
Geometric deep learning
P. Pala and S. Berretti

University of Florence - Italy

Outline of course content

Prerequisites: Python programming, some basic knowledge of Deep Neural Networks

Adopted tools: Pytorch geometric, Colab

Topics
- Geometric learning: intro and motivations
- Graph Convolutional Networks: Spatial and Spectral approaches
- GNN message passing model
- Attention in GNN
- Graph pooling
- Generalized convolutions: point cloud and meshes

Schedule
- July 11, 10.00 - 13.00 (P. Pala)
- July 12, 10.00 - 13.00 (S. Berretti)

Credits
Course: Machine Learning with Graphs
Jure Leskovec, Stanford University
Book: Graph Representation Learning
William L. Hamilton, McGill University Ed.

Beyond grid structured data

Beyond grid structured data

S/F
RMI

Graphs (Networks)

Arbitrary size, Complex topological structure, No fixed ordering or reference point.

On a graph there is no fixed notion
of locality or “sliding window”

Graphs Images

Text / Audio

Graph notation and representation structures

Graphs - Notation and properties

Formally, a graph G=(V, E) is defined by a set of nodes V
(sometimes referred to as vertices) and a set of edges E
between these nodes.

We denote an edge going from node u ∈ V to node v ∈ V as (u, v) ∈ E.

The degree of a node u ∈ V is the number of edges incident with the node u.

Simple graphs:
- there is one type of nodes and one type of edges
- there is at most one edge between each pair of nodes,
- no edges between a node and itself,
- all edges are undirected, i.e., (u, v) ∈ E ↔ (v, u) ∈ E.

Graphs - Notation and properties

A convenient way to represent simple graphs is through
an adjacency matrix A ∈ R|V|×|V|.

For this purpose, we order the nodes in the graph so that every
node indexes a particular row and column in the adjacency matrix.

- This ordering is totally arbitrary and different orderings
yield different adjacency matrices

We can represent the presence of edges as entries
in this matrix: A[u, v] = 1 if (u, v) ∈ E and A[u, v] = 0 otherwise.

If the graph contains only undirected edges then A is a
symmetric matrix, but if the graph is directed then A is not necessarily symmetric.

1

2

3

4

5
6

9

8

7

0 1 0 1 0 0 0 0 0
1 0 1 1 1 0 0 0 0
0 1 0 1 0 0 0 1 0
1 1 1 0 1 0 1 0 0
0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 1
0 0 0 1 0 1 0 1 1
0 0 1 0 0 0 1 0 1
0 0 0 0 0 1 1 1 0

A=

Graphs - Notation and properties

Some graphs can also have weighted edges where
the entries in the adjacency matrix are arbitrary
real-values rather than {0,1}.

For instance, a weighted edge in a protein-protein interaction graph might
represent the strength of the association between two proteins.

1

2

3

4

5
6

9

8

7

0.1 0.1

0.1

0.1

0.40.4

0.4

0.20.2

0.2
0.6 0.6

0.30.3

Graphs - Notation and properties

Beyond the distinction between undirected, directed and
weighted edges, graphs that have different types of edges
can be considered.

In these cases we can extend the edge notation to include an edge or relation
type τ, e.g., (u, v, τ) ∈ E, and we can define one adjacency matrix Aτ per edge
type.

Multi-relational, A ∈ R|V|×|V|×|T|, where T is the set of edge types.

1

2

3

4

5
6

9

8

7

0.1 0.1

0.1

0.1

0.40.4

0.4

0.20.2

0.2
0.6 0.6

0.30.3

Graphs - Notation and properties 1

2

3

4

5
6

9

8

7Some heterogeneous graphs may have nodes of
different types, meaning that we can partition the set of
nodes into disjoint sets V = V1 ∪ V2 ∪ ... ∪ Vk where
Vi ∩ Vj = ∅, ∀i = j

Edges in heterogeneous graphs generally satisfy
constraints according to the node types, most
commonly the constraint that certain edges only
connect nodes of certain types

M. Zitnik, M. Agrawal, J. Leskovec. Modeling polypharmacy side effects with graph
convolutional networks. Bioinformatics, 34, 2018.

Graphs - Notation and properties

Last but not the least, typically we also have feature
information associated with a graph.

Most often these are node-level attributes that are represented
using a real-valued matrix X ∈ R|V|×m, where we assume that the ordering of the
nodes is consistent with the ordering in the adjacency matrix.

1
5

42

3

0.7

0.2

0.5

0.1

0.1

0.4

0.6

0.2

0.1

0.7

0 1 0 1 0

1 0 1 1 1

0 1 0 1 0

1 1 1 0 0

0 1 0 0 0

A =

0.7 0.2

0.5 0.1

0.1 0.4

0.1 0.7

0.6 0.2

X =

(A, X) ≡ (PA, PX)

P permutation matrix

Graphs - Notation and properties

Unnormalized Laplacian matrix:

L = D−A
where A is the adjacency matrix and D is the degree matrix.

Important properties:
- It is symmetric and positive semi-definite
- At least one of the eigenvalues of L is zero
- The following vector identity holds

∀x ∈ R|V|

Graphs - Notation and properties

Theorem: The geometric multiplicity of the 0 eigenvalue of the
Laplacian L corresponds to the number of connected components in
the graph.

1

2

3

4

5
6

9

8

7

1

2

3

5
6

974

8

Graphs - Notation and properties

Symmetric normalized Laplacian:

Lsym = D−1/2 L D−1/2 = I - D−1/2 A D−1/2

Random walk Laplacian:

LRW = D−1L = I - D−1 A

Learning on graphs: Tasks

Node level classification/prediction

Edge level classification/prediction

Clustering and community detection

Graph level classification/prediction

Graph Representation Learning
- Graph Convolutional Networks
- Graph Neural Networks
- Graph Attention Networks

Graph Convolutional Networks

To begin with, we can try to generalize the CNN
approach to operate on a graph structure.

Graph Convolution Networks (GCNs), draw on
the idea of Convolution Neural Networks
re-defining them for the non-euclidean data domain.

A regular Convolutional Neural Network captures the surrounding information of
each pixel of an image.

Similar to euclidean data like images, the convolution framework here aims to
capture neighbourhood information for non-euclidean spaces like graph nodes.

Graph Convolutional Networks

Two types of approaches to GCNs:

- Spatial GCNs: Formulate graph convolutions
as aggregating feature information from
neighbours.

- Spectral GCNs: Define graph convolutions by introducing filters from the
perspective of graph signal processing based on graph spectral theory.

Spatial-GCN

Graph Convolutional Networks

In a CNN, we apply a filter on the original image
to get the representation in the next layer.
Similarly, in GCN, we apply a filter which creates
node representations at the next layer.

- The next layer has the same topology of the first
one (same nodes same edges)

- What changes is the feature information associated
with each node

How to compute this new feature information?

Input
layer

Hidden
layer

Output
layer

⚛

⚛

Processing

Processing

Graph Convolutional Networks

In a CNN, we apply a filter on the original image
to get the representation in the next layer.
Similarly, in GCN, we apply a filter which creates
node representations at the next layer.

Hi+1 = f(Hi,A)
Adjacency matrix
Node features at layer i
Non linear function
Node features at layer i+1

Input
layer

Hidden
layer

Output
layer

⚛

⚛

Processing

Processing

Graph Convolutional Networks 1
5

42

3

0.7

0.2

0.5

0.1

0.1

0.4

0.6

0.2

0.1

0.7

0 1 0 1 0

1 0 1 1 1

0 1 0 1 0

1 1 1 0 0

0 1 0 0 0

A =

0.7 0.2

0.5 0.1

0.1 0.4

0.1 0.7

0.6 0.2

X =

Graph Convolutional Networks 1
5

42

3

0.7

0.2

0.5

0.1

0.1

0.4

0.6

0.2

0.1

0.7

0 1 0 1 0

1 0 1 1 1

0 1 0 1 0

1 1 1 0 0

0 1 0 0 0

A X =

0.7 0.2

0.5 0.1

0.1 0.4

0.1 0.7

0.6 0.2

=

0 1 0 1 0

1 0 1 1 1

0 1 0 1 0

1 1 1 0 0

0 1 0 0 0

A =

0.7 0.2

0.5 0.1

0.1 0.4

0.1 0.7

0.6 0.2

X =

0.6

Graph Convolutional Networks 1
5

42

3

0.7

0.2

0.5

0.1

0.1

0.4

0.6

0.2

0.1

0.7

0 1 0 1 0

1 0 1 1 1

0 1 0 1 0

1 1 1 0 0

0 1 0 0 0

A X =

0.7 0.2

0.5 0.1

0.1 0.4

0.1 0.7

0.6 0.2

=

0 1 0 1 0

1 0 1 1 1

0 1 0 1 0

1 1 1 0 0

0 1 0 0 0

A =

0.7 0.2

0.5 0.1

0.1 0.4

0.1 0.7

0.6 0.2

X =

0.6 0.8

Graph Convolutional Networks 1
5

42

3

0.7

0.2

0.5

0.1

0.1

0.4

0.6

0.2

0.1

0.7

0 1 0 1 0

1 0 1 1 1

0 1 0 1 0

1 1 1 0 0

0 1 0 0 0

A X =

0.7 0.2

0.5 0.1

0.1 0.4

0.1 0.7

0.6 0.2

=

0 1 0 1 0

1 0 1 1 1

0 1 0 1 0

1 1 1 0 0

0 1 0 0 0

A =

0.7 0.2

0.5 0.1

0.1 0.4

0.1 0.7

0.6 0.2

X =

0.6 0.8

1.5 1.5

0.6 0.8

1.3 0.7

0.5 0.1

1
5

42

3

0.6

0.8

1.5

1.5

0.6

0.8

0.5

0.1

1.3

0.7

X(2)=A X(1).

Graph Convolutional Networks 1
5

42

3

0.7

0.2

0.5

0.1

0.1

0.4

0.6

0.2

0.1

0.7

0 1 0 1 0

1 0 1 1 1

0 1 0 1 0

1 1 1 0 0

0 1 0 0 0

A X =

0.7 0.2

0.5 0.1

0.1 0.4

0.1 0.7

0.6 0.2

=

0 1 0 1 0

1 0 1 1 1

0 1 0 1 0

1 1 1 0 0

0 1 0 0 0

A =

0.7 0.2

0.5 0.1

0.1 0.4

0.1 0.7

0.6 0.2

X =

0.6 0.8

1.5 1.5

0.6 0.8

1.3 0.7

0.5 0.1

1
5

42

3

0.6

0.8

1.5

1.5

0.6

0.8

0.5

0.1

1.3

0.7

X(2)=A X(1).
1 1 1
1 0 1
1 1 1

Graph Convolutional Networks 1
5

42

3

0.7

0.2

0.5

0.1

0.1

0.4

0.6

0.2

0.1

0.7

Noticeable issues:
1. The new representation of a node just accounts

for neighboring nodes but not for the node itself
2. Nodes that have a large number of neighbours

(higher degree) will have larger new values (e.g.
node 2)

0 1 0 1 0

1 0 1 1 1

0 1 0 1 0

1 1 1 0 0

0 1 0 0 0

A X =

0.7 0.2

0.5 0.1

0.1 0.4

0.1 0.7

0.6 0.2

=

0.6 0.8

1.5 1.5

0.6 0.8

1.3 0.7

0.5 0.1

1
5

42

3

0.6

0.8

1.5

1.5

0.6

0.8

0.5

0.1

1.3

0.7

X(2)=A X(1).

Noticeable issues:
1. The new representation of a node just accounts

for neighboring nodes but not for the node itself
2. Nodes that have a large number of neighbours

(higher degree) will have larger new values

Solution to 1
Self-loops are added.
Mathematically, self-loops are
expressed by adding the identity
matrix to the adjacency matrix

Â = A + I

Graph Convolutional Networks 1
5

42

3

0.7

0.2

0.5

0.1

0.1

0.4

0.6

0.2

0.1

0.7

1 1 0 1 0

1 1 1 1 1

0 1 1 1 0

1 1 1 1 0

0 1 0 0 1

Â =

1 1 1
1 1 1
1 1 1

Graph Convolutional Networks 1
5

42

3

0.7

0.2

0.5

0.1

0.1

0.4

0.6

0.2

0.1

0.7

Noticeable issues:
1. The new representation of a node just accounts

for neighboring nodes but not for the node itself
2. Nodes that have a large number of neighbours

(higher degree) will have larger new values

Solution to 2
Use normalisation.
Normalise Â such that all rows sum up
to one, i.e. D−1Â, where D is the
diagonal node degree matrix (of Â)
Use of D−1Â corresponds to
taking the average instead of
the sum of neighboring node features.

1 1 0 1 0

1 1 1 1 1

0 1 1 1 0

1 1 1 1 0

0 1 0 0 1

Â =

1/3 0 0 0 0

0 1/5 0 0 0

0 0 1/3 0 0

0 0 0 1/4 0

0 0 0 0 1/2

D−1 =

Often, D-1/2 Â D-1/2 is
used instead of D−1Â

1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9

Graph Convolutional Networks

In a CNN, we apply a filter on the original image
to get the representation in the next layer.
Similarly, in GCN, we apply a filter which creates
the next layer representation.

Hi+1 = f(Hi,A)

For instance: f(Hi,A) = σ(A Hi Wi)

Trainable weight tensor for layer i
ReLU function

Input
layer

Hidden
layer

Output
layer

⚛

⚛

Processing

Processing

Spectral - GCN

Spectral - GCN

Can we extend the convolution operator to act on graphs instead of grid-structured
data?

Spectral - GCN

Can we extend the convolution operator to act on graphs instead of grid-structured
data?

How can we define the Fourier transform in the domain of graphs?

Spectral - GCN

The Laplace operator of a function f: Rn→R is
defined as the divergence of the gradient of f

Property of the Laplace operator:

The eigenfunctions of ∆ are the same complex exponentials that make up the
modes of the frequency domain in the Fourier transform.

Laplacian

Spectral - GCN

Eigendecomposition of the graph Laplacian (symmetric):

L = ΦT Λ Φ
Graph Fourier modes: eigenvectors of the Laplacian (columns of Φ)

Graph Spectrum: eigenvalues 0 = 𝜆1 ≤ 𝜆2 ≤ … 𝜆n ≤ 2

Spectrum

Lsym = D−1/2 L D−1/2 = I - D−1/2 A D−1/2

Spectral - GCN

Transformation of a graph signat x to the Fourier domain:

Inverse Fourier transform:

Graph convolutions in the spectral domain are defined via point-wise products in
the transformed
Fourier space.

n x 1 n x 1

n x 1

n x 1

Spectral - GCN

n x 1 n x 1

n x 1

n x 1

Transformation of a graph signat x to the Fourier domain:

Inverse Fourier transform:

Graph convolutions in the spectral domain are defined via point-wise products in
the transformed
Fourier space.

ϑ = diag(ϑ1, …, ϑn) = diag(𝚽Tg)

Graph convolution simplifies to 𝚽 ϑ 𝚽Tx
- optimize ϑ by backpropagation

Spectral - GCN - Challenges

1. The number of filter parameters to learn depends on the number of nodes of
the graph.

2. The filters are not localized and refer to the entire graph
3. The algorithm needs to calculate the eigen-decomposition explicitly and

multiply signal with Fourier basis. There is no Fast Fourier Transform
algorithm defined for graphs, hence the computation is O(n2).

Spectral - GCN - Improvements

1. Instead of parameterizing the filter by n parameters, express
it as a weighted combination of K smooth components

2. Instead of computing the eigendecomposition explicitly,
the filter is expressed as a polynomial function computed
recursively from the rescaled Laplacian

Some references on graph spectral filtering

2014 - Joan Bruna, Wojciech Zaremba, Arthur Szlam, Yann LeCun:
Spectral Networks and Locally Connected Networks on Graphs. ICLR

2015 - Mikael Henaff, Joan Bruna, Yann LeCun:
Deep Convolutional Networks on Graph-Structured Data. CoRR abs/1506.05163

2016 - Michaël Defferrard, Xavier Bresson, Pierre Vandergheynst:
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. NIPS

2019 - Ron Levie, Federico Monti, Xavier Bresson, Michael M. Bronstein:
CayleyNets: Graph Convolutional Neural Networks With Complex Rational Spectral Filters

Graph Convolutional Networks - Remarks

Graph Convolutional Networks - Remarks

What if the graph is not static?
- A new node is added: what is the

embedding of the new node?
- An edge is removed or added:

how do the embeddings of the
nodes change?

Graph Convolutional Networks - Remarks

To compute the embedding of node A at
layer k, embeddings of neighboring nodes
at the previous layer are aggregated.

It is as if each node receives a message from its
neighboring nodes and updates its status (embedding)
by aggregating these messages.

Aggregate
and Update

The Graph Neural Network model

Neural message passing

The key feature of a GNN is that it uses a form of neural message passing in
which vector messages are exchanged between nodes and updated using neural
networks.

Every node defines a computation
graph based on its neighborhood!

Aggregate
and Update

Neural message passing

At each iteration, every node aggregates information from its local neighborhood,
and as these iterations progress each node embedding contains more and more
information from further reaches of the graph.

- Structural information
- Feature information

Neural message passing

At each iteration, every node aggregates information from its local neighborhood,
and as these iterations progress each node embedding contains more and more
information from further reaches of the graph.

- Structural information
- Feature information 1-st

layer
2-nd
layer

Neural message passing

The new embedding of node u is computed by aggregating messages from
neighboring nodes v ∊ N(u)

To avoid loss of information about node u its new embedding should also preserve
a message from node u itself

Basic message passing

W(k)
self, W

(k)
neigh ∈ Rd(k)×d(k−1)

σ is an elementwise
non-linearity

Basic message passing

The same aggregation parameters are shared for all nodes of the same layer

- The number of model parameters is sublinear in |V|
- The model supports inference on new nodes

Inductive vs transductive capability

Transductive methods can only generate embeddings for nodes that were
present during the training phase.

This restriction prevents these methods from being used on inductive
applications, which involve generalizing after training to new nodes or brand new
graphs.

Inductive capability for new nodes

In many application contexts the graph is not static
- New nodes can be added and it is necessary to generate on the fly the

embeddings for the new nodes without re-training the network

Inductive capability

-

Summary

From GCN to basic message passing model Generate node embeddings by aggregating
neighborhood information

- We saw a basic variant of this idea
- Key distinctions are in how different approaches aggregate information across the

layers

Next:

- Some limitations of the basic message passing approach
- The GraphSAGE (SAmple and aggreGatE) model

W.L. Hamilton, R. Ying, J. Leskovec. Inductive Representation Learning on Large Graphs.
Int. Conf. on Neural Information Processing Systems, 2017

Geometric deep learning

PART II

Basic message passing and layer stacking

Problem: If the message from the current node (v) is summed with messages of its
neighbors N(v), information from the current node is not adequately preserved.
This way of updating nodes embeddings may yield to oversmoothing

Learnable weights W

Oversmoothing

This issue of over-smoothing in GNNs can be formalized
by defining the influence of each node’s input
feature h(0)

u on the final layer embedding of
all the other nodes in the graph.

Oversmoothing and receptive field

This issue of over-smoothing in GNNs can be formalized
by defining the influence of each node’s input
feature h(0)

u on the final layer embedding of
all the other nodes in the graph.

Oversmoothing and receptive field

This issue of over-smoothing in GNNs can be formalized
by defining the influence of each node’s input
feature h(0)

u on the final layer embedding of
all the other nodes in the graph.

Theorem: If a K-layer GNN-style base model is adopted,
the influence of h(0)

u on h(K)
v is proportional the probability

of reaching node v on a K-step random walk starting from
node u.

Concatenation and skip-connections

Base update model

Wself, Wneigh∈Rd x d

One of the simplest skip connection updates employs a concatenation to preserve
more node-level information during message passing:

base

Concatenation and skip-connections

We can also employ other forms of skip-connections, such as a linear interpolation

where α1, α2 ∈ [0, 1]d are gating vectors with α2 = 1 − α1 and ⊙ denotes
element-wise multiplication.

⊙ ⊙

GraphSAGE

GraphSAGE

To avoid loss of information about each node, the embedding of the current node
is concatenated with aggregation of embeddings of the neighboring nodes

Concatenation of two input vectors followed by a linear layer is identical to adding
up two linear layer outputs for each input:

W [x1 || x2] = W1 x1 + W2 x2

If x1,x2 ∈Rd and W∈R2d x 2d then Wself, Wneigh∈R2dxd.

W W1= + W2

GraphSAGE

Furthermore, several strategies are explored for the aggregation operator. In all
cases these are permutation invariant

- Mean aggregator
- LSTM aggregator
- Pool aggregator

GraphSAGE - Mean aggregator

Elementwise mean of the vectors hu
k-1 , ∀u ∈ {N (v) ∪ v}.

Janossy pooling

Let πi denote a permutation function that takes the unordered set of neighbor
embeddings and places these embeddings in a sequence based on some
arbitrary ordering.

The Janossy pooling approach performs neighborhood aggregation by

Permutation sensitive function that operates on sequences, e.g. an LSTM

i

GraphSAGE - LSTM aggregator

Use a Long Short Term Memory network to learn how to aggregate the
neighbours.

GraphSAGE - Pool aggregator

Transform the embeddings of all nodes in the neighbourhood using a non linear
operator (such as a Perceptron) and apply elementwise min or max pooling

GraphSAGE - Neighborhood

The neighborhood of node v, N(v) is a fixed-size, uniform draw from the set

{u ∈ V : (u, v) ∈ E}

Different uniform samples are drawn at each iteration

v v v

GraphSAGE - Loss function

To address a fully unsupervised learning task, the graph-based loss function
encourages nearby nodes to have similar representations, while enforcing that the
representations of disparate nodes are highly distinct:

v is a node that co-occurs near u
σ is the sigmoid function,
Pn is a negative sampling distribution,
Q defines the number of negative samples

This unsupervised setting emulates situations where node features are provided to
downstream machine learning applications

This selects Q nodes vn that
are not close to node v

To normalize or not to normalize

Proper normalization can be essential to achieve stable and strong performance
when using a GNN. However, normalization can also lead to a loss of
information.

The use of normalization is thus an application-specific question. Usually,
normalization is most helpful in tasks where node feature information is far
more useful than structural information, or where there is a very wide range of
node degrees that can lead to instabilities during optimization.

Dropout

To regularize the network and prevent overfitting
a frequently adopted technique is dropout.
This can take place at nodes and edges levels

X
X

X

X

X

X Removed node/edge
Active message passing edge
Inactive message passing edge

X

PyTorch Geometric is a geometric deep
learning extension library for PyTorch.

It consists of various methods for deep
learning on graphs and
other irregular structures
also known as geometric
deep learning, from a
variety of published
papers.

https://pytorch-geometric.readthedocs.io/

It consists of an easy-to-use mini-batch
loader for many small and single giant
graphs, a large number of common
benchmark datasets (based on simple
interfaces to create your own), and
helpful transforms, both for learning on
arbitrary graphs as well as on 3D
meshes or point clouds.

GraphSAGE - Implementation

Pytorch geometric implementation of the GraphSAGE model layer

Planetoid dataset of Pytorch geometric (from paper “Revisiting
Semi-Supervised Learning with Graph Embeddings”):

- “Cora”,
- “CiteSeer”
- “PubMed”

The Cora dataset: 2708 scientific publications classified into one of 7 classes. The citation graph has 5429
links. Each publication is described by a 0/1-valued word vector indicating the absence/presence of the
corresponding word from the dictionary. The dictionary consists of 1433 unique words.

Task: The true class value is known for just 140 papers,
predict the class value for 1000 test papers

For each node, the input feature is the 1433-dimensional word vector, the output feature is a
7-dimensional vector whose entries are the probabilities for each class

GraphSAGE - Implementation

GraphSAGE - Implementation

Isotropy vs anisotropy

Isotropic Anisotropic

?

ICLR 2018 - International Conference on Learning Representations

Neighbor attention

In GCN/GraphSAGE messages from neighboring nodes
are equally important

Neighbor attention

In GCN/GraphSAGE messages from neighboring nodes
are equally important:

However, we could assign a different
relevance 𝛂vu to each neighboring node

Out
dim

Neighbor attention

Weights 𝛂vu are computed based on attention coefficients evu across pairs of
neighboring nodes

This represents the relevance of u’s message to node v

Trainable weight matrix

Trainable attention vector

W l

In
dim

W l

W l

alT

evu

Neighbor attention

Weights 𝛂vu are computed based on attention coefficients evu across pairs of
neighboring nodes

This represents the relevance of u’s message to node v

Trainable weight matrix

Trainable attention vector

Neighbor attention

To make the attention coefficients easily comparable across different nodes, they are
normalized using the softmax function

...and used to update the embedding of node v

Neighbor attention

max(0.2x, x)

Multi-head attention

To stabilize the learning process of self-attention it’s
useful to employ multi-head attention. This is obtained
by combining K independent attention mechanisms

Advantages of the graph attentional layer

- Efficient computation
- Different importances improves interpretability,
- The local attention mechanism does not depend on the global graph

structure
- The graph can be directed (we may simply leave out computing αij if edge j → i is

not present).
- The technique is directly applicable to inductive learning

ICLR 2022 - International Conference on Learning Representations

GAT-v2

GAT-v2

In the original GAT architecture A scoring function e : Rd × Rd→R computes a
score for every edge (j, i) to represent the relevance of the neighbor j to the node i:

where a ∈ R2d’ , W ∈ R d’×d are learned, and || denotes vector concatenation.
These attention scores are normalized across all neighbors j ∈ Ni using softmax

GAT-v2

h5

h4

h1

h2

h3

GAT-v2

GAT-v2

GAT

GAT and GAT-v2 Implementation

Pytorch geometric implementation of the GATConv model layer

Planetoid dataset of Pytorch geometric (from paper “Revisiting
Semi-Supervised Learning with Graph Embeddings”):

- “Cora”,
- “CiteSeer”
- “PubMed”

The Cora dataset: 2708 scientific publications classified into one of 7 classes. The citation graph has 5429
links. Each publication is described by a 0/1-valued word vector indicating the absence/presence of the
corresponding word from the dictionary. The dictionary consists of 1433 unique words.

Task: The true class value is known for just 140 papers,
predict the class value for 1000 test papers

For each node, the input feature is the 1433-dimensional word vector, the output feature is a
7-dimensional vector whose entries are the probabilities for each class

GAT - Implementation

GAT and GAT-v2 - Implementation

JK Connections

We have assumed that the GNN output corresponds to the final layer of the
network

However, alternative solutions are possible, such as collecting node
representations at each layer

zu = fJK(h(1)
u ⊕ h(2)

u ⊕ ... ⊕ h(K)
u)

This strategy is known as adding jumping knowledge (JK) connections.

hu
1

...

hu
2 hu

k

G G G

?
Graph pooling

The neural message passing approach produces a set of node embeddings.

What if we want to make predictions at the graph level?

This task is often referred to as graph pooling, since our goal is to pool together the node
embeddings in order to learn an embedding of the entire graph.

- Global pooling: aggregate all node embeddings
- Hierarchical pooling: build a hierarchical representation based on graph coarsening

hu
1

...

hu
2 zu=hu

k

G G G

zG

Global graph pooling

We want to design a pooling function fp, which maps a set of node embeddings
{z1, ..., z|V |} to an embedding zG that represents the full graph

Take a sum (or mean) of the node embeddings

fn being some normalizing function (e.g., the identity function).

We want to design a pooling function fp, which maps a set of node embeddings
{z1, ..., z|V |} to an embedding zG that represents the full graph

Use a combination of LSTMs and attention to pool the node embeddings by
iterating over T steps

Global graph pooling

t=1, … ,T

t

O. Vinyals, S. Bengio, and M. Kudlur. Order matters: Sequence to sequence for sets. In ICLR, 2015.

Graph coarsening

Graph coarsening

Graph coarsening

In these style of approaches, we assume that we have some clustering
function

fc → G × R|V |×d → R|V |×c

which maps all the nodes in the graph to an assignment over c clusters.

This function outputs an assignment matrix S = fc(G, Z)

S[u, i] ∈ R+ confidence node u belongs to cluster i.

S

𝚺 =1

Graph coarsening

The assignment matrix S ∈ R|V|×c is used to compute a new coarsened adjacency
matrix

Anew = STAS ∈ R+c×c

and a new set of node features

Xnew = STX ∈ Rc×d

Graph coarsening

Anew = STAS ∈ Rc×c

=

Xnew = STX ∈ Rc×d =

1
5

42

3

0.7

0.2

0.5

0.1

0.1

0.4

0.6

0.2

0.1

0.7

0 1 0 1 0

1 0 0 0 1

0 0 0 1 0

1 0 1 0 0

0 1 0 0 0

A =

0.7 0.2

0.5 0.1

0.1 0.4

0.1 0.7

0.6 0.2

X =

0.9 0.1

0.7 0.3

0.1 0.9

0.1 0.9

0.8 0.2

S =

2.6 1.7

1.7 2.0

1.5 0.5

0.5 1.1

1

2

1.7

Graph coarsening

Anew = STAS ∈ Rc×c

=

Xnew = STX ∈ Rc×d =

0 1 0 1 0

1 0 0 0 1

0 0 0 1 0

1 0 1 0 0

0 1 0 0 0

A =

0.7 0.2

0.5 0.1

0.1 0.4

0.1 0.7

0.6 0.2

X =

0.9 0.1

0.7 0.3

0.1 0.9

0.1 0.9

0.8 0.2

S =

2.6 1.7

1.7 2.0

1.5 0.5

0.5 1.1

What about training a model to learn S and be capable to generalize to new graphs

1
5

42

3

0.7

0.2

0.5

0.1

0.1

0.4

0.6

0.2

0.1

0.7

1

2

1.7

DIFFPOOL

Hierarchical Graph Representation Learning with Differentiable Pooling. Int. Conf. on Neural Information Processing Systems, 2018

(A1, X1)

GNN1

(A1, Z1)
GNN1embed

GNN1pool

(A1, Z’1)

S1

(A2, X2)

A2 = S1TA1S
1

 X2 = S1TZ’1

GNN2

(A2, Z2)
GNN2embed

GNN2pool

(A2, Z’2)

S2

(A3, X3)

A3 = S2TA2S
2

 X3 = S2TZ’2

n1 n2n1 n2 n3

...

LLP= || A - S ST ||F

More on graph coarsening

arXiv:2102.01350

GNN loss functions

GNNs learning tasks:

- node classification (predicting whether a user is a bot in a social network)
- graph classification (property prediction based on molecular graph structures)
- relation prediction (content recommendation in online platforms).

How do these tasks translate into loss functions?

- zu ∈ Rd node embedding (last layer)
- zG ∈ Rd graph-level embedding (pooling)

For node classification tasks define the loss using a softmax classification function
and negative log-likelihood loss:

yu ∈ Zc is a one-hot vector indicating the class of training node u ∈ Vtrain;

wi ∈ Rd, i = 1, ..., c are trainable parameters

GNN loss for node classification

Node classification

Node classification: supervised or semi-supervised?

Three types of nodes can be distinguished:

1. Training nodes, Vtrain. These nodes are included in the GNN message passing
operations, and they are also used to compute the loss

2. Transductive test nodes, Vtrans. During training participate to message passing
but are disregarded for computing the loss

3. Inductive test nodes, Vind. Not present in the graph during training

GNN loss for graph classification

Softmax classification loss computed with graph-level embeddings zGi over a set
of labeled training graphs T = {G1, ..., Gn}

For regression tasks it is standard to employ a squared-error loss

GNN loss for relation prediction

Pairwise node embedding loss functions, to minimize an empirical reconstruction
loss L over a set of training node pairs D:

where zu and zv are the output embedding of the two nodes u and v.

|| zv - zu ||
2

Other useful resources

The end

