Geometric deep learning

P. Pala and S. Berretti

University of Florence - Italy

Outline of course content

Prerequisites: Python programming, some basic knowledge of Deep Neural Networks
Adopted tools: Pytorch geometric, Colab

Topics
- Geometric learning: intro and motivations
- Graph Convolutional Networks: Spatial and Spectral approaches
- GNN message passing model
- Attention in GNN
- Graph pooling
- Generalized convolutions: point cloud and meshes

Schedule Credits
- July 11, 10.00 - 13.00 (P_ Pala) Course: Machine Learning with Graphs
. Jure Leskovec, Stanford University
- JUIy 12, 10.00 - 13.00 (S- Berrettl) Book: Graph Representation Learning
William L. Hamilton, McGill University Ed.

Beyond grid structured data

A
Text/Speech W o000 | A | Lebstll| A
| : famls.

Patterns of Local
Contrast

Output Layer

Hidden Layer 2

Images

Hidden Layer 1
Input Layer

Beyond grid structured data

Text/Speech W . i S|
Patterns of Local F 2 é J

Parietal

Frontal

5
Z
%7 "

OEEOA20
L

ImageS Hidden Layer 1 Subcortical '
Temporal r
Gene 1]
c Caffeine
MRNA 1 o OY'I‘ %
Protein 3 /NWIN\
o

\ (]
mR:l A3 Pro’reip_ _1_ _______ R /‘)
Y Gene? g3
|

Gene 3

Gene regulatory _

network
& ~—) @

Graphs (Networks)

Arbitrary size, Complex topological structure, No fixed ordering or reference point.

On a graph there is no fixed notion ® °
of locality or “sliding window” @

Graph notation and representation structures

Graphs - Notation and properties

Formally, a graph G=(V, E) is defined by a set of nodes V
(sometimes referred to as vertices) and a set of edges E
between these nodes.

We denote an edge going from node u € Vtonodev € V as (u, v) € E.
The degree of a node u € V is the number of edges incident with the node u.

Slmple graphs:
there is one type of nodes and one type of edges
- there is at most one edge between each pair of nodes,
- no edges between a node and itself,
- all edges are undirected, i.e., (u,v) € E < (v, u) € E.

Graphs - Notation and properties

A convenient way to represent simple graphs is through
an adjacency matrix A € RIVIVI,

For this purpose, we order the nodes in the graph so that every
node indexes a particular row and column in the adjacency matrix.

- This ordering is totally arbitrary and different orderings
yield different adjacency matrices

We can represent the presence of edges as entries
in this matrix: A[u, v] = 1if (u, v) € E and A[u, v] = 0 otherwise.

O oo ook P EFP o
O OO OoOFr OoORFr o
oo P oRr o PR
O OO O ok o o
P O R OO0 OoO oo
PP ORF ORF OO O
P OoORFkr OOoOOoORFr oo
ORrRr PP OOOO OO

1
IOOOOOI—‘OI—‘O‘

If the graph contains only undirected edges then Ais a
symmetric matrix, but if the graph is directed then A is not necessarily symmetric.

Graphs - Notation and properties

Some graphs can also have weighted edges where
the entries in the adjacency matrix are arbitrary
real-values rather than {0,1}.

For instance, a weighted edge in a protein-protein interaction graph might
represent the strength of the association between two proteins.

Graphs - Notation and properties

Beyond the distinction between undirected, directed and
weighted edges, graphs that have different types of edges
can be considered.

In these cases we can extend the edge notation to include an edge or relation
type 1, e.g., (U, v, T) € E, and we can define one adjacency matrix A_per edge

type.

Multi-relational, A € RV*VIXITl \where T is the set of edge types.

Graphs - Notation and properties

Some heterogeneous graphs may have nodes of
different types, meaning that we can partition the set of
nodes into disjointsets V=V, UV, U ... UV, where

VNV =2, Vi=]

Edges in heterogeneous graphs generally satisfy
constraints according to the node types, most
commonly the constraint that certain edges only
connect nodes of certain types

M. Zitnik, M. Agrawal, J. Leskovec. Modeling polypharmacy side effects with graph
convolutional networks. Bioinformatics, 34, 2018.

E Polypharmacy E
<y Doxycycline side effects Simvastatin

ry E A
r1—A Mupirocin

A =

Ciprofloxacin

A Drug © Protein E Node feature vector
Iy Gastrointestinal bleed side effect &—@ Drug-protein interaction
I Bradycardia side effect ©—@ Protein-protein interaction

Graphs - Notation and properties

Last but not the least, typically we also have feature 0

information associated with a graph. 01

Most often these are node-level attributes that are represented

0.4

using a real-valued matrix X € RV*™ where we assume that the ordering of the
nodes is consistent with the ordering in the adjacency matrix.

0 1 0 1 0 0.7 0.2 (A, X) = (PA, PX)

P permutation matrix

1 1 1 0 0 0.1 0.7

0 1 0 0 0 0.6 0.2

Graphs - Notation and properties

Unnormalized Laplacian matrix:
where A is the adjacency matrix and D is the degree matrix.

Important properties:
- Itis symmetric and positive semi-definite
- At least one of the eigenvalues of L is zero

- The following vector identity holds 2
vx € RV Z Z Alu, v](x[u] —xlv])
uev veY

= Y (xlu] - x[o))’

(u,w)eE

Graphs - Notation and properties

Theorem: The geometric multiplicity of the 0 eigenvalue of the
Laplacian L corresponds to the number of connected components in

the graph.

Graphs - Notation and properties

Symmetric normalized Laplacian:

| — D—1/2 | D—1/2 = | - D—1/2A D—1/2
sym

Random walk Laplacian:

—N-11 = -1
Ly =DL=1-D"A

Learning on graphs: Tasks

Node level classification/prediction
Edge level classification/prediction
Clustering and community detection

Graph level classification/prediction

Graph Representation Learning

- Graph Convolutional Networks
- Graph Neural Networks
- Graph Attention Networks

Graph Convolutional Networks

To begin with, we can try to generalize the CNN
approach to operate on a graph structure.

Graph Convolution Networks (GCNs), draw on
the idea of Convolution Neural Networks A
re-defining them for the non-euclidean data domain.

A regular Convolutional Neural Network captures the surrounding information of
each pixel of an image.

Similar to euclidean data like images, the convolution framework here aims to
capture neighbourhood information for non-euclidean spaces like graph nodes.

Graph Convolutional Networks

Two types of approaches to GCNs:

- Spatial GCNs: Formulate graph convolutions
as aggregating feature information from
neighbours.

- Spectral GCNs: Define graph convolutions by introducing filters from the
perspective of graph signal processing based on graph spectral theory.

e

Spatial-GCN

Graph Convolutional Networks Input
layer
In a CNN, we apply a filter on the original image
to get the representation in the next layer. ‘@ Processing
Similarly, in GCN, we apply a filter which creates
node representations at the next layer.
Hidden
- The next layer has the same topology of the first layer
one (same nodes same edges)
- What changes is the feature information associated ‘@ Srocessin
with each node °
How to compute this new feature information? Output

layer

Graph Convolutional Networks

In a CNN, we apply a filter on the original image
to get the representation in the next layer.
Similarly, in GCN, we apply a filter which creates
node representations at the next layer.

H*! = f(H|A)

\ pAdjacency matrix
Node features at layer i

Non linear function
Node features at layer i+1

Input

@f

layer

=y

Processing

Hidden

@f

layer

=y

Processing

Output

layer

Graph Convolutional Networks

0 1 0 1 0 0.7 0.2
0.5
1 0 1 1 1 0.5 0.1
0.1
A= 0 1 0 1 0 X = 0.1 0.4
1 1 1 0 0 0.1 0.7

0 1 0 0 0 0.6 0.2

Graph Convolutional Networks

AX

0 1 1 0 07 | 02
1 0 1 1 05 | 0.1
0 1 1 0 X= |01 04
1 1 0 0 01 | 07
0 1 0 0 06 | 0.2
GORODE G ¢
\.
~ N
0 1 1 1051 0.1
—
1 1 0 01| o4
1 0 0 {01} o7
./
1 0 0 0.2

0.5

0.1

\0 .6)

Graph Convolutional Networks

AX

0 0 07 | 0.2
1 1 05 | 0.1
0 0 X 01 | 04
1 0 01 | 07
0 0 06 | 0.2
(o o) 0.7 @ 0.6 [0.8)
1 1 05 || 0.1
0 0 01 || 0.4
1 0 01 || 0.7
0 0 0.6

0.5

0.1

Graph Convolutional Networks

AX

0.7

0.5

0.1

0.1

0.6

0.7 0.2

0.5 0.1

0.1 0.4

0.1 0.7

0.6 0.2
0.2 0.6 0.8
0.1 1.5 1.5
0.4 0.6 0.8
0.7 1.3 0.7
0.2 0.5 0.1

Graph Convolutional Networks

AX

0.7

0.5

0.1

0.1

0.6

0.7 0.2

0.5 0.1

0.1 0.4

0.1 0.7

0.6 0.2
0.2 0.6 0.8
0.1 1.5 1.5
0.4 0.6 0.8
0.7 1.3 0.7
0.2 0.5 0.1

Graph Convolutional Networks

Noticeable issues:

1.

2.

AX

The new representation of a node just accounts
for neighboring nodes but not for the node itself
Nodes that have a large number of neighbours

(higher degree) will have larger new values (e.g.

node 2)
0 1 0 1 0 0.7 0.2 0.6 0.8
1 0 1 1 1 0.5 0.1 1.5 1.5

0 1 0 1 0 0.1 0.4 = 0.6 0.8

1 1 1 0 0 0.1 0.7 1.3 0.7

0.5

0.1

@X(ZEA X(1).

1.5

1.5

Graph Convolutional Networks

Noticeable issues:

1. The new representation of a node just accounts

for neighboring nodes but not for the node itself
2. Nodes that have a large number of neighbours
(higher degree) will have larger new values

Solution to 1

Self-loops are added.

Mathematically, self-loops are L N L
expressed by adding the identity O T T T
matrix to the adjacency matrix Az o1 11 o0

A=A+

Graph Convolutional Networks

Noticeable issues: 05

1. The new representation of a node just accounts 0.1
for neighboring nodes but not for the node itself

2. Nodes that have a large number of neighbours |1/9|1/9/1/9

(higher degree) will have larger new values 1/9 1/9 1/9
1/911/9 1/9
Solution to 2
Use normalisation.
Normalise A such that all rows sumup | * | * | o | 1 | ©
to one, i.e. D™'A, where D is the N
diagonal node degree matrix (of A)A A PO N I R D-1

Use of D™'A corresponds to
taking the average instead of
the sum of neighboring node features.

0.4

Often, D2 AD "2 s
used instead of DA

13

0

0

1/5

= 0

0

12

Graph Convolutional Networks nput
layer
In a CNN, we apply a filter on the original image
tq gfet the.representation in the. next Ia.yer. ‘@ Processing
Similarly, in GCN, we apply a filter which creates
the next layer representation.
_ _ Hidden
H*1 = f(H' A) layer
For instance: f(H' A) =o(AH W) T
‘@ Processing

Trainable weight tensor for layer i Output

RelLU RelLU function layer
max (0, x)

Spectral - GCN

Spectral - GCN

Can we extend the convolution operator to act on graphs instead of grid-structured
data?

—$$++$
¢
:
¢
:
i
e e

Spectral - GCN

Can we extend the convolution operator to act on graphs instead of grid-structured
data?

> transformed|—

signalx —» FT —— signal X
Hadamard Convolved
product ResultY IFT signal y

fiterh ———» fFT ——» |transformed
filter H

How can we define the Fourier transform in the domain of graphs?

Laplacian

__

Spectral - GCN LSS Al vl - XM)QE
The Laplace operator of a function f: R" >R is = Z (x[u] — x[v])?
defined as the divergence of the gradient of f I (wv)EE

Af(x) = V*f(x)

Property of the Laplace operator: | 82(62”i5t) |
. A(627rzst) - _ (27('8)2627”8t

at?
The eigenfunctions of A are the same complex exponentials that make up the
modes of the frequency domain in the Fourier transform.

Spectral - GCN L. =D"2LD"2=|.p2A D

sy
Eigendecomposition of the graph Laplacian (symmetric):

L=PTAOD

Graph Fourier modes: eigenvectors of the Laplacian (columns of @)

Graph Spectrum: eigenvalues 0 =4, <1,<... 1 <2

175 1
A\ 150 1
\ 5
N
\ \§§f§7 125 |
N\ A\ \
\i«i\\ 1004 === eeessscsece
\AWA o 0.75 1
\ 1
\ 12 0.50
14 1
- 025 Spectrum
000 *

0 5 10 15 20 25 30

Spectral - GCN

Transformation of a graph signat x to the Fourier domain: T = (I)TQZ'
Inverse Fourier transform: 1 = P

Graph convolutions in the spectral domain are defined via point-wise products in

the transformed 1 T T
Fourierspace. L *¢ 9= & (F(z) © F(g)) = 2(2 20 27 g)

nx1 nx1

~
x 1

n
~
nx1

Spectral - GCN

Transformation of a graph signat x to the Fourier domain: T = (I)TQZ'
Inverse Fourier transform: 1 = P

Graph convolutions in the spectral domain are defined via point-wise products in

the transformed T %0 g = 9_1(9(33) o y(g)) - <I>(<I)T:B 0 <I>Tg)

Fourier space.

x1 X 1
9 =diag(®,, ..., 9) = diag(®'g) \ v
N "X J
Y
Graph convolution simplifies to ® 3 P nxt

- optimize & by backpropagation

Spectral - GCN - Challenges

zrxcg=F (F(z)o Fg) =2(@Tz20dTg) »8d'x

1. The number of filter parameters to learn depends on the number of nodes of
the graph.

2. The filters are not localized and refer to the entire graph

3. The algorithm needs to calculate the eigen-decomposition explicitly and
multiply signal with Fourier basis. There is no Fast Fourier Transform
algorithm defined for graphs, hence the computation is O(n?).

Spectral - GCN - Improvements

rxcg=F (F(z) 0 Fg) =d(@Tz20dTg) Psd'x

1. Instead of parameterizing the filter by n parameters, express
it as a weighted combination of K smooth components

2. Instead of computing the eigendecomposition explicitly,
the filter is expressed as a polynomial function computed
recursively from the rescaled Laplacian

$g(A)P Z 0rTr(A)

Some references on graph spectral filtering

2014 - Joan Bruna, Wojciech Zaremba, Arthur Szlam, Yann LeCun:
Spectral Networks and Locally Connected Networks on Graphs. ICLR

2015 - Mikael Henaff, Joan Bruna, Yann LeCun:
Deep Convolutional Networks on Graph-Structured Data. CoRR abs/1506.05163

2016 - Michaél Defferrard, Xavier Bresson, Pierre Vandergheynst:
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. NIPS

2019 - Ron Levie, Federico Monti, Xavier Bresson, Michael M. Bronstein:
CayleyNets: Graph Convolutional Neural Networks With Complex Rational Spectral Filters

Graph Convolutional Networks - Remarks

Hidden layer

A

RelU

Hidden layer

,\\/".

~

Graph Convolutional Networks - Remarks

What if the graph is not static?

A new node is added: what is the

embedding of the new node?
An edge is removed or added:
how do the embeddings of the
nodes change?

Input

Hidden layer

e

3

RelLU

Hidden layer

Output

Graph Convolutional Networks - Remarks

To compute the embedding of node A at B
layer k, embeddings of neighboring nodes l
at the previous layer are aggregated.

It is as if each node receives a message from its Aggregate
neighboring nodes and updates its status (embedding) and Update
by aggregating these messages.

The Graph Neural Network model

Neural message passing

The key feature of a GNN is that it uses a form of neural message passing in
which vector messages are exchanged between nodes and updated using neural

networks.

hSIk-*_l) — upDATE'® (hgk). AGGREGATE(k)({th),V’U = N(U)}))

TARGET NODE

Every node defines a computation l
graph based on its neighborhood! P

Aggregate @
and Update

Neural message passing

At each iteration, every node aggregates information from its local neighborhood,

and as these iterations progress each node embedding contains more and more
information from further reaches of the graph.

Structural information
Feature information

TARGET NODE .

\

o~ 4
A
/ "\
/‘/ .// .\l -
| 3 I
/

/
.’ /
I‘/ - -~
J
‘ VI

e

INPUT GRAPH

Neural message passing

At each iteration, every node aggregates information from its local neighborhood,
and as these iterations progress each node embedding contains more and more
information from further reaches of the graph.

- Structural information

- Feature information o aver
l 1-@
TARGET NODE l
,/".\\ I 1 .- 0’.‘ 1Te
o ! 18
// ’\ ‘ :I ‘ : I.
o'y
INPUT GRAPH ‘) I lLe

Neural message passing

The new embedding of node u is computed by aggregating messages from
neighboring nodes v € N(u) @ "
Wneigh Z hg) =

veEN (u)

To avoid loss of information about node u its new embedding should also preserve
a message from node u itself
Wb~V

Basic message passing

h¥) = o | WERED + W, Y hiED 4 p® |, (5.7)
veEN (u)
Wk Wk e Rdk)xd(k-1)
self’ neigh »
: : Sigmoid Leaky ReLU
ois a.n elgmentW|se (@) — 1 max(0.1z, z)
non-linearity VRO il : o
tanh Maxout
tanh(z) » max(wi « + by, w3 = + bs)
ReLU el
max (0,) {x r=9
. § ae®*—-1) <0 _7 i0

Basic message passing

The same aggregation parameters are shared for all nodes of the same layer

- The number of model parameters is sublinear in |V]|
- The model supports inference on new nodes

] &
? .. *
shared parameters
209 W B o ‘
‘ ‘ shared parameters ‘
&7 g é "
CPYY e oo Y .

INPUT GRAPH Compute graph for node A Compute graph for node B

Inductive vs transductive capabillity

Transductive methods can only generate embeddings for nodes that were
present during the training phase.

This restriction prevents these methods from being used on inductive
applications, which involve generalizing after training to new nodes or brand new

graphs.

Inductive capability for new nodes

In many application contexts the graph is not static
- New nodes can be added and it is necessary to generate on the fly the
embeddings for the new nodes without re-training the network

Z
Tu

Generate embedding
Train with snapshot New node arrives for new node

Inductive capability

Train on one graph Generalize to new graph

Summary

From GCN to basic message passing model Generate node embeddings by aggregating
neighborhood information

- We saw a basic variant of this idea
- Key distinctions are in how different approaches aggregate information across the
layers

Next:

- Some limitations of the basic message passing approach
- The GraphSAGE (SAmple and aggreGatE) model

W.L. Hamilton, R. Ying, J. Leskovec. Inductive Representation Learning on Large Graphs.
Int. Conf. on Neural Information Processing Systems, 2017

Geometric deep learning

PART Il

Basic message passing and layer stacking

Initialise(hY) Vv € V
fork =1..K do Learnable weights W
forv € V do
h¥ — AGGREGATE(hi !, {hs'Vu € N(v)})
hf will now be containing the embeddings

(0)
l h,’ =X,

GNN

Layer

Y

h’

GNN

Layer

Y

h$?

GNN

Layer

¢ h'*
Problem: If the message from the current node (v) is summed with messages of its

neighbors N(v), information from the current node is not adequately preserved.
This way of updating nodes embeddings may yield to oversmoothing

Oversmoothing

smoothing in GNNs can be formalized

This issue of over-

yer embedding of

all the other nodes in the graph.

u

by defining the influence of each node’s input

feature h© on the final la

Oversmoothing and receptive field

smoothing in GNNs can be formalized

by defining the influence of each node’s input

feature h© on the final la

This issue of over-

yer embedding of

all the other nodes in the graph.

u

Oversmoothing and receptive field

This issue of over-smoothing in GNNs can be formalized
by defining the influence of each node’s input
feature h® on the final layer embedding of
all the other nodes in the graph.

Theorem: If a K-layer GNN-style base model is adopted,
the influence of h® ~on h) "is proportional the probability
of reaching node v on a K-step random walk starting from
node u.

Concatenation and skip-connections

Base update model UPDAEEsgh“’ My () = 0 (Wieithy + Wheighmar(y))
W_ W _ eRdxd :
self” " neigh my/(y) = AGGREGATE™ ({h{") Vv € N (u)})

One of the simplest skip connection updates employs a concatenation to preserve
more node-level information during message passing:

UPDATEconcat (hu: mN(u)) = [UPDATEbase (hua mN(u)) D hu]

Concatenation and skip-connections

We can also employ other forms of skip-connections, such as a linear interpolation
UPDATEinterpolate(hua mN(u)) = a1 UPDATEbase(hu1 mN(u)) + a2© h,

where a,, a, € [0, 119 are gating vectors with a,=1-a, and © denotes
element-wise multiplication.

GraphSAGE

Inductive Representation Learning on Large Graphs

William L. Hamilton" Rex Ying" Jure Leskovec
wleif@stanford.edu rexyingl@stanford.edu jureldcs.stanford.edu

Department of Computer Science

Stanford University
Stanford, CA, 94305

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

GraphSAGE

To avoid loss of information about each node, the embedding of the current node
is concatenated with aggregation of embeddings of the neighboring nodes

h® =o (w(l) - CONCAT (h,(,"l),AGG ({hi P vuen (”)}))>

Concatenation of two input vectors followed by a linear layer is identical to adding
up two linear layer outputs for each input:

WIx [[x,]=W, x, +W, X, w I= w I+ w

If x,,x, €ERYand WER?*® then W_ , W__ €R2q.

self’ neigh

GraphSAGE

Furthermore, several strategies are explored for the aggregation operator. In all
cases these are permutation invariant

- Mean aggregator
- LSTM aggregator
- Pool aggregator

GraphSAGE - Mean aggregator

Elementwise mean of the vectors h ', Vu € {N (v) U v}.

h* « o(W -MEAN({h*" 1} U {h*~! vu e N(v)})

Janossy pooling

Let . denote a permutation function that takes the unordered set of neighbor
embeddings and places these embeddings in a sequence based on some
arbitrary ordering.

The Janossy pooling approach performs neighborhood aggregation by

1
mN(u) = MLPQ (ﬁ Z P (hvlahvza 229 hle(“))m>
mell

Permutation sensitive function that operates on sequences, e.g. an LSTM

GraphSAGE - LSTM aggregator

Use a Long Short Term Memory network to learn how to aggregate the
neighbours.

AGG = LSTM (n ({h: Vu € N(v)}))

GraphSAGE - Pool aggregator

Transform the embeddings of all nodes in the neighbourhood using a non linear
operator (such as a Perceptron) and apply elementwise min or max pooling

AGGREGATE‘,ZOOl = max({o (Wpath},, +b),Vu; € N(v)})

GraphSAGE - Neighborhood

The neighborhood of node v, N(v) is a fixed-size, uniform draw from the set
{fueV:(u,v) € E}

Different uniform samples are drawn at each iteration

4 N 4 N 4 N

GraphSAGE - Loss function

To address a fully unsupervised learning task, the graph-based loss function
encourages nearby nodes to have similar representations, while enforcing that the
representations of disparate nodes are highly distinct:

Jg (Zu) — = log (U(ZIZU)) s Q i I]':‘:'v.ann(v) log (0'(—ZIZU,"))

Vv iS a node that co-occurs near u
o is the sigmoid function, ,
This selects Q nodes A that

P_is a negative sampling distribution, are not close to node v
Q defines the number of negative samples

This unsupervised setting emulates situations where node features are provided to
downstream machine learning applications

To normalize or not to normalize

Proper normalization can be essential to achieve stable and strong performance
when using a GNN. However, normalization can also lead to a loss of
information.

The use of normalization is thus an application-specific question. Usually,
normalization is most helpful in tasks where node feature information is far
more useful than structural information, or where there is a very wide range of
node degrees that can lead to instabilities during optimization.

Dropout

To regularize the network and prevent overfitting
a frequently adopted technique is dropout.
This can take place at nodes and edges levels

X Removed node/edge
— Active message passing edge
Inactive message passing edge

Convolutional Layers

. Py | O I 1 ‘ I MessagePassing Base class for creating message passing layers of the form

L]
e O m et r I C The graph convolutional operator from the “Semi-supervised Classification with
GCNConv . »
Graph Convolutional Networks” paper

https://pytorch-geometric.readthedocs.io/

The chebyshev spectral graph convolutional operator from the “Convolutional

Ehehicony Neural Networks on Graphs with Fast Localized Spectral Filtering” paper
PyTOI'Ch Geometrlc |S a geometrIC deep S '{;I::pirsp;l';SpAe?E operator from the “Inductive Representation Learning on Large
learning extension library for PyTorch.
ea g e te SIO b ary 0 y orc e The graph neural network operator from the “Weisfeiler and Leman Go Neural:

Higher-order Graph Neural Networks” paper

It ConSIStS Of va rIOUS methOdS for deep The GravNet operator from the “Learning Representations of Irregular Particle-

. GravNetConv detector Geometry with Distance-weighted Graph Networks” paper, where the
Iea rni ng on g raphS and graph is dynamically constructed using nearest neighbors.
. torch_geometric
other irregular structures

B torch_geometric.nn The gated graph convolution operator from the “Gated Graph Sequence Neural

GatedGraphConv »
" : Networks” paper
also known as geometric| Convlutional Layers
H Dense Convolutional Layers The residual gated graph convolutional operator from the “Residual Gated Graph
deep learning, from a . ResGatedsraphcony -0 N e
Normalization Layers
va rlety Of pu bl IShed i A GATConv The graph attentional operator from the “Graph Attention Networks” paper
Pooling Layers
papers.
Dense Pooling Layers The GATv2 operator from the “How Attentive are Graph Attention Networks?”
. T paper, which fixes the static attention problem of the standard eatconv layer: since
Unpooling Layers the linear layers in the standard GAT are applied right after each other, the ranking
Modcle of attended nodes is unconditioned on the query node.
Functional “ St =
The graph transformer operator from the “Masked Label Prediction: Unified
TransformerConv

DataParallel Layers Message Passing Model for Semi-Supervised Classification” paper

@ PyTorch

geometric

It consists of an easy-to-use mini-batch
loader for many small and single giant
graphs, a large number of common
benchmark datasets (based on simple
interfaces to create your own), and
helpful transforms, both for learning on
arbitrary graphs as well as on 3D
meshes or point clouds.

torch_geometric

torch_geometric.nn
torch_geometric.data
torch_geometric.datasets

torch_geometric.transforms

torch_geometric.utils

TORCH_GEOMETRIC.DATASETS

KarateClub

TUDataset

GNNBenchmarkDataset

Planetoid

NELL

CitationFull

CoraFull

Coauthor

Amazon

PPI

Zachary's karate club network from the “An Information Flow Model for
Conflict and Fission in Small Groups” paper, containing 34 nodes,
connected by 156 (undirected and unweighted) edges.

A variety of graph kernel benchmark datasets, .e.g. “IMDB-BINARY”,
“REDDIT-BINARY” or “PROTEINS’, collected from the TU Dortmund
University.

A variety of artificially and semi-artificially generated graph datasets
from the “Benchmarking Graph Neural Networks” paper.

The citation network datasets “Cora”, “CiteSeer” and “PubMed” from
the “Revisiting Semi-Supervised Learning with Graph Embeddings”
paper.

The NELL dataset, a knowledge graph from the “Toward an Architecture
for Never-Ending Language Learning” paper.

The full citation network datasets from the “Deep Gaussian Embedding
of Graphs: Unsupervised Inductive Learning via Ranking” paper.

Alias for torch_geometric.dataset.CitationFull With name="cora” .

The Coauthor CS and Coauthor Physics networks from the “Pitfalls of
Graph Neural Network Evaluation” paper.

The Amazon Computers and Amazon Photo networks from the “Pitfalls
of Graph Neural Network Evaluation” paper.

The protein-protein interaction networks from the “Predicting
Multicellular Function through Multi-layer Tissue Networks" paper,
containing positional gene sets, motif gene sets and immunological
signatures as features (50 in total) and gene ontology sets as labels (121
in total).

GraphSAGE - Implementation

Pytorch geometric implementation of the GraphSAGE model Iayer

Planetoid dataset of Pytorch geometric (from paper “Rewsmng
Semi-Supervised Learning with Graph Embeddings)
- “Cora’,
- “CiteSeer” K
- “PubMed”

links. Each publlcatlon is described by a 0/1-valued word vectori s,
corresponding word from the dictionary. The dictionary consisfs of 1433 un ue word '

Task: The true class value is known for just 140 papers,
predict the class value for 1000 test papers

For each node, the input feature is the 1433-dimensional word vector, the output feature is a
7-dimensional vector whose entries are the probabilities for each class

GraphSAGE - Implementation

class SAGEConv (in_channels: Union[int, Tuple[int, int]], out_channels: int, aggr: str = "mean’,
normalize: bool = False, root_weight: bool = True, project: bool = False, bias: bool = True, “*kwargs)

[source]

The GraphSAGE operator from the “Inductive Representation Learning on Large Graphs” paper

x; = Wix; + W, - mean v (; X;

If project = True , then x; will first get projected via

x; + o(W3x; +b)

as described in Eq. (3) of the paper.

PARAMETERS:

in_channels (int or tuple) - Size of each input sample, or -1 to derive the size from the first
input(s) to the forward method. A tuple corresponds to the sizes of source and target
dimensionalities.

out_channels (int) - Size of each output sample.

aggr (string, optional) - The aggregation scheme to use ("mean” , "max" , "1stm"). (default:

’
X

i
T
lIxll2

normalize (bool, optional) - If set to True , output features will be £s-normalized, i.e.,

(default: Faise)

CO

File Edit View

& AIDA_GeometricDeepLearning GRAPH_SAGE.ipynb

GraphSAGE - Implementation

Q

{x}

O

[

]

import os
import torch

Insert Runtime Tools Help Allchanges saved

os.environ['TORCH'] = torch. version
print(torch. version)

Ipip install
Ipip install
Ipip install

import numpy
import torch
import torch
import torch

-q torch-scatter -f https://data.pyg.org/whl/torch-${TORCH}.html
-q torch-sparse -f https://data.pyg.org/whl/torch-${TORCH}.html
-q git+https://github.com/pyg-team/pytorch geometric.git

as np

.nn as nn
.nn.functional as F

from torch geometric.data import Data

from torch geometric.nn import GATConv, GATv2Conv, SAGEConv
from torch _geometric.datasets import Planetoid

import torch geometric.transforms as T

import matplotlib.pyplot as plt

name data =

'Cora' #'PubMed' #'CiteSeer' #'Cora’

dataset = Planetoid(root= '/tmp/' + name data, name = name data)
dataset.transform = T.NormalizeFeatures()

Isotropy vs anisotropy

1
h=c| > 1% Wlh,lul) ?

u€eN (v) ‘ (U>| .

Anisotropic

NI

Isotropic

GRAPH ATTENTION NETWORKS

Petar Velickovi¢* Guillem Cucurull®
Department of Computer Science and Technology Centre de Visi6 per Computador, UAB
University of Cambridge gcucurull@gmail.com

petar.velickovic@cst.cam.ac.uk

Arantxa Casanova’ Adriana Romero

Centre de Visi6 per Computador, UAB Montréal Institute for Learning Algorithms
ar.casanova.8@gmail.com adriana.romero.soriano@umontreal.ca
Pietro Lio Yoshua Bengio

Department of Computer Science and Technology Montréal Institute for Learning Algorithms
University of Cambridge yoshua.umontreal@gmail.com

pietro.liofcst.cam.ac.uk

ICLR 2018 - International Conference on Learning Representations

Neighbor attention

In GCN/GraphSAGE messages from neighboring nodes
are equally important

1
hy=o| D>, oW

ueN (v) ‘ (U)‘

x; = Wix; + Wy - mean ;c ;)X

Neighbor attention

In GCN/GraphSAGE messages from neighboring nodes
are equally important:
l
h=a| %

Wlhl—l

ueN (v) ‘ (U)‘

However, we could assign a different
relevance o, to each neighboring node h,lu =0 E

u€eN (v)

Wl hl—l

Neighbor attention

Weights «,, are computed based on attention coefficients e across pairs of
neighboring nodes Trainable weight matrix

epy = (a')" (W'RSH WAL

Trainable attention vector e I hg_l)

This represents the relevance of u’s message to node v _—
- - ol

Out{ Wl i H i H — evu
dim E / I o / !

H_/
In

dim

Neighbor attention

Weights «,, are computed based on attention coefficients e across pairs of
neighboring nodes Trainable weight matrix

Coy = (al)T (Wlhf)_lﬂwlh,lu_l)

Trainable attention vector

_— l e

This represents the relevance of u’s message to node v _—
ng~f}

e = LeakyReLU ((al)T (Wlh,lu_lHWlhib_l))

Neighbor attention

To make the attention coefficients easily comparable across different nodes, they are
normalized using the softmax function

exp(eyy)
Z’LLEN(U) exp(evu)

...and used to update the embedding of node v

Oy, =

A Z Ot WA

v
ueN (v)

Neighbor attention

exp (LeakyReLU (ST[Wﬁ, ||Wl7,,]))

i =

Zke.\’. exp (LeakyReLU (5T[Wi;: :IW’—;A]))

Leaky ReLU)

max(0.2x, x)

Bl = W'hi S
v — O Uy U

ueN (v)

Multi-head attention

concat/avg /"
S h/
i WL

To stabilize the learning process of self-attention it's
useful to employ multi-head attention. This is obtained
by combining K independent attention mechanisms

W= lo| Y al, Wik e

ueN(v) ueN (v)

Advantages of the graph attentional layer

- Efficient computation
- Different importances improves interpretability,
- The local attention mechanism does not depend on the global graph
structure
- The graph can be directed (we may simply leave out computing q; if edge j — i is

not present).
- The technique is directly applicable to inductive learning

HoOw ATTENTIVE ARE GRAPH ATTENTION
NETWORKS?

Shaked Brody Uri Alon
Technion Language Technologies Institute
shakedbr@cs.technion.ac.il Carnegie Mellon University

ualon@cs.cmu.edu

Eran Yahav
Technion
yahave@cs.technion.ac.1il

GAT-v2

ICLR 2022 - International Conference on Learning Representations

GAT-v2

In the original GAT architecture A scoring function e : RY x R%-R computes a
score for every edge (j, i) to represent the relevance of the neighbor j to the node i:
e (hi,h;j) = LeakyReLU (a' - [Wh;|Wh;])

where a € R | W € R 9*d gre learned, and || denotes vector concatenation.
These attention scores are normalized across all neighbors j € N. using softmax

exp (e (hi, h;))
>_iren; €xp (e (hi, hj))

«;; = softmax; (e (hi, h;)) =

B =0 (Z]EM a;j - Wh;)

GAT-v2
€ (h.z‘, h]) = LeakyR.eLU (CLT . [th”Wh]])

e (hi, h;) = LeakyReLU (a] Wh; a; Wh;) a = [ai]a;] € R*
a, Wh;

max

(n) exp (e (hi, b))

(yU — SOftIllan (6 (hz"h_])) = E A exp ((’ (h h ;))
jle f". ' 2L

"

(n)

GAT-v2

/e (hi, h;) = LeakyReLU (a,T - [Wh;||Wh;])

GAT <
e (hi, h;) = LeakyReLU (a;r Wh; + a;—Whj)
g
a2TWhj_,,m.
GAT-v2 {e (hi,h;) —a ' LeakyReLU (W - [hi||h;])
exp (e (s, b))

o;;j = softmax; (e (hi, h;)) =

Ej’eN,' exp (e (hi’ hj,))

GAT and GAT-v2 Implementation

Pytorch geometric implementation of the GATConv model layer

Planetoid dataset of Pytorch geometric (from paper “Rewsmng
Semi-Supervised Learning with Graph Embeddings)
- “Cora’,
- “CiteSeer” K
- “PubMed”

links. Each publlcatlon is described by a 0/1-valued word vectori s,
corresponding word from the dictionary. The dictionary consisfs of 1433 un ue word '

Task: The true class value is known for just 140 papers,
predict the class value for 1000 test papers

For each node, the input feature is the 1433-dimensional word vector, the output feature is a
7-dimensional vector whose entries are the probabilities for each class

CLASS GATConv (in_channels: Union[int, Tuple[int, int]], out_channels: int, heads: int = 1, concat: bool =
True, negative_slope: float = . 2, dropout: float = e.e, add_self_loops: bool = True, bias: bool = True,
"kwargs) [source]

GAT _ I m p I e m e ntati O n The graph attentional operator from the “Graph Attention Networks” paper

x: = a,-,i@xi e Z ai,jng)
JEN(D)

where the attention coefficients a; ; are computed as

exp (LeakyReLU (a'[Ox; || ©x,]))
Q5 = .
I S enut xp (LeakyReLU (a' [Ox; || ©x1]))

PARAMETERS: « in_channels (int or tuple) - Size of each input sample, or -1 to derive
the size from the first input(s) to the forward method. A tuple
corresponds to the sizes of source and target dimensionalities.

« out_channels (int) - Size of each output sample.

« heads (int, optional) - Number of multi-head-attentions. (default: 1)

« concat (bool, optional) - If set to Fraise , the multi-head attentions are
averaged instead of concatenated. (default: True)

- negative_slope (float, optional) - LeakyRelLU angle of the negative
slope. (default: e.2)

« dropout (float, optional) - Dropout probability of the normalized
attention coefficients which exposes each node to a stochastically
sampled neighborhood during training. (default: o)

. add_self_loops (bool, optional) - If set to Fraise , will not add self-loops

to the input graph. (default: True)

bias (bool, optional) - If set to Fraise , the layer will not learn an additive

bias. (default: True)

GAT and GAT-v2 - Imple

{x}

O

File Edit View

+ Code

& AIDA_GeometricDeeplLearning SAGE_GAT GAT-v2.ipynb

+ Text

Insert Runtime Tools Help All changes saved

mentation

[

[

]

import os
import torch

os.environ['TORCH'] = torch. version _
print(torch. version)

Ipip install
Ipip install
Ipip install

import numpy
import torch
import torch.
import torch.

-q torch-scatter -f https://data.pyg.org/whl/torch-${TORCH}.html
-q torch-sparse -f https://data.pyg.org/whl/torch-${TORCH}.html
-q git+https://github.com/pyg-team/pytorch geometric.git

as np

nn as nn
nn.functional as F

import matplotlib.pyplot as plt

name data =

'Cora' #'PubMed' #'CiteSeer' #'Cora'

dataset = Planetoid(root= '/tmp/' + name_data, name = name_data)
dataset.transform = T.NormalizeFeatures()

print(f"Number of Classes in {name data}:", dataset.num classes)
print(f"Number of Node Features in {name data}:", dataset.num node features)

h ' h 2

hk

JK Connections

G N / G

We have assumed that the GNN output corresponds to the final layer of the
network

However, alternative solutions are possible, such as collecting node
representations at each layer

= (1) (2) (K)
z =f,(hY eh e eh®™)

This strategy is known as adding jumping knowledge (JK) connections.

h,’ h, z,=h

Graph pooling N O ™ 4 ™

N AN /g J

The neural message passing approach produces a set of node embeddings.

What if we want to make predictions at the graph level?

This task is often referred to as graph pooling, since our goal is to pool together the node
embeddings in order to learn an embedding of the entire graph.

- Global pooling: aggregate all node embeddings
- Hierarchical pooling: build a hierarchical representation based on graph coarsening

Global graph pooling
We want to design a pooling function fp, which maps a set of node embeddings
{z,; ..., Z, I} to an embedding z, that represents the full graph

Take a sum (or mean) of the node embeddings

7 = Zvev Zy
fa(IV])

f being some normalizing function (e.g., the identity function).

Global graph pooling
We want to design a pooling function fp, which maps a set of node embeddings
{z,: -, Z, I} to an embedding z, that represents the full graph

Use a combination of LSTMs and attention to pool the node embeddings by
iterating over T steps

q: = LSTM(0¢—1,9¢-1), =1, ...,T
€Cut = fa(zv:qt)avv = V,
Ayt = exp(ev.t) Yv ey,

Zuev exp(€qy,t)

O = E Ay 12y .
veV zg = |o1|| ... ||oT]
O. Vinyals, S. Bengio, and M. Kudlur. Order matters: Sequence to sequence for sets. In ICLR, 2015.

Graph coarsening

Graph coarsening
) Layer 3
256@6x6 Layer 4

Ly} 256@1x1

_ 64x75x7s Layer2
w ina 64@14x14

Output
101

= 1 9x9
10x10 pooling, convolution

convolution . ;
5x5 subsamplin —
(64 kernels) PE (4096 kernols) 4x4 subsamp

|6x6 pooling

Graph coarsening

In these style of approaches, we assume that we have some clustering

function
f 5 GxRVIK_,RIVIxc
C

which maps all the nodes in the graph to an assignment over c clusters.

This function outputs an assignment matrix S = f (G, Z)

S[u, i] € R confidence node u belongs to cluster i. [J— X =

Graph coarsening

The assignment matrix S € RVI*¢ is used to compute a new coarsened adjacency
matrix

A =STAS € R

ne

and a new set of node features

X =8TX e R

ne

Original Pooled network Pooled network Pooled network Graph
network at level 1 at level 2 at level 3 classification

Graph coarsening

0 1 0 1 0 07 | 02
1 0 0 0 1 05 | 0.1
A= 0 0 0 1 0 X = 01 | 04
1 0 1 0 0 01 | 07
0 1 0 0 0 06 | 02
09 | 0.1
- y 26 | 17
07 | 03 A = S'AS € R®*¢
new 17 | 20
—_ 1.7
S = 01 | 09 S
01| 09 15 | 05
08 | 02 05 | 1.1

X,,, = STX € R =

0.6

0.2 5
L] 0.7
Graph coarsening 2|
o 1 |0 | 1|0 07 | 02
10 0 0 | 1 05 | 0.1
A= | o] o o | 1 o0 X= |01 04
10 1 0 o0 01 | 07
o 1|0 |0 |0 06 | 02
09 | 01
T o | 2817
0.7 | 03 A =S'AS € R°
new 17 | 20 17
S= 0109 = .
0.1 109 15 | 05
0.8 | 02 0.5 | 1.1

X . =8TX € R™=

ne

What about training a model to learn S and be capable to generalize to new graphs

DIFFPOOL

Original Pooled network Pooled network Pooled network Graph
network at level 1 at level 2 at level 3 classification

D= {(Gh?]l)v (G2,92), }

= " — 7 LLP:||4—SST||F
B e Ly =130 H(S)

(A1’X1)_, _,(A1 21) GNN1embed A2’ Xz)_, _’(AZ, Zz) GNNZembed A3’ X3)_> _—
1 .82
GNN, — A,=STAS" GNN, L A, = STTAS?
GNN, o X,=8"Z, GNN,,, X, =87,

Hierarchical Graph Representation Learning with Differentiable Pooling. Int. Conf. on Neural Information Processing Systems, 2018

More on graph coarsening

Published as a conference paper at ICLR 2021

GRAPH COARSENING WITH NEURAL NETWORKS

Chen Cai * Dingkang Wang ' Yusu Wang *

arXiv:2102.01350

GNN loss functions

GNNs learning tasks:

- node classification (predicting whether a user is a bot in a social network)
- graph classification (property prediction based on molecular graph structures)
- relation prediction (content recommendation in online platforms).

How do these tasks translate into loss functions?

- Z, € RY node embedding (last layer)
- Z, € RY graph-level embedding (pooling)

GNN loss for node classification

For node classification tasks define the loss using a softmax classification function
and negative log-likelihood loss:

[= Z — log(softmax(zua yv))

Uevtrain

y, € £°is a one-hot vector indicating the class of training node u € V

train’

softmax(zy, yu) Z yu[z] T
J

w. € R% i=1, ..., care trainable parameters

Node classification

Node classification: supervised or semi-supervised?
Three types of nodes can be distinguished:

1. Training nodes, V,__. . These nodes are included in the GNN message passing
operations, and they are also used to compute the loss

2. Transductive test nodes, V, . During training participate to message passing
but are disregarded for computing the loss

3. Inductive test nodes, V... Not present in the graph during training

GNN loss for graph classification

Softmax classification loss computed with graph-level embeddings z . over a set
of labeled training graphs T={G, ..., G }

L = Z—log Zya emp(zG M;k)

G;eT] 16$p(ZGW)

For regression tasks it is standard to employ a squared-error loss

£= 3 [MLP(zg,) -
Gi€T

GNN loss for relation prediction

Pairwise node embedding loss functions, to minimize an empirical reconstruction
loss L over a set of training node pairs D:

L=) llz,-z,1

(u,v)ED

where z and z are the output embedding of the two nodes u and v.

Other useful resources

OGB m Spektral

DEEP
.io ’G CBRARY About Get Started Tutorials Blogs Docs Forum GitHub

DEEP GRAPH LIBRARY

Easy Deep Learning on Graphs

The end

