROTOTYPICAL NON-EUCLIDEAN OBJECTS

34

Manifolds Graphs

33
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DOMAIN STRUCTURE VS DATA ON A DOMAIN

35

Domain structure Data on a domain

DOMAIN STRUCTURE VS DATA ON A DOMAIN

36

only data only structure

35
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FIXED VS DIFFERENT DOMAIN

37

Social network (fixed graph) 3D shapes (different manifolds)

GEOMETRIC LEARNING ≠ MANIFOLD LEARNING

In manifold learning, we seek for a (possibly high-dimensional) manifold that justifies a 
given set of data points:

In geometric learning, the data has a known geometric structure.
38
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...do we actually need geometric learning?

39

MULTI-VIEW CNNS

• Represent a 3D object as a collection of range images

• CNN1: Extract image features (parameters are shared across views)

• Element-wise max pooling across all views

• CNN2: Produce shape descriptors + final prediction

40Su et al, “Multi-view Convolutional Neural Networks for 3D Shape Recognition", 2015
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APPLICATIONS OF MULTI-VIEW CNNS

3D shape classification and retrieval
• Pre-trained on ImageNet

• Fine-tuned on 2D views

Sketch classification
• Mimic views by jittering

Sketch-based shape retrieval
• Render views with hand-drawn style (edge maps)

41Su et al, “Multi-view Convolutional Neural Networks for 3D Shape Recognition", 2015

3D SHAPENETS

Volumetric representation (shape = binary voxels 
on 3D grid)

3D convolutional network

42Wu et al, “3D ShapeNets: A Deep Representation for Volumetric Shapes“, 2015

41
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LEARNED FEATURES: 3D PRIMITIVES

43Wu et al, “3D ShapeNets: A Deep Representation for Volumetric Shapes“, 2015

CHALLENGES OF GEOMETRIC LEARNING

• How to define convolution?

• How to do pooling?

• How to work fast?

44

Extrinsic Intrinsic
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EXTRINSIC VS INTRINSIC

45

Extrinsic                                  Intrinsic

NON-EUCLIDEAN CONVOLUTION?

46

Euclidean Non-Euclidean

45
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NON-EUCLIDEAN CONVOLUTION?

47

Euclidean Non-Euclidean

NON-EUCLIDEAN CONVOLUTION?

48

Image Graph

?
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GLOBAL PARAMETRIZATION

Map the input mesh to some parametric domain (e.g., 2D plane) where operations can 
be defined more easily.

• Can use Euclidean techniques while staying intrinsic

• Provides invariance to certain transformations

• Parametrization may be non-unique

• The map can introduce distortion

49Sinha et al, “Deep learning 3d shape surfaces using geometry images", 2016

INTRINSIC CONVOLUTION ON SURFACES

Is shift-invariant convolution on surfaces even possible?

Not in general! Due to singularities in the translation field (Poincare-Hopf or “hairy 
ball" theorem): “there is no continuous non-zero vector field tangent to a sphere”.

50

Heuristically said: “it is not 
possible to completely 
comb a hairy ball”
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INTRINSIC CONVOLUTION ON SURFACES

The torus is the only closed orientable surface admitting a translational group.

51Maron et al, “Convolutional Neural Networks on Surfaces via Seamless Toric Covers", SIGGRAPH 2017

CONVOLUTION ON SURFACES

52
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PRELIMINARIES: DIFFERENTIAL GEOMETRY

PROTOTYPICAL NON-EUCLIDEAN OBJECTS

54

Manifolds Graphs

53
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DIFFERENTIAL GEOMETRY

The study of local properties of curves and surfaces.

Each neighborhood has a well-behaved mapping to some subset 𝒰 ⊂ ℝ2.

55

DIFFERENTIAL GEOMETRY

Differential geometry gives us powerful tools to compute lengths, areas, integrals, 
gradients, etc. on surfaces.

56
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MANIFOLDS

Manifolds are unions of charts:

57

2D MANIFOLDS (SURFACES)

Each chart can be seen as a mapping 𝜙:ℝ2 → 𝑆 ⊂ ℝ3.

We require 𝜙 to be smooth and invertible (diffeomorphism).
• The domain of 𝜙 is the parametric space and is Euclidean.

• The image of 𝜙 is the embedding and is a surface.

58

chart

57
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2D MANIFOLDS (SURFACES)

Recipe for a regular surface in ℝ3:
• Cut pieces of a plane

• Deform these pieces

• Glue them together in a shape so that there are no sharp points, edges, or self-intersections 
(regularity)

59

2D MANIFOLDS (SURFACES)

Regularity ensures that we can talk about tangent planes at each point

In the language of differential geometry:

“L2-dimensional Riemannian sub-manifold"

60
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MANIFOLDS

Manifolds can be 𝑘-dimensional, meaning that we have charts:

Φ:ℝ𝑘 →ℳ ⊂ ℝ𝑑 𝑤𝑖𝑡ℎ 𝑘 < 𝑑

The parametrization is not unique:

61

Φ
⟹

ℝ2

ℝ3𝒰

𝑆

MANIFOLDS

Manifolds can be 𝑘-dimensional, meaning that we have charts:

Φ:ℝ𝑘 →ℳ ⊂ ℝ𝑑 𝑤𝑖𝑡ℎ 𝑘 < 𝑑

The parametrization is not unique:

However, all encode exactly the same geometric information.
62

𝛷′
⟹

ℝ2

ℝ3𝒰

𝑆

61
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PRELIMINARIES: METRIC GEOMETRY

MEASURING DISTANCE

Working with curved surfaces rather than flat domains requires us to reconsider all the 
basic notions that we took for granted in high school geometry.

How do you measure distance between 𝑥 and 𝑦 in this picture? 

There is not a unique way!
• You can pass through the sphere with a straight line (Euclidean)

• You can walk on the surface in a “straight" path (non-Euclidean)

64

𝑥

𝑦

63
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EUCLIDEAN DISTANCE

The Euclidean distance measures the length 
of a straight line connecting two points:

Apply Pythagoras' theorem: 𝑑 𝑎, 𝑏 = 𝑥𝑏 − 𝑥𝑎
2 + 𝑦𝑏 − 𝑦𝑎

2 1/2

In vector notation: 𝑑 𝒂, 𝒃 = 𝐚 − 𝐛 2

Where 𝐚 =
𝑥𝑎
𝑦𝑎

and 𝐛 =
𝑥𝑏
𝑦𝑏

65

𝐿𝑝 DISTANCE IN ℝ𝑘

One can generalize to different power coefficients 𝑝 ≥ 1
𝐱 − 𝐲 2 = 𝑥1 − 𝑦1

2 + 𝑥2 − 𝑦2
2 1/2

𝐱 − 𝐲 𝑝 = 𝑥1 − 𝑦1
𝑝 + 𝑥2 − 𝑦2

𝑝 1/𝑝

As well as generalize from ℝ2 to ℝ𝑘:

𝐱 − 𝐲 𝑝 = ෍
𝑖=1

𝑘

𝑥𝑖 − 𝑦𝑖
𝑝

1/𝑝

This definition gives us the 𝐿𝑝 distance between vectors in ℝ𝑘.

Examples:
• Euclidean (𝐿2) distance between 3D points

• Manhattan (𝐿1) distance between cities in a map

66
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𝐿𝑝 UNIT BALLS

67

METRIC SPACES

The pair (𝑜𝑏𝑗𝑒𝑐𝑡, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) forms a metric space. More formally:

A set ℳ is a metric space if for every pair of points 𝑥, 𝑦 ∈ ℳ there is a metric (or 
distance) function 𝑑ℳ:ℳ ×ℳ → ℝ+ such that:
• 𝑑ℳ 𝑥, 𝑦 = 0 ⇔ 𝑥 = 𝑦 (identity of indiscernibles)

• 𝑑ℳ 𝑥, 𝑦 = 𝑑ℳ 𝑦, 𝑥 (symmetry)

• 𝑑ℳ 𝑥, 𝑦 ≤ 𝑑ℳ 𝑥, 𝑧 + 𝑑ℳ 𝑧, 𝑦 for any 𝑥, 𝑦, 𝑧 ∈ ℳ (triangle inequality)

We will specify a metric space as the pair ℳ,𝑑ℳ .

Example:

• The sphere with Euclidean distance is 𝕊2, 𝑑𝐿2

• The sphere with geodesic distance is 𝕊2, 𝑑𝑔

68
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EXAMPLE: GEODESIC ISOLINES

Each isoline identifies a set of points 𝑥 ∈ 𝒳 at the same distance (according to 𝑑𝑔) 

from some reference 𝑦 ∈ 𝒳.

69

AMBIENT SPACE AND RESTRICTION

If 𝒜 is a metric space and 𝒳 ⊂ 𝒜, then 𝒜 is called ambient space for 𝒳.

A metric on 𝒳 can be obtained by the restriction 𝑑𝒳 = 𝑑𝒜|𝒳, such that: 𝑑𝒳 𝑥, 𝑦 =

𝑑𝒜 𝑥, 𝑦 for all 𝑥, 𝑦 ∈ 𝒳. 
70

𝒜 = ℝ3, 𝑑𝐿2𝒳

69
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ISOMETRIES

Let ℳ,𝑑ℳ and 𝒩,𝑑𝒩 be two metric spaces.

A bijective map 𝑓:ℳ → 𝒩 is called an isometry if:

𝑑ℳ 𝑥, 𝑦 = 𝑑𝒩 𝑓(𝑥), 𝑓(𝑦)

for any 𝑥, 𝑦 ∈ ℳ.

If 𝑑ℳ = . 2 and 𝑑𝒩 = . 2 we say “rigid isometry“.

71

EXAMPLE: NON-RIGID “QUASI"-ISOMETRIES

𝑑ℳ 𝑥, 𝑦 ≈ 𝑑𝒩 𝑓(𝑥), 𝑓(𝑦)

(here 𝑑ℳ , 𝑑𝒩 are geodesic distance functions)

72
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ISOMETRY AS EQUIVALENCE

“Being isometric" is an equivalence relation, since it is:
• reflective (𝑎 = 𝑎)

• symmetric (𝑎 = 𝑏 ⇒ 𝑏 = 𝑎)

• transitive (𝑎 = 𝑏 ∧ 𝑏 = 𝑐 ⇒ 𝑎 = 𝑐)

In this sense, we think of isometric shapes as being the same shape:

73

= =

ISOMETRIC EMBEDDINGS

How to compare the metric spaces themselves?

General idea: Embed 𝒳, 𝑑𝒳 and 𝑌, 𝑑𝑌 into a new metric space 𝑍, 𝑑𝑧 , and use a 
classical distance (e.g., Hausdorff, Chamfer) there.

An isometric embedding is a transformation 𝑓:𝒳 → 𝑍 which preserves the metric for 
all pairs 𝑥, 𝑦 ∈ 𝒳, i.e., 

𝑑𝑧 𝑓(𝑥), 𝑓(𝑦) = 𝑑𝒳 𝑥, 𝑦

For example, take 𝑑𝒳 = 𝑑𝑔 and 𝑑𝑍 = . 2:

74
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DISTANCE BETWEEN ISOMETRIC EMBEDDINGS

It will be a metric on the space of isometry classes.

An isometry class is a set of shapes which are equal up to isometry.

Therefore:

𝑑𝑖𝑠𝑜 , = 𝑑𝑖𝑠𝑜 ,

Question: What is the isometry class for the sphere 𝕊2, 𝑑𝑔 ?

75

A CARTOGRAPHER'S PROBLEM

Are isometric embeddings always possible?

Consider the following:

An isometric embedding of 𝕊2 into ℝ2 is not possible!

Any approximate solution introduces metric distortion.
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NON-EMBEDDABILITY OF THE SPHERE

• Consider the triangle △ (𝑥1, 𝑥3, 𝑥4) ⇒ collinear!

• Consider the triangle △ (𝑥2, 𝑥3, 𝑥4) ⇒ collinear!

• Then 𝑥1 = 𝑥2, which contradicts 𝑑𝑔 𝑥1, 𝑥2 = 1

⇒ This metric space cannot be embedded into ℝ𝑘 for any 𝑘

77

A CARTOGRAPHER'S SOLUTION
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SUGGESTED READING

Bronstein et al, “Geometric deep learning: going beyond Euclidean data“, 2016

https://arxiv.org/abs/1611.08097

Bronstein et al, “Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges”, 2021

https://arxiv.org/abs/2104.13478
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