
12/07/2022

1

Geometric Learning

Generalized Convolutions

AIDA course on Geometric Learning - July. 2022

Credits:
Bronstein et al, “Geometric Deep Learning: Grids,
Groups, Graphs, Geodesics, and Gauges”, 2021

Rodolà, “Geometric Deep Learning”, 2020

DEEP LEARNING RECAP

1

2

12/07/2022

2

Deep learning

Deep learning is a task-driven paradigm to extract patterns and latent features from
given observations.

However, features are not always the focus of deep learning; rather, they are
instrumental for the given task and drive the decision.

Example: Visual classification

3

low-level
features

mid-level
features

hi-level
features

“car"

A glimpse into neural networks

In deep learning, we deal with highly parametrized models called deep neural
networks:

4

𝑓Θ 𝐱 = 𝐲

3

4

12/07/2022

3

A glimpse into neural networks

5

• Each block has a predefined structure (e.g., a linear map)

• Each block is defined in terms of unknown parameters

• Finding the parameter values is called training...

• ...which is done by minimizing a function called loss

• Minimization requires computing gradients, called backpropagation

Deep composition

The simplest example of a nonlinear parametric model:

𝜎 ∘ 𝑓(𝐱)

If 𝜎 is nonlinear, we have a nonlinear regression model.

Consider multiple layers of nonlinear regression models:

output ← (𝜎 ∘ 𝑓)
𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟

∘ (𝜎 ∘ 𝑓) ∘ ⋯∘ (𝜎 ∘ 𝑓)
𝑖𝑛𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟

(𝐱) ← input

Popular choices for activation functions:

𝜎 =
1

1+𝑒−𝑥
𝜎 = 𝑚𝑎𝑥 0, 𝑥

6

continuous discontinuous gradient

5

6

12/07/2022

4

Multi-layer perceptron

We call the composition with linear 𝑓 and nonlinear 𝜎:

(𝜎 ∘ 𝑓) ∘ (𝜎 ∘ 𝑓) ∘ ⋯ ∘ (𝜎 ∘ 𝑓)(𝐱)

a multi-layer perceptron (MLP) or deep feed-forward neural network.

The parameters or weights of the MLP are scattered across the layers.

Each layer outputs an intermediate hidden representation:

𝑥ℓ+1 = 𝜎ℓ(𝐖ℓ𝐱ℓ + 𝐛ℓ)

where we encode the weights at layer ℓ in the matrix 𝐖ℓ and bias 𝐛ℓ.

Remark: The bias can be integrated inside the weight matrix by writing:

𝐖↦ 𝐖 𝐛 , 𝐱 ↦
𝐱
𝟏

.

because each 𝑓 is linear in the parameters just like in linear regression.

7

Single layer illustration

𝜎 𝐖𝐱 = 𝜎 ∘

𝑤11 𝑤12
𝑤21 𝑤22

⋯ 𝑤1𝑛
⋯ 𝑤2𝑛

⋮ ⋮
𝑤𝑚1 𝑤𝑚2

⋱ ⋮
⋯ 𝑤𝑚𝑛

𝑥1
𝑥2
⋮
𝑥𝑛

= 𝜎 ∘

𝑦1
𝑦2
⋮
𝑦𝑛

8

7

8

12/07/2022

5

Single layer illustration

𝜎 𝐖𝐱 = 𝜎 ∘

𝑤11 𝑤12
𝑤21 𝑤22

⋯ 𝑤1𝑛
⋯ 𝑤2𝑛

⋮ ⋮
𝑤𝑚1 𝑤𝑚2

⋱ ⋮
⋯ 𝑤𝑚𝑛

𝑥1
𝑥2
⋮
𝑥𝑛

= 𝜎 ∘

𝑦1
𝑦2
⋮
𝑦𝑛

9

Single layer illustration

𝜎 𝐖𝐱 = 𝜎 ∘

𝑤11 𝑤12
𝑤21 𝑤22

⋯ 𝑤1𝑛
⋯ 𝑤2𝑛

⋮ ⋮
𝑤𝑚1 𝑤𝑚2

⋱ ⋮
⋯ 𝑤𝑚𝑛

𝑥1
𝑥2
⋮
𝑥𝑛

= 𝜎 ∘

𝑦1
𝑦2
⋮
𝑦𝑛

10

9

10

12/07/2022

6

Universality

What class of functions can we represent with an MLP?

If 𝜎 is sigmoidal, we have the following:

The network in the theorem has just one hidden layer.

For large enough 𝑞, the training error can be made arbitrarily small.
11

Universal Approximation Theorem - For any compact set Ω ⊂ ℝ𝑝,
the space spanned by the functions 𝜙(𝐱) = 𝜎 𝐖𝐱 is dense in
𝒞(Ω) for the uniform convergence. Thus, for any continuous
function 𝑓 and any ϵ > 0, there exists 𝑞 ∈ ℕ and weights s.t.:

𝑓 𝐱 −෍

𝑘=1

𝑞

𝑢𝑘𝜙(𝐱) ≤ ϵ for all 𝐱 ∈ Ω

Training

Given a MLP with training pairs 𝐱𝑖 , 𝐲𝑖 :

𝑔Θ 𝐱𝑖 = 𝜎 ∘ 𝑓Θ𝑛 ∘ 𝜎 ∘ 𝑓Θ𝑛−1 ∘ ⋯ ∘ 𝜎 ∘ 𝑓Θ1 𝐱𝑖 = 𝐲𝑖

Consider the MSE loss:

ℓΘ 𝐱𝑖 , 𝐲𝑖 =
1

𝑛
෍

𝑖=1

𝑛

𝐲𝑖 − 𝑔Θ 𝐱𝑖 2
2

Solving for the weights Θ is referred to as training.

In general, the loss is not convex w.r.t. Θ.

Some special cases are convex:
• One layer, no activation, MSE loss (⇒ linear regression).

• One-layer, sigmoid activation, logistic loss (⇒ logistic regression).

12

11

12

12/07/2022

7

Training

We train using gradient descent-like algorithms.

Each parameter gets updated so as to decrease the loss:

Θ𝑖 ← Θ𝑖 − 𝛼
𝜕ℓ

𝜕Θ𝑖

13

Training

Bottleneck: Computation of gradients ∇ℓΘ.

For the basic MSE, this means:

∇ℓΘ 𝐱𝑖, 𝐲𝑖 =
1

𝑛
෍

𝑖=1

𝑛

∇Θ 𝐲𝑖 − 𝑔Θ 𝐱𝑖 2
2

=
1

𝑛
෍

𝑖=1

𝑛

∇Θ 𝐲𝑖 − (𝜎(𝑓Θ𝑛((𝜎 𝑓Θ𝑛−1 ⋯ 𝜎 𝑓Θ1 𝐱𝑖 ⋯)
2

2

• Computing the gradients by hand is infeasible.

• Finite differences require 𝒪(#𝑤𝑒𝑖𝑔ℎ𝑡𝑠) evaluations of ℓΘ.

• Using the chain rule is sub-optimal.

A computational technique called back-propagation is used.
14

13

14

12/07/2022

8

Neural network (NN)

Deep neural network consisting of 𝐿 layers

15

• Net output 𝑔𝑜𝑢𝑡 = 𝜎(…𝐖 2 𝜎𝐖 1 𝐟𝑖𝑛)

• Activation, e.g., 𝜎 𝑥 = max 𝑥, 0 rectified linear unit (ReLU)

• Parameters weights of all layers 𝐖 1 , … ,𝐖 𝐿 (including biases)

The need for priors

Deep feed-forward networks are provably universal.

However:
• We can make them arbitrarily complex.

• The number of parameters can be huge.

• Very difficult to optimize.

• Very difficult to achieve generalization.

We need additional priors as a (partial) remedy to the above.

Look for “universal" priors that are task-independent to some extent.

Task-independent priors must come with the data.

16

15

16

12/07/2022

9

Structure as a strong prior

Key insight: Data often carries structural priors in terms of repeating patterns,
compositionality, locality, …

17

Take advantage of the structure of the data.

Self-similarity

Data tends to be self-similar across the domain:

18

17

18

12/07/2022

10

Hierarchy and compositionality

Translation invariance is desirable across multiple scales:

We expect local features to be invariant to their location in the image:

𝑧 𝑇𝑣𝑝 = 𝑧 𝑝 ∀𝑝, 𝑇𝑣
where 𝑝 are image patches of variable size.

19scale 1 scale 𝑛

Convolutional neural networks (CNN)

Data is often composed of hierarchical, local, shift-invariant patterns.

CNNs directly exploit this fact as a prior.

20

19

20

12/07/2022

11

Convolution

Given two functions 𝑓, 𝑔 ∶ −𝜋,+𝜋 → ℝ their convolution is a function:

(𝑓 ∗ 𝑔) 𝑥
𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝

= න
−𝜋

+𝜋

𝑓 𝑡 𝑔(𝑥 − 𝑡)
𝑘𝑒𝑟𝑛𝑒𝑙

𝑑𝑡

21d'Alembert 1754

𝑓

𝑔

𝑓 ∗ 𝑔

Convolution: Shift-equivariance

Convolution is shift-equivariant:

𝑓 𝑥 − 𝑥0 ∗ 𝑔 𝑥 = (𝑓 ∗ 𝑔)(𝑥 − 𝑥0)

22

shift ⇒

shift ⇒

convolve
⇓

convolve
⇓

21

22

12/07/2022

12

Convolution: Linearity

We can see convolution as the application of a linear operator 𝒢:

𝒢𝑓 𝑥 = (𝑓 ∗ 𝑔)(𝑥) = න
−𝜋

+𝜋

𝑓 𝑡 𝑔(𝑥 − 𝑡)
𝑘𝑒𝑟𝑛𝑒𝑙

𝑑𝑡

It is easy to show that 𝒢 is linear:

𝒢 𝛼𝑓 𝑥 = 𝛼𝒢 𝑓 𝑥
𝒢 𝑓 + ℎ 𝑥 = 𝒢𝑓 𝑥 + 𝒢ℎ 𝑥

Translation equivariance can then be phrased as:

𝒢 𝒯𝑓 = 𝒯(𝒢𝑓)

i.e., the convolution and translation operators commute.

23

Discrete convolution

In the discrete setting, we deal with vectors 𝐟, 𝐠.

We define the convolution sum:

𝐟 ∗ 𝐠 [𝑛] = ෍

𝑘=−∞

+∞

𝐟 𝑘 𝐠[𝑛 − 𝑘]

Assuming cyclic boundary conditions, the convolution operator can be encoded as a
Toeplitz matrix:

𝐟 ∗ 𝐠 =

𝑔1 𝑔2
𝑔𝑛 𝑔1

⋯ ⋯ 𝑔𝑛
𝑔2 ⋯ 𝑔𝑛−1

⋮ ⋮
𝑔3 𝑔4
𝑔2 𝑔3

⋱ ⋱ ⋮
⋯ 𝑔1 𝑔2
⋯ ⋯ 𝑔1

𝑓1
⋮
𝑓𝑛

24

23

24

12/07/2022

13

Discrete convolution

On 2D domains (e.g., RGB images) 𝑓:ℝ2 → ℝ3, for each channel:

𝐟 ∗ 𝐠 [𝑚, 𝑛] =෍

𝑘

෍

ℓ

𝐟 𝑘, ℓ 𝐠[𝑚 − 𝑘, 𝑛 − ℓ]

We get the classical interpretation in terms of a moving window:

25

Convolutional neural network (CNN)

Main idea: Compose equivariant layers implemented via convolution.

• Conv. layer 𝑔ℓ 𝑥 = 𝜎 σℓ′=1
𝑛 (𝑓ℓ′ ∗ 𝑤ℓ,ℓ′ 𝐱

ℓ = 1,… ,𝑚
ℓ′ = 1,… , 𝑛

• Activation, e.g., 𝜎 𝑥 = max 𝑥, 0 rectified linear unit (ReLU)

• Parameters filters 𝑊

26

Single convolutional layer

25

26

12/07/2022

14

Convolutional neural network (CNN)

• Conv. layer 𝑔ℓ
(𝑘)

𝑥 = 𝜎 σ
ℓ′=1
𝑚𝑘−1(𝑔

ℓ′
𝑘−1

∗ 𝑤
ℓ,ℓ′
𝑘−1

𝐱
ℓ = 1,… ,𝑚𝑘

ℓ′ = 1,… ,𝑚𝑘−1

• Activation, e.g., 𝜎 𝑥 = max 𝑥, 0 rectified linear unit (ReLU)

• Parameters filters of all layers 𝑊(1), … ,𝑊(𝐿)

27

Multiple convolutional layer

Key properties of CNNs

• Convolutional filters (Translation equivariance)

• Multiple layers (Compositionality)

• Filters localized in space (Locality)

• Weight sharing (Self-similarity)

• 𝒪(1) parameters per filter (independent of input image size 𝑛)

28

27

28

12/07/2022

15

BACK TO GEOMETRIC LEARNING

Non-Euclidean convolution?

Euclidean

Spatial domain

(𝑓 ∗ 𝑔) 𝑥 = න
−𝜋

+𝜋

𝑓 𝑥′ 𝑔(𝑥 − 𝑥′) 𝑑𝑥′

Spectral domain

෣𝑓 ∗ 𝑔 𝜔 = መ𝑓 𝜔 ∙ ො𝑔 𝜔

“Convolution Theorem”

Non-Euclidean

?

?

30

29

30

12/07/2022

16

“human”

Non-Euclidean convolution?

Example of non-rigid shape classifier:

Input: Vertex-wise quantity, e.g., curvature, texture, SHOT descriptors

Output: Shape category

31Masci et al, “Geodesic convolutional neural networks on Riemannian manifolds", CVPR 2015

Geodesic convolution on meshes

Local system of geodesic polar coordinates constructed
at point 𝑥 to extract patches on the manifold.
• The radial coordinate is constructed as 𝜌-level sets

𝑥′: 𝑑𝑋 𝑥, 𝑥′ = 𝜌 of the geodesic (shortest path) distance
function for 𝜌 ∈ [0, 𝜌0], where 𝜌0 is the radius of the geodesic
disc

• The angular coordinate is constructed as a set of geodesics
Γ(𝑥, 𝜃) emanating from 𝑥 in direction 𝜃; such rays are
perpendicular to the geodesic distance level sets

32Masci et al, “Geodesic convolutional neural networks on Riemannian manifolds", CVPR 2015

Construction of local geodesic
polar coordinates on a manifold:
example of local geodesic patches

31

32

12/07/2022

17

Geodesic convolution on meshes

Let Ω 𝑥 :𝐵𝜌0 𝑥 → 0, 𝜌0 × [0,2𝜋] denote the bijective map from the manifold into

the local geodesic polar coordinates (𝜌, Θ) around 𝑥, and let 𝐷 𝑥 𝑓 𝜌, Θ =
(𝑓 ∘ Ω−1 𝑥) 𝜌, Θ be the patch operator interpolating 𝑓 in the local coordinates.

𝐷 𝑥 𝑓 can be regarded as a ‘patch’ on the manifold and used to define the geodesic
convolution (GC)

𝑓 ∗ 𝑎 𝑥 =෍

Θ,𝑟

𝑎(Θ + ΔΘ, 𝑟) 𝐷 𝑥 𝑓 𝑟, Θ

where 𝑎(Θ, 𝑟) is a filter applied on the patch.

Due to angular coordinate ambiguity, the filter can be rotated by arbitrary angle ΔΘ.

33Masci et al, “Geodesic convolutional neural networks on Riemannian manifolds", CVPR 2015

Patch operator

In1, the patch operator was constructed as

• The radial interpolation weight is a Gaussian 𝑣𝜌(𝑥, 𝑥
′) of the

geodesic distance from 𝑥, centered around 𝜌

• The angular weight is a Gaussian 𝑣𝜃(𝑥, 𝑥
′) of the point-to-set

distance 𝑑𝑋 Γ 𝑥, 𝜃 , 𝑥′ = min𝑥′′∈Γ 𝑥,𝜃 𝑑𝑋 𝑥′′, 𝑥′ to the

geodesic Γ(𝑥, 𝜃)

34

Masci et al, “Geodesic convolutional neural networks on Riemannian manifolds", CVPR 2015
1I. Kokkinos et al. “Intrinsic shape context descriptors for deformable shapes”, CVPR 2012

example of angular and radial
weights 𝑣𝜃, 𝑣𝜌, respectively (red

denotes larger weights)

33

34

12/07/2022

18

Discrete patch operator

On triangular meshes, a discrete local system of
geodesic polar coordinates has 𝑁𝜃 angular and 𝑁𝜌
radial bins.
• The 1-ring of a vertex 𝑖 is first partitioned by 𝑁𝜃 rays into

equi-angular bins, aligning the first ray with one of the edges

• Next, the rays are propagated into adjacent triangles using an
unfolding procedure, producing poly-lines that form the
angular bins

• Radial bins are created as level sets of the geodesic distance
function computed using fast marching

The discrete patch operator is an 𝑁𝜃𝑁𝜌𝑁 × 𝑁 matrix

applied to a function defined on the mesh vertices.

35

Division of 1-ring of vertex 𝑥𝑖 into 𝑁𝜃
equi-angular bins; propagation of a ray
(bold line) by unfolding the respective
triangles (marked in green)

Masci et al, “Geodesic convolutional neural networks on Riemannian manifolds", CVPR 2015

Geodesic convolutional neural network (GCNN)

GCNN consists of several layers that are applied subsequently, i.e., the output of the
previous layer is used as the input into the subsequent one.
• Linear (LIN) layer typically follows the input layer and precedes the output layer to adjust the input

and output dimensions by means of a linear combination:

optionally followed by a non-linear function such as the ReLU.

36Masci et al, “Geodesic convolutional neural networks on Riemannian manifolds", CVPR 2015

“human”

35

36

12/07/2022

19

Geodesic convolutional neural network (GCNN)

• Geodesic convolution (GC) layer replaces the convolutional layer used in classical Euclidean CNNs.
Due to the angular coordinate ambiguity, the geodesic convolution result is computed for all 𝑁𝜃
rotations of the filters,

where 𝑎∆𝜃,𝑞𝑝 𝜃, 𝑟 = 𝑎𝑞𝑝(𝜃 + ∆𝜃, 𝑟) are the coefficients of the 𝑝-th filter in the 𝑞-th filter bank

rotated by ∆𝜃 = 0,
2𝜋

𝑁𝜃
, … ,

2𝜋(𝑁𝜃−1)

𝑁𝜃
and the convolution is the GC introduced above.

37Masci et al, “Geodesic convolutional neural networks on Riemannian manifolds", CVPR 2015

“human”

Geodesic convolutional neural network (GCNN)

• Angular max-pooling (AMP) is a fixed layer used in conjunction with the GC layer that computes the
maximum over the filter rotations,

where 𝑓∆𝜗𝑝
𝑖𝑛 is the output of the GC layer.

38

“human”

Masci et al, “Geodesic convolutional neural networks on Riemannian manifolds", CVPR 2015

37

38

12/07/2022

20

Geodesic convolutional neural network (GCNN)

Other layers are
• Fourier transform magnitude (FTM) layer is a fixed layer that applies the patch operator to each input

dimension, followed by Fourier transform w.r.t. the angular coordinate and absolute value. The
Fourier transform translates rotational ambiguity into complex phase ambiguity, which is removed by
taking the absolute value

• Covariance (COV) layer is used in applications such as retrieval, where one needs to aggregate the
point-wise descriptors and produce a global shape descriptor

39Masci et al, “Geodesic convolutional neural networks on Riemannian manifolds", CVPR 2015

Spatial convolution on meshes

Local system of coordinates 𝑢𝑖𝑗 around 𝑖 (e.g.,

geodesic polar).

Local weights 𝑤(𝐮𝑖𝑗), e.g., Gaussians with

learnable 𝜇, Σ

𝑤 = exp(−(𝐮𝑖𝑗 − 𝜇)TΣ−1(𝐮𝑖𝑗 − 𝜇))

Spatial convolution of feature 𝑓 with filter 𝑔:
• Represent the input 𝑓 as above ⇒ 𝐟

• Represent the learnable filter 𝑔 as above ⇒ 𝐠

• Sum up the element-wise products ⇒ 𝐟𝐓𝐠

40Monti et al, “Geometric deep learning on graphs and manifolds using mixture model CNNs", CVPR 2016

Intrinsic local polar
coordinates (𝜌, Θ) on
manifold around a
point marked in white

39

40

12/07/2022

21

Local weighting kernels

41Monti et al, “Geometric deep learning on graphs and manifolds using mixture model CNNs", CVPR 2016

Patch operator weighting functions 𝑤𝑖(𝜌, Θ) used in different generalizations of convolution on the
manifold (hand-crafted in GCNN and ACNN and learned in MoNet).
All kernels are L1-normalized; red curves represent the 0.5 level set.

Spiral convolution

These approaches aggregate neighboring node features based on trainable weight

functions.

With the spiral convolution method, node features are encoded under an explicitly
defined spiral sequence, and a fully connected layer follows to encode input features
combined with ordering information.

The definition of the spiral sequences, is the core step of the proposed operator.

42

41

42

12/07/2022

22

Spiral convolution

Given a center vertex, the sequence can be enumerated
by intuitively following a spiral.

The degrees of freedom are the orientation within each
ring (clockwise or counter-clockwise) and the choice of
the starting direction.

The orientation is fixed to counter-clockwise and an
arbitrary starting direction is chosen.

The spirals are pre-computed only once.

43

Lim et al, “A Simple Approach to Intrinsic Correspondence Learning on Unstructured 3D Meshes”, ECCV 2018
Gong et al, “SpiralNet++: A Fast and Highly Efficient Mesh Convolution Operator", GMDL 2019

Spiral convolution

A 𝑘-ring and a 𝑘-disk are defined around a center vertex 𝑣 as follows:

where 𝒩(𝑉) is the set of all vertices adjacent to any vertex in set 𝑉.

The spiral length is denoted as 𝑙.

A spiral sequence 𝑆(𝑣, 𝑙) is an ordered set consisting of 𝑙 vertices from a concatenation
of 𝑘-rings

44Gong et al, “SpiralNet++: A Fast and Highly Efficient Mesh Convolution Operator", GMDL 2019

43

44

12/07/2022

23

Spiral convolution

A common extension of CNNs into irregular domains, such as graphs, is typically
expressed as a neighborhood aggregation or message passing scheme.

With 𝑥𝑖
(𝑘−1)

∈ ℝ𝐹 denoting node features of node 𝑖 and 𝑒𝑖,𝑗
(𝑘−1)

∈ ℝ𝐷 denoting

(optional) edge features from node 𝑖 to node 𝑗 in layer (𝑘 − 1), message passing GNNs
can be described as:

where 𝑥𝑖
𝑘 ∈ ℝ𝐹′,  denotes a differentiable permutation-invariant function, e.g., sum,

mean or max, and 𝜙 denotes a differentiable kernel function. 𝛾 represents MLPs.

45Gong et al, “SpiralNet++: A Fast and Highly Efficient Mesh Convolution Operator", GMDL 2019

Spiral convolution

The main challenge in the case of irregular domains is to define the correspondence
between neighbors and weight matrices which relies on the kernel function 𝜙.

Thanks to the nature of the spiral serialization of neighboring nodes, the spiral
convolution can be defined in an equivalent manner to the Euclidean CNNs, easing the
pain of calculating the assignment value of 𝑥𝑗 to the weight matrix.

The spiral convolution operator for a node 𝑖 is defined as

where 𝛾 denotes MLPs and || is the concatenation operation.

Note that node features are concatenated in the spiral sequence following the order
defined in 𝑆(𝑖, 𝑙).

46Gong et al, “SpiralNet++: A Fast and Highly Efficient Mesh Convolution Operator", GMDL 2019

45

46

12/07/2022

24

Dilated spiral convolution

With the motivation of exponentially
expanding the receptive field without
losing resolution or coverage, dilated
spiral convolution operators are also
defined.

Spiral convolution operators could
immediately gain the power of capturing
multi-scale contexts without increasing
complexity from uniformly sampling the
spiral sequence, while keeping the same
spiral length.

47

Other spatial convolutions

48Fey et al, “SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels", CVPR 2018

47

48

12/07/2022

25

49

POINT CLOUDS

49

50

12/07/2022

26

Point cloud

Point cloud data ara typically collected
from either a lidar or radar sensor.

Unlike 2D pixel arrays (images) or 3D voxel
arrays, point clouds have an unstructured
representation in that the data is simply a
collection (a set) of the points captured
during a lidar or radar sensor scan.

51

Input data

To leverage existing techniques built around (2D and 3D) convolutions, many
researchers and practitioners often discretize a point cloud by taking multi-view
projections onto 2D space or quantizing it to 3D voxels.

Given that the original data is manipulated, either approach can have negative impacts.

For simplicity, we will assume that a point in a point cloud is fully described by its
(𝑥, 𝑦, 𝑧) coordinates.

In practice, other features may be included, such as surface normal and intensity.

52

51

52

12/07/2022

27

PointNet

PointNet is a seminal paper in 3D perception, applying deep learning to point clouds
for object classification and part/scene semantic segmentation.

PointNet consumes raw point cloud data, so it is based on an architecture that
conforms to the unique properties of point sets.
• Permutation (order) invariance: given the unstructured nature of point cloud data, a scan made up

of 𝑁 points has 𝑁! permutations. The subsequent data processing must be invariant to the different
representations

• Transformation invariance: classification and segmentation outputs should be unchanged if the
object undergoes certain transformations, including rotation and translation

• Point interactions: the interaction between neighboring points often carries useful information (i.e.,
a single point should not be treated in isolation). Whereas classification need only to make use of
global features, segmentation must leverage local point features along with global point features

53R. Charles, et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation," CVPR, 2017

Architecture

54R. Charles, et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation," CVPR, 2017

53

54

12/07/2022

28

Architecture: classification network

A shared multi-layer perceptron (MLP) is used to map each of the 𝑛 points from three
dimensions (𝑥, 𝑦, 𝑧) to 64 dimensions.
• It is important to note that a single multi-layer perceptron is shared for each of the 𝑛 points (i.e.,

mapping is identical and independent on the 𝑛 points)

This procedure is repeated to map the 𝑛 points from 64 to 1024 dimensions.

55

Local embedding Global feature

R. Charles, et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation," CVPR, 2017

Architecture: classification network

With the points in a higher-dimensional embedding space, max pooling is used to
create a global feature vector in ℝ1024.

Finally, a three-layer fully-connected network is used to map the global feature vector
to 𝑘 output classification scores.

56R. Charles, et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation," CVPR, 2017

55

56

12/07/2022

29

Architecture: segmentation network

Each of the 𝑛 input points needs
to be assigned to one of 𝑚
segmentation classes.

Because segmentation relies on
local and global features, the
points in the 64-dimensional
embedding space (local point
features) are concatenated with
the global feature vector (global
point features), resulting in a
per-point vector in ℝ1088.

57

Local embedding Global feature

R. Charles, et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation," CVPR, 2017

Architecture: segmentation network

Similar to the multi-layer
perceptrons used in the
classification network, MLPs
are used (identically and
independently) on the 𝑛 points
to lower the dimensionality
from 1088 to 128 and again
to 𝑚, resulting in an array
of 𝑛 𝑥 𝑚.

58R. Charles, et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation," CVPR, 2017

57

58

12/07/2022

30

Permutation invariance

Point clouds are inherently unstructured data and are represented as numerical sets.

Specifically, given 𝑁 data points, there are 𝑁! permutations

In order to make PointNet invariant to input permutations, symmetric functions are
used (i.e., functions whose value given 𝑛 arguments is the same regardless of the order
of the arguments).

For binary operators, this is also known as the commutative property.

Common examples include
𝑠𝑢𝑚(𝑎, 𝑏) = 𝑠𝑢𝑚(𝑏, 𝑎)

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑎, 𝑏 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑏, 𝑎)
max 𝑎, 𝑏 = max(𝑏, 𝑎)

59R. Charles, et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation," CVPR, 2017

Permutation invariance

The symmetric function is used once the 𝑛 input points are mapped to higher-
dimensional space.

The result is a global feature vector that aims to capture an aggregate signature of the
𝑛 input points.

Naturally, the expressiveness of the global feature vector is tied to the dimensionality
of it (and thus the dimensionality of the points that are input to the symmetric
function).

The global feature vector is used directly for classification and is used alongside local
point features for segmentation.

60R. Charles, et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation," CVPR, 2017

59

60

12/07/2022

31

Permutation invariance

PointNet implements the symmetric function
with max pooling.

Alternatives, including summing and averaging,
produced inferior results.

61

Usage of max pool as symmetric function

R. Charles, et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation," CVPR, 2017

Transformation invariance

The classification (and segmentation) of an object should be invariant to certain
geometric transformations (e.g., rotation).

Motivated by Spatial Transformer Networks (STNs)1, the “input transform” and “feature
transform” are modular sub-networks that seek to provide pose normalization for a
given input.

62
R. Charles, et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation," CVPR, 2017
1M. Jaderberg, et al, “Spatial Transformer Network”, 2015

61

62

12/07/2022

32

Transformation invariance

How STNs operate1.
• The ST provides pose normalization to an

otherwise rotated input

• Using this type of pose normalization in a digit
classifier would relax the constraints of a
downstream algorithm and reduce the extent
to which data augmentation is needed

Pose normalization is beneficial in the
case of point clouds as well, as objects
can similarly take on an unlimited number
of poses.

63

Various inputs and corresponding
outputs of a Spatial Transformer

R. Charles, et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation," CVPR, 2017
1 https://towardsdatascience.com/review-stn-spatial-transformer-network-image-classification-d3cbd98a70aa

Transformation invariance

Based on input 𝑈, a small regression network, the localization net, outputs
transformation parameter 𝜃.

To construct output 𝑉 given 𝑈 and 𝜃, a grid generator and sampler are used.

• Imagine that the output of a localization net corresponds to rotating a handwritten “7” by
an angle 𝜃; in order to create a new image with the proper rotation, the original image
needs to undergo appropriate sampling

• Note that the ST is not confined to the input space and can operate on any downstream
feature/embedding space

64

Components of the
Spatial Transformer

R. Charles, et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation," CVPR, 2017

63

64

https://towardsdatascience.com/review-stn-spatial-transformer-network-image-classification-d3cbd98a70aa

12/07/2022

33

T-Net

Going back to PointNet, a similar approach can be taken: for a given input point cloud,
apply an appropriate rigid or affine transformation to achieve pose normalization.

Because each of the 𝑛 input points are represented as a vector and are mapped to the
embedding spaces independently, applying a geometric transformation simply
amounts to matrix multiplying each point with a transformation matrix.

Unlike the image-based application of Spatial Transformers, no sampling is needed.

65R. Charles, et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation," CVPR, 2017

T-Net

Similar to the localization net in STs, the T-Net is a regression network that is tasked
with predicting an input-dependent 3-by-3 transformation matrix that is then matrix
multiplied with the 𝑛-by-3 input.

66

Snapshot of the input transform

R. Charles, et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation," CVPR, 2017

65

66

12/07/2022

34

T-Net

The operations comprising the T-Net are motivated by the higher-level architecture of
PointNet.

MLPs (or fully-connected layers) are used to map the input points independently and
identically to a higher-dimensional space; max pooling is used to encode a global
feature vector whose dimensionality is then reduced to ℝ256 with FC layers.

The input-dependent features at the final FC layer are then combined with globally
trainable weights and biases, resulting in a 3-by-3 transformation matrix.

67

Architecture of 3 x 3 T-Net

R. Charles, et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation," CVPR, 2017

T-Net

The concept of pose normalization is extended to the 64-dimensional embedding
space (“feature transform” block in the overall architecture).

68R. Charles, et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation," CVPR, 2017

67

68

12/07/2022

35

T-Net

The corresponding T-Net is nearly identical to the 3 x 3 T-Net except for the
dimensionality of the trainable weights and biases, which become 256-by-4096 and
4096, respectively, resulting in a 64-by-64 transformation matrix.

The increased number of trainable parameters leads to the potential for overfitting and
instability during training, so a regularization term is added to the loss function.

The regularization term encourages the resulting 64-by-64 transformation matrix
(represented as 𝐴 below) to approximate an orthogonal transformation

ℒ𝑟𝑒𝑔 = 𝐼 − 𝐴𝐴𝑇 2

69R. Charles, et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation," CVPR, 2017

Analysis and visualization

There is a considerable amount of
intuition that can be drawn from the
global feature vector.
• The dimensionality of the vector, referred to

by the authors as the bottleneck dimension
and symbolized by 𝐾, relates directly to the
expressiveness of the model.

• A larger value of 𝐾 leads to a more complex —
and, likely, accurate — model, and vice versa.
For reference, PointNet is designed with 𝐾 =
1024.

70

PointNet accuracy across 𝐾 and number of
points comprising an input point cloud

R. Charles, et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation," CVPR, 2017

69

70

12/07/2022

36

Analysis and visualization

The feature vector was the result of applying a
symmetric function (for permutation invariance)
• PointNet makes use of max pooling

Similar to using the max operator to compress
multiple real-valued inputs to a single value, the
output of max pooling compresses the 𝑛 points of
the input point cloud to a subset of points.
• At most 𝐾 points can contribute to the global feature

vector

• The points that do contribute to and define the global
feature vector are referred to as the critical point set and
encode the input with a sparse set of key points

71

Visualization of critical point sets
and upper-bound shapes

R. Charles, et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation," CVPR, 2017

Analysis and visualization

Similar to how the output of the max operator is unchanged by inputs that are lesser
than the true maximum, there exists a bound on input points that won’t impact the
global feature vector.

In the previous figure, this bound is represented by the upper-bound shape.

Note that noise beyond the upper-bound shape alters the global feature vector but
may not necessarily result in misclassification.

In summary, the global feature vector is unchanged for points between the critical
point set and the upper-bound shape, resulting in considerable robustness.

72R. Charles, et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation," CVPR, 2017

71

72

12/07/2022

37

Analysis and visualization

The robustness described above can be visualized in a more quantitative manner, as
shown below.

Missing data refers to deleting points from the input point cloud, whereas outlier refers
to insertion of random/noisy points.

73

PointNet robustness test

R. Charles, et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation," CVPR, 2017

PointNet++

PointNet++ is an improved version of PointNet.

PointNet does not capture local structures induced by the metric space points live in,
limiting its ability to recognize fine-grained patterns and generalizability to complex
scenes.

PointNet++ applies PointNet recursively on a nested partitioning of the input point set.

By exploiting metric space distances, PointNet++ is able to learn local features with
increasing contextual scales.

74C. R. Qi et al, "PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space", 2017

73

74

12/07/2022

38

SPECTRAL CONVOLUTION

Laplace operator: Geometric intuition

76

Smooth scalar field 𝑓

75

76

12/07/2022

39

Laplace operator: Geometric intuition

• Gradient ∇𝑓 𝑥

`direction of the steepest increase of 𝑓 at 𝑥’

• Divergence div(𝐹(𝑥))

`scalar density of an outward flux of 𝐹 from an
infinitesimal volume around 𝑥’

77

Smooth vector field 𝐹

Source

Sink

Laplace operator: Geometric intuition

• Gradient ∇𝑓 𝑥

`direction of the steepest increase of 𝑓 at 𝑥’

• Divergence div(𝐹(𝑥))

`scalar density of an outward flux of 𝐹 from an
infinitesimal volume around 𝑥’

• Laplacian ∆𝑓(𝑥) = −div(∇𝑓 𝑥)

`scalar difference between 𝑓(𝑥) and the average
of 𝑓 on an infinitesimal sphere around 𝑥'

78

𝑓 𝑥

𝑓𝑎𝑣𝑔

77

78

12/07/2022

40

Discrete Laplacian

The discrete Laplace operator on a mesh is the 𝑛 × 𝑛 matrix:

𝐋 = 𝐀−1𝐒

where

A similar formula defines the graph Laplacian.

...and other Laplacian operators on irregular domains.

79

Cotangent matrix or
stiffness matrix

Mass matrix

Self-adjointness of ∆ and Laplacian eigenvalues

For the Laplacian ∆ it can be easily shown:

𝑓, ∆𝑔 = ∆𝑓, 𝑔

i.e., ∆ is self-adjoint.

Self-adjoint operators have real eigenvales:

∆𝜙 = 𝜆𝜙

These are countable and are canonically ordered non-decreasingly:

0 = 𝜆0 < 𝜆1 ≤ 𝜆2 ≤ ⋯ → ∞

The sequence of eigenvalues is called the spectrum of 𝜙.

80

79

80

12/07/2022

41

Laplacian eigenfunctions

∆𝜙 = 𝜆𝜙

Consider distinct eigenfunctions 𝜙𝑖, 𝜙𝑗 with 𝜆𝑖 ≠ 𝜆𝑗. We have:

𝜙𝑖 , ∆𝜙𝑗 = ∆𝜙𝑖 , 𝜙𝑗

It follows that

𝜆𝑗 𝜙𝑖 , 𝜙𝑗 = 𝜆𝑖 𝜙𝑖 , 𝜙𝑗

can only be true if 𝜙𝑖 , 𝜙𝑗 = 0

Therefore, the eigenfunctions of 𝜙 are orthogonal, and can be rescaled to be
orthonormal:

𝜙𝑖 , 𝜙𝑗 = 𝛿𝑖𝑗

where 𝛿𝑖𝑗 = 1 if 𝑖 = 𝑗, and 0 otherwise.

81

Spectral theorem

∆𝜙 = 𝜆𝜙

Now recall that the Laplacian ∆:ℱ(𝒳) → ℱ(𝒳) operates on a vector space of
functions ℱ 𝒳 .

Theorem: The eigenfunctions 𝜙𝑖 of ∆ form an orthonormal basis of ℱ(𝒳).

82

= 𝑐1 + 𝑐2 + 𝑐3 + ⋯

𝜙1 𝜙2 𝜙3𝑓

81

82

12/07/2022

42

Laplacian eigenfunctions: Euclidean

First eigenfunctions of 1D Euclidean Laplacian = standard Fourier basis

83

Laplacian eigenfunctions: manifold

84

First eigenfunctions of a manifold Laplacian

𝜙1 𝜙2 𝜙3 𝜙4

- max

- min

- 0

83

84

12/07/2022

43

Laplacian eigenfunctions: graph

85

First eigenfunctions of a graph Laplacian

𝜙1 𝜙2 𝜙3 𝜙4

- max

- min

- 0

Fourier analysis: Euclidean space

A function 𝑓: [−𝜋,+𝜋] → ℝ can be written as Fourier series

𝑓 𝑥 =෍

𝑘≥0

1

2𝜋
න
−𝜋

+𝜋

𝑓(𝑥′)𝑒−𝑖𝑘𝑥
′
𝑑𝑥′ 𝑒𝑖𝑘𝑥

መ𝑓𝑘= 𝑓,𝑒𝑖𝑘𝑥
𝐿2([−𝜋,+𝜋])

Fourier basis = Laplacian eigenfunctions:
𝑑2

𝑑𝑥2
𝑒𝑖𝑘𝑥 = 𝑘2𝑒𝑖𝑘𝑥

86

85

86

12/07/2022

44

Fourier analysis: non-Euclidean space

A function 𝑓:𝒳 → ℝ can be written as Fourier series

𝑓 𝑥 =෍

𝑘≥1

න
𝒳

𝑓(𝑥′)𝜙𝑘(𝑥
′)𝑑𝑥′ 𝜙𝑘(𝑥)

መ𝑓𝑘= 𝑓,𝜙𝑘 𝐿2(𝒳)

Fourier basis = Laplacian eigenfunctions: ∆𝜙𝑘(𝑥) = 𝜆𝑘𝜙𝑘(𝑥)
87

= 𝛼1 + 𝛼2 + 𝛼3 + ⋯

𝜙1 𝜙2 𝜙3𝑓

Convolution theorem

Given two functions 𝑓, 𝑔: [−𝜋,+𝜋] → ℝ their convolution is a function:

𝑓 ∗ 𝑔 𝑥 = න
−𝜋

+𝜋

𝑓(𝑥′)𝑔(𝑥 − 𝑥′)𝑑𝑥′

Convolution theorem: Fourier transform diagonalizes the convolution operator ⇒
convolution can be computed in the Fourier domain as:

෣(𝑓 ∗ 𝑔) = መ𝑓 ∙ ො𝑔

88

87

88

12/07/2022

45

Convolution theorem

Convolution of two vectors 𝐟 = 𝑓1, 𝑓2, … , 𝑓𝑛
T and 𝐠 = 𝑔1, 𝑔2, … , 𝑔𝑛

T

𝐟 ∗ 𝐠 =

𝑔1 𝑔2
𝑔𝑛 𝑔1

⋯ ⋯ 𝑔𝑛
𝑔2 ⋯ 𝑔𝑛−1

⋮ ⋮
𝑔3 𝑔4
𝑔2 𝑔3

⋱ ⋱ ⋮
⋯ 𝑔1 𝑔2
⋯ ⋯ 𝑔1

𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑛𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 𝐆

𝑓1
⋮
𝑓𝑛

=

= 𝚽
ො𝑔1

⋱
ො𝑔𝑛

𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑒𝑑 𝑏𝑦 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑏𝑎𝑠𝑖𝑠

𝚽T𝐟 = 𝚽
ො𝑔1

⋱
ො𝑔𝑛

መ𝑓1
⋮
መ𝑓𝑛

= 𝚽

መ𝑓1 ∙ ො𝑔1
⋮

መ𝑓𝑛 ∙ ො𝑔𝑛

89

Convolution theorem

90

It turns out that all circulant matrices are diagonalized by the same basis 𝚽𝜺 =
{Φ𝟏, … ,Φ𝒏}

𝐆 =

𝑔1 𝑔2
𝑔𝑛 𝑔1

⋯ ⋯ 𝑔𝑛
𝑔2 ⋯ 𝑔𝑛−1

⋮ ⋮
𝑔3 𝑔4
𝑔2 𝑔3

⋱ ⋱ ⋮
⋯ 𝑔1 𝑔2
⋯ ⋯ 𝑔1

= 𝚽𝜺

ො𝑔1
⋱

ො𝑔𝑛

𝚽𝜺
𝑻

89

90

12/07/2022

46

Convolution theorem

This basis 𝚽𝜺 is very special, it is the discretized Fourier basis in the Euclidean domain:

91

Convolution theorem

The expression of 𝐆 as 𝚽𝜺
෡𝐆𝚽𝜺

𝑻 will be our bridge towards non-Euclidean domains.

In fact, we know a generalization of the Fourier basis to graphs and manifolds, the
eigenvectors 𝚽 of the Laplacian operator:

𝚫 = 𝚽𝚲𝚽𝐓

where 𝚲 is the diagonal matrix containing the eigenvalues of the Laplacian.

92

91

92

12/07/2022

47

Convolution theorem

The idea on these non-Euclidean domains is to calculate the eigenvectors of the
Laplacian in the first place, which constitutes the generalized Fourier basis 𝚽, and then
define the convolution operator as:

Where ෝ𝑤𝑖 are learnable parameters.

Notice that in the Euclidean case this expression coincides with the standard
convolution defined above, since the eigenvectors of the Laplacian in that case are the
Euclidean Fourier basis. This is a desired property.

93

Spectral convolution

Generalized convolution of 𝑓, 𝑔 ∈ 𝐿2(𝒳) → ℝ can be defined by analogy

𝑓 ∗ 𝑔 =෍

𝑘≥1

𝑓,𝜙𝑘 𝐿2(𝒳) 𝑔, 𝜙𝑘 𝐿2(𝒳)

product in the Fourier domain

𝜙𝑘

inverse Fourier transform

In matrix-vector notation

𝐟 ∗ 𝐠 = 𝚽 𝚽T𝐠 ∘ 𝚽T𝐟 = 𝚽diag(ො𝑔1, … , ො𝑔𝑛)𝚽
T

𝐆

𝐟

• Not shift-invariant! (𝐆 has no circulant structure)

• Filter coefficients depend on basis 𝜙1, … , 𝜙𝑛

94

93

94

12/07/2022

48

Spectral convolution

However, we have several drawbacks:
• The filters coefficients ෝ𝑤𝑖 depend on the basis 𝚽. Learned filters do not generalize across domains;

the addition of a single node in a graph or the small differences in a mesh after a change of pose
fatally changes the basis. For instance, a convolutional filter with parameters ෝ𝑤𝑖 tuned to spot edges
changes completely behavior on a slightly different domain.

95

Spectral convolution

• The number of trainable parameters per filter depends on 𝑛, the size of the domain. We want a
convolutional filter with a fixed number of parameters like in the Euclidean case.

• Since the trainable parameters are not properly constrained, there is a high chance that the learned
filter is not localized in space.

96

95

96

12/07/2022

49

Basis dependence

Function 𝐱

97

Basis dependence

`Edge detecting' spectral filter 𝚽෡𝐘𝚽T𝐱

98

97

98

12/07/2022

50

Basis dependence

Same spectral filter, different basis 𝚿෡𝐘𝚿T𝐱

99

Basis dependence

Basis function with index 𝑖 across different shapes

100

99

100

12/07/2022

51

Locality and smoothness

To address the problems listed previously, we put some constraints on the matrix ෡𝐖,
parametrizing it in a different way.

Instead of having a degree of liberty per element of the diagonal (𝑛 learnable
parameters), we substitute ෡𝐖 with the fixed eigenvalues of the Laplacian 𝚲 altered by
a single parametrized transformation 𝜏𝛼 𝜆 , which depends on a fixed number of
learnable parameters 𝛼.

101

Locality and smoothness

In the Euclidean setting (by Parseval's identity), the following holds:

න
−∞

+∞

𝑥 2𝑘 𝑓(𝑥) 2𝑑𝑥 = න
−∞

+∞ 𝜕𝑘 መ𝑓(𝜔)

𝜕𝜔𝑘

2

𝑑𝑥

Localization in space = smoothness in frequency domain

Parametrize the filter using a smooth spectral transfer function 𝜏(𝜆).

Application of the filter

𝜏 𝚫 𝐟 = 𝚽𝜏 𝚲 𝚽T𝐟 = 𝚽
𝜏(𝜆1)

⋱
𝜏(𝜆𝑛)

𝚽T𝐟

102Hena et al, “Deep Convolutional Networks on Graph-Structured Data", 2015

101

102

12/07/2022

52

Locality and smoothness

Parametrize the filter using a smooth spectral transfer function 𝜏(𝜆).

Application of the parametric filter with learnable parameters 𝛼

𝜏𝛼 𝚫 𝐟 = 𝚽
𝜏𝛼(𝜆1)

⋱
𝜏𝛼(𝜆𝑛)

𝚽T𝐟

103Hena et al, “Deep Convolutional Networks on Graph-Structured Data", 2015

Locality and smoothness

Non-smooth spectral filter (delocalized in space)

104

103

104

12/07/2022

53

Locality and smoothness

105

Smooth spectral filter (localized in space)

Spectral graph CNN with smooth spectral filters

Consider a linear combination of smooth kernel functions 𝛽1 𝜆 ,… , 𝛽𝑟 𝜆

𝜏𝛼 𝜆 =෍

𝑗=1

𝑟

𝛼𝑗𝛽𝑗(𝜆)

where 𝛼 = (𝛼1, … , 𝛼𝑟)
T is the vector of filter parameters.

106Hena et al, “Deep Convolutional Networks on Graph-Structured Data", 2015

105

106

12/07/2022

54

Spectral graph CNN with smooth spectral filters

Consider a linear combination of smooth kernel functions 𝛽1 𝜆 ,… , 𝛽𝑟 𝜆

𝜏𝛼 𝜆𝑘 =෍

𝑗=1

𝑟

𝛼𝑗𝛽𝑗(𝜆𝑘) = (𝚩𝛼)𝑘, 𝐖 = diag(𝚩𝛼)

where 𝛼 = (𝛼1, … , 𝛼𝑟)
T is the vector of filter parameters.

𝒪(1) parameters per layer.

107Hena et al, “Deep Convolutional Networks on Graph-Structured Data", 2015

Spectral convolution on meshes

• Laplacian operator Δ acting locally on the neighborhood of 𝑖:

(𝚫𝐱)𝑖=෍

𝑗

𝑤𝑖𝑗(𝐱𝑗 − 𝐱𝑖)

= 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑎𝑣𝑔 − 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑖

• Eigenvectors of the Laplacian 𝚫 = 𝚽𝚲𝚽T are a generalization
of the Fourier transform: ො𝐱 = 𝚽T𝐱

• Spectral convolution

𝐱 ∗ 𝐲 = 𝚽
ො𝑦1

ො𝑦𝑛
෠𝐘

ො𝐱

108Bruna et al, “Spectral Networks and Locally Connected Networks on Graphs", 2014

107

108

12/07/2022

55

Spectral convolution on meshes

• Laplacian operator Δ acting locally on the neighborhood of 𝑖:

(𝚫𝐱)𝑖=෍

𝑗

𝑤𝑖𝑗(𝐱𝑗 − 𝐱𝑖)

= 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑎𝑣𝑔 − 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑖

• Eigenvectors of the Laplacian 𝚫 = 𝚽𝚲𝚽T are a generalization
of the Fourier transform: ො𝐱 = 𝚽T𝐱

• Spectral convolution defined as a filter applied on the
Laplacian:

𝐗′ = 𝚽𝜏(𝚲)𝚽T𝐗

109Bruna et al, “Spectral Networks and Locally Connected Networks on Graphs", 2014

SPECTRUM FREE

109

110

12/07/2022

56

Adjacency matrices: Vertex-to-vertex

Graph connectivity can be encoded in adjacency matrices.

Let 𝑉 = 𝑛, 𝐸 = 𝑒, 𝐹 = 𝑚 for a mesh ℳ = (𝑉, 𝐸, 𝐹)

The vertex-to-vertex adjacency is defined as the 𝑛 × 𝑛 binary matrix:

𝐀 =

0 1
⋮ ⋯

0 ⋯ 1
⋯ ⋯ ⋮

⋮ ⋯
1 0

⋯ ⋯ ⋮
1 ⋯ 0

where 𝑎𝑖𝑗 = 1 if vertex 𝑣𝑖 is connected to 𝑣𝑗 (that is, 𝑒𝑖𝑗 ∈ 𝐸)

• The diagonal is always 0

• 𝐀 is symmetric

• Each row and column has at least one 1 (that is, σ𝑖𝑗 𝑎𝑖𝑗 = 𝑒)

111

Adjacency matrices: Powers

The 𝑘-th power of 𝐀 corresponds to composing 𝐀 with itself 𝑘 ≥ 1 times.

For example, for 𝑘 = 2:

𝐀2 = 𝐀𝐀 =

0 1
⋮ ⋯

0 ⋯ 1
⋯ ⋯ ⋮

⋮ ⋯
1 0

⋯ ⋯ ⋮
1 ⋯ 0

0 1
⋮ ⋯

0 ⋯ 1
⋯ ⋯ ⋮

⋮ ⋯
1 0

⋯ ⋯ ⋮
1 ⋯ 0

The result is a 𝑛 × 𝑛 matrix encoding 2nd order adjacency.

For 𝑘 > 2:

𝐀𝑘 = 𝐀⋯𝐀 =

0 1
⋮ ⋯

0 ⋯ 1
⋯ ⋯ ⋮

⋮ ⋯
1 0

⋯ ⋯ ⋮
1 ⋯ 0

⋯

0 1
⋮ ⋯

0 ⋯ 1
⋯ ⋯ ⋮

⋮ ⋯
1 0

⋯ ⋯ ⋮
1 ⋯ 0

The result is a 𝑛 × 𝑛 matrix encoding 𝑘-th order adjacency.
112

111

112

12/07/2022

57

Examples: Powers

vertex-to-vertex 𝑘 = 1

113

vertex-to-triangle 𝑘 = 1 triangle-to-triangle 𝑘 = 1

Examples: Powers

vertex-to-vertex 𝑘 = 2

114

vertex-to-triangle 𝑘 = 2 triangle-to-triangle 𝑘 = 2

113

114

12/07/2022

58

Examples: Powers

115

vertex-to-vertex 𝑘 = 4 vertex-to-triangle 𝑘 = 3 triangle-to-triangle 𝑘 = 3

Adjacency matrices: Point clouds

Adjacency is a general notion that can be extended to point clouds.

For example, use Euclidean distance within a threshold 𝜏:

𝑎𝑖𝑗 = ൝
1 𝑖𝑓 𝐯𝑖 − 𝐯𝑗 2

≤ 𝜏

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Similarly to before, 𝐀𝑘 encodes 𝑘-th order adjacency.

116

𝑘 = 1 𝑘 = 2

115

116

12/07/2022

59

Adjacency matrices as operators

We can see adjacency matrices as operators when applied to functions.

For example, 𝐠 = 𝐀𝐟 is written as:

𝐠 =

0 1
⋮ ⋯

0 ⋯ 1
⋯ ⋯ ⋮

⋮ ⋯
1 0

⋯ ⋯ ⋮
1 ⋯ 0

𝑓1
𝑓2
⋮
𝑓𝑛

𝐠 = 𝐀𝐟 yields a vertex-based function 𝐠 defined as:

𝑔 𝑣𝑖 = ෍

𝑒𝑖𝑗∈𝐸

𝑓(𝑣𝑗)

117

Local operators

On this observation, one can construct new operators such as 𝐈 − 𝐀:

𝑔 𝑣𝑖 = 𝑓 𝑣𝑖 − ෍

𝑒𝑖𝑗∈𝐸

𝑓(𝑣𝑗)

Or such as:

𝑔 𝑣𝑖 = 𝑓 𝑣𝑖 −
1

𝑑𝑖
෍

𝑗:(𝑖,𝑗)∈𝐸

𝑓(𝑣𝑗)

118

117

118

12/07/2022

60

Graph Laplacian

𝑔 𝑣𝑖 = 𝑓 𝑣𝑖 −
1

𝑑𝑖
෍

𝑗:(𝑖,𝑗)∈𝐸

𝑓(𝑣𝑗)

In matrix notation, we define the 𝑛 × 𝑛 matrix 𝐋 as:

𝐿𝑖𝑗 =

1 𝑖𝑓 𝑖 = 𝑗

−
1

𝑑𝑖
𝑒𝑖𝑗 ∈ 𝐸

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

also known as the graph Laplacian of 𝐺.

Variants with different properties exist (e.g., normalized Laplacian, random walk
Laplacian, etc.).

119

Learnable polynomial filters

Consider again the spectral filter:

𝜏𝜃 ∆ 𝐟 = 𝚽𝜏𝜃(Λ)𝚽
T𝐟

with the polynomial parametrization:

𝜏𝜃 ∆ = ෍

𝑘=0

𝐾−1

𝜃𝑘 Λ
𝑘

This corresponds to just taking powers of the Laplacian:

𝜏𝜃 ∆ 𝐟 = ෍

𝑘=0

𝐾−1

𝜃𝑘 Δ
𝑘 𝐟

Therefore, it is a spectrum-free convolution.

120

119

120

12/07/2022

61

Learnable polynomial filters

𝜏𝜃 ∆ 𝐟 = ෍

𝑘=0

𝐾−1

𝜃𝑘 Δ
𝑘 𝐟

Different convolutions are obtained with different polynomials (e.g., Chebyshev
polynomials for the ChebNet model).

The notion of convolution is now replaced with the application of a local operator such
as the Laplacian.

This idea will allow us to work with point clouds.

121

Defferrard et al, “Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering", NIPS 2016
Levie et al, “CayleyNets: Graph Convolutional Neural Networks with Complex Rational Spectral Filters", IEEE
TSP 2018

Suggested reading

Bronstein et al, “Geometric deep learning: going beyond Euclidean data“, 2016

https://arxiv.org/abs/1611.08097

Bronstein et al, “Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges”, 2021

https://arxiv.org/abs/2104.13478

122

121

122

https://arxiv.org/abs/1611.08097
https://arxiv.org/abs/2104.13478

