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Pedestrians move with complex and stochastic behavior
Usually follow common sense and specific social rules
Often walk in groups

Observe near people’s behavior anticipating
what will happen in the neighbourhood......
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A summertime ordinary day
—in Naples, ltaly

We aim at emulating human forecasting
i.e. predicting human trajectories by
modelling social interactions
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Why so important

Essential for autonomous moving platforms like self-driving cars
or social robots that will share the same ecosystem as humans
or surveillance systems where helping identifying suspicious activities....

Accurate prediction of the future motion of other moving agents in their working space
is essential for the following safety decision-making and control processes,
giving mobility to handicapped people.....

Problem definition

_______ Past
------- Future

All trajectories are sequences of top-view 2D
spatial coordinates in a fixed reference frame
independent from the agents

Given a social context S = {I', i=0, ..., N — 1} defined as the set of trajectories
representing N moving agents, the task of trajectory prediction is the problem
of predicting the future positions of each agent, given their past positions

Trajectory prediction is an inherently multimodal problem
Multiple outcomes are possible

Modeling both temporal and spatial reasoning is needed
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Literature: Recurrent Network and Pooling-based

Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks

A. Gupta et al., Proc. of CVPR 2018 Temporal features first

Spatial features afterwards

e LSTM recurrent network to encode the motion of each agent LSTM Memory network

* Pooling to aggregate information of individuals

e LSTM recurrent network to decode and generate the future trajectory
conditioned on person state and pooled vector
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Trained using GAN
- agenerative model that captures the data distribution

- adiscriminative model that estimates the probability that a sample
came from the training data
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Pooling computes relative positions between the red and
all other people: the positions are concatenated with each
person’s hidden state and processed independently
. . . Recurrent architectures are parameter inefficient and expensive in
Passing the input coordinates through a MLP followed o A . K
X training. Temporal ordering is lost and agent-wise knowledge is
by Max-Pooling

disregarded in favor of a coarse global descriptor

The pooling aggregation in feature states is not intuitive in modelling
interactions between people as the physical meaning of feature states
is difficult to interpret

GAN generates highly diverse trajectories but tend to neglect the
physical structure of the environment. The resulting trajectories are not
necessarily feasible, and often do not fully cover multiple possible
directions that a pedestrian can take
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Literature: Graph-based and Attention pooling

Social-STGCNN: A Social Spatio-Temporal Graph Convolutional Neural Network for Human Trajectory Prediction

A. Mohamed et al., Proc. CVPR 2020

* Spatial graph represents the relative locations vi, of the agents in a scene at time ¢

* Spatio-temporal graph represent T frames

Spatial features first
Temporal features afterwards
Stateless system

e Spatio-temporal Graph Convolution Neural Network creates a spatio-temporal embedding

* Time-Extrapolator-CNN predicts future trajectories through convolution operators N

Spaba-Tempotal
Graph CNN

Spatio-Temparn
Graph Represcntation

The topology of G,, . . ., Gr is the same, while different
attributes are assigned to v/, when ¢ varies

I ITITI

- R

Predicted

Time-Extiapolator
o Cvstribution

Graphs are a natural more direct, intuitive and efficient way to model
pedestrians interactions than aggregation based methods

The Convolution operation over graphs is a weighted aggregation of target node

attributes with the attributes of its neighbor nodes

Attention-based pooling: attention weights according to euclidean distance

A stateless system
Single pass prediction: high gain in parameter efficiency wrt LSTM

A

Spatio-Temporal graph of
observed trajectories

Social-STGCNN Model

2

Predicted future trajectories

Models relationships between signals but relies on some
fixed-size hidden representation blending them together

Only models the interactions of spatially proximal trac-agents
Ignore the influence beyond the given spatial limits
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Literature: Recurrent Network and Intention estimation-based

Goal-GAN: Multimodal Trajectory Prediction Based on Goal Position Estimation Temporal features first
P. Dendorfer et al. Proc. of ACCV 2020 Spatial features afterwards
LSTM Memory network

Motion Encoder: LSTM encodes the speed and direction of motion of the agent’s past trajectory

Goal Module: predicts the most likely target positions of the agent combining visual scene information and agent’s dynamics
Routing Module: estimates a set of plausible trajectories that route towards the estimated goal

----- ! Motion Encoder (ME] |----~
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GAN to train the trajectory generator to output realistic

and physically feasible trajectories

1
Two-stages process
First estimates a posterior over possible goals taking into account
the dynamics of the pedestrian and the visual scene context
Then predicts trajectories that route towards these estimated goals
Realistic multimodal: the Goal module estimates a multi-modal probability
distribution over the possible goal positions which is used to sample a potential
goal during the inference
ETH | Zara 2 Hyang 4 0 Coupa 1
Solely estimating trajectory goals neglects the social
context so affecting agent trajectories after the
present time-step
| "
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Literature: Transformer attention-based

, L . . Temporal features first
GA-STT: Human Trajectory Prediction with Group Aware Spatial-Temporal Transformer Spatial features afterwards

L. Zhou et al., IEEE Robotics and Automation Letters, 2022 Transformer attention

* Adjacency matrix is learned and used to enhance the individual representation with group constraints
e Spatial Transformer and Temporal Transformer are respectively used to extract social interaction and temporal features
* Cross-attention modules capture the spatial-temporal dependencies

T obs+1:T pred

as input and outputs an enhanced feature with
temporal dependencies

The Temporal Transformer takes the temporal “e e
features of pedestrians i with observation from 1 to T’

s an e A (@ KLV = Sofmmjﬁ/%g’l(w) .
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The Spatial Transformer treats the crowd at time T hy EAQ e

as a graph to capture the spatial interaction / KT = fy ({”T}l)
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Cross attention modules capture spatial and temporal dependencies and

consider them integrally

- For the Spatial-temporal cross attention the spatial feature vector is
the query and the individual temporal feature is key and value

- For the Temporal-spatial cross attention, the individual temporal
feature vector is the query the spatial feature is key and value

The output of these two cross attention are fused by a fully connected
layer to generate the enhanced individual representation
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Strengths and weaknesses of Transformer-based

More powerful than LSTM in modelling temporal dependencies
due to self-attention mechanism

More powerful network structure than social pooling
for spatial interaction modelling

The feedforward nature of Transformers makes them efficient on
modern hardware

Limits:

Inability to track very long sequences and process hierarchical inputs or algorithmic tasks

Only a fixed number of transformations can be applied to its internal states
The total number of transformations between the input and output is limited by the sub-layers depth

At each layer, the representations for the input sequence are treated in parallel. The high-level representations from
the past are not exploited to compute the current representation

Both essential and non-essential information are considered, with more and less attention

1%

An alternative option: usage of a working memory

Storage of items of relevant information to decision-making

Avoids blending past information into a single latent state, but instead uses memory to keep track
of relevant cues across time and store them separately to be recalled

Encoding

£
x
X A
kX
A

Decoding

Ak X

Short-term
episodic memory

Decoupling mechanism
Memorize what happens in the scene step by step
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Memory Augmented Neural Networks

A Recurrent Network-based Memory Controller and an external trainable Memory
The Memory Controller is trained to write all the examples in memory and to read what is necessary
to produce the output

Keeps in memory a set of independent states instead of incrementally creating a state
This helps to find the structure in the training data and to generalize to sequences in algorithmic tasks

Think the Controller network as the CPU and the external memory as the RAM

Read
Memory Controller

1 1
1 1
1 1
1 1
Hl module EYVSIPS module !
| |
1 1

""""" Tnput- """~ """""7°
' -
Memory Augmented Neural Network model
Memory Network Memory Augmented Network
network

Inputs are fed to LSTM one-by-one Place all input symbols in memory and

LSTM has only one chance to look at let the model decide which part it reads next
an input symbol




05/07/22

Neural Turing Machine
Graves, G. Wayne, |. Danihelka, ArXiv preprint, 2014

at different time steps to solve a given task

- Memory Bank: an array of vectors

Neural Turing Machine is a MANN that learns to read and write data from/into the external memory

- Network Controller: the interface between the input and and the memory through read and write heads

External Input

L

External output

External Memory
N X M matrix
N locations for
M size vector

M

Controller

(NN with parameters
for adjusting weights)

MRS Rcad head R m

| %1

AN

Smmmnd \\rite head =
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Sy

N

The heads, with the feature generated by Controller,
compute addressing to read/write in memory

Credits S. Malekmohammadi

NTM blurry operations

T =1

i

l ) ‘ attention

The operations argmax o select index are not differentiable: use blurry operations i.e. interact
to a greater or lesser degree with all the elements in memory rather than addressing
a single or few element directly

The degree of blurriness is determined by an attentional focus mechanism that constrains each
Read and Write operation to interact with a small portion of the memory while ignoring the rest

Normalized weights over N elements of the memory

‘ the corresponding memory location

‘ memory

‘ ‘ result

Credits A. Graves et al

A weight of 1 focuses all the attention on

A weight of 0 discards that memory location

e

10
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Memory networks compared

RNN, LSTM, GRU

Memory Augmented Neural Networks

Memory is a single hidden state vector
that encodes all the temporal information

Memory is addesssable as a whole
All the past information is encoded in the
state vector

State to state transition is unstructured
and global

Find some structure in the training data

The number of parameters is tied to the
size of the hidden state

Add an external memory matrix with increased
storage capacity

Memory is element-wise addressable.
Rely on attention to work

State to state transitions are obtained
through read/write operations

Find the structure in the training data, but also
generalize to long sequences in algorithmic tasks

The number of parameters is not tied to
the size of the memory.

Ability to track long sequences and process
hierarchical inputs, maintaining an internal state
for long time

SMEMO: Social Memory for Trajectory Forecasting

End-to-end differentiable model
Based on Memory Augmented Neural Network

SOCIAL
INTERACTION
MEMORY
N ..
[ . )
N .
I e

STATE

CONTROLLER E

F. Marchetti, F. Becattini, L. Seidenari, A. Del Bimbo, ArXiv preprint, 2022
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. S (k
Lvariety = Hlkll'l ”}/l - Y;( )||27

FUTURE
PREDICTION
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SMEMO two-streams architecture

Two-stream process
Using Memory with attention

The Egocentric stream processes
agent’s motion displacements

The Social stream processes
agent’s static positions in relationship
with the other agents

» (10 &+ VUt () < (e,
GRU Recurrent :
Network :
R () :
*%&(+%" ! |:|
GRU Recurrent —l—’I
Network : i A
1(&H0 . & (%" A
Memory Augmented : ‘\
Network : -

j#$)+./*'(%+ , y

The Trajectory Decoder produces
future agent’s motion displacements

Shared trainable
memory

"#

Shared memory

Multiple instances of the Social
Encoder one for each agent

shared memory

Trained to read and write in the
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Memory reading
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Experiment example 1

ETH/UCY
Univ

Past trajectory in blue
Predictions (3) in red

Experiment example 2

ETH/UCY
Zara

Past trajectory in blue
Predictions (3) in red

14
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Examples with Ground truth Past trajectory in blue Ground truth in green
Predictions (3) in red
ETH/UCY
Univ
ETH/UCY
Zara
SDD
Social Multimodal Prediction GT + best prediction
Comparative Tables - ETH/UCY, SDD datasets K: number of predictions
Method (K=20) ETH HOTEL UNIV ZARA1 | ZARA2 | AVERAGE
Social-GAN 0.81/1.52 | 0.72/1.61 | 0.60/1.26 | 0.34/0.69 | 0.42/0.84 | 0.58/1.18
SoPhie 0.70/1.43 | 0.76/1.67 | 0.54/1.24 | 0.30/0.63 | 0.38/0.78 0.54/1.15
CGNS 0.62/1.40 | 0.70/0.93 | 0.48/1.22 | 0.32/0.59 | 0.35/0.71 | 0.49/0.97
ETH/UCY S-BiGAT 0.69/1.29 | 0.49/1.01 | 0.55/1.32 | 0.30/0.62 | 0.36/0.75 | 0.48/1.00
MATF 1.O1/1.75 | 0.43/0.80 | 0.44/0.91 | 0.26/0.45 | 0.26/0.57 | 0.48/0.90
GOAL-GAN 0.59/1.18 | 0.19/0.35 | 0.60/1.19 | 0.43/0.87 | 0.32/0.65 0.43/0.85
Transformer 0.61/1.12 | 0.18/0.30 | 0.35/0.65 | 0.22/0.38 | 0.17/0.32 | 0.31/0.55
PECNet 0.54/0.87 | 0.18/0.24 | 0.35/0.60 | 0.22/0.39 | 0.17/0.30 | 0.29/0.48
Trajectron++ 0.39/0.83 | 0.12/0.19 | 0.22/0.43 | 0.17/0.32 | 0.12/0.25 | 0.20/0.40
SMEMO 0.45/0.67 | 0.15/0.22 | 0.23/0.41 | 0.19/0.33 | 0.15/0.26 | 0.23/0.37
K=5 K=20
Method | ADE | FDE Method ADE | FDE Method ADE | FDE
DESIRE 19.25 | 34.05 | Social-GAN | 27.25 | 41.44 || EvolveGraph | 13.90 | 22.90
Rideletal. | 14.92 | 27.97 | Trajectron++ | 19.30 | 32.70 || Goal-GAN 12.20 | 22.10
Sbb PECNet 12.79 | 25.98 | SoPhie 16.27 | 29.38 || SimAug 10.27 | 19.71
TNT 12.23 | 21.16 | CE-VAE 12.60 | 22.30 || PECNet 9.96 | 15.88
SMEMO 11.64 | 21.12 | P2TIRL 12,58 | 22.07 || SMEMO 8.11 | 13.06
#*
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Synthetic Social Agents dataset - SSA

From 3 to 10 agents Agent3
starting from a point on a circumference...

- going towards the center with constant speed Agent2

- different agent speeds: 8—12 frame/sec

When two agents get close:

- the agent with greater speed passes Agent 1 [

- the other stops

Trajectories:

- Past: 3,2 sec Agent 0

- Future: 4,8 sec

Suited for learning algorithmic tasks in Past
trajectory prediction

) yp — Future
#1

Learning in simple scenarios — SSA dataset

With 4 agents

Agent 3 Agent 3 X
Agent 2 Agent 2 «
Agent 1 { Agent 1
Agent 0. Agent O
GROUND-TRUTH SMEMO

#ll

16
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MANN versus GRU Addressing with attention
1 \\
:A;Qsing &Qus :
Managing to slow down predictions when e | 1 : |
1 1
social interactions occur <> T e e -[ qone ] -[ Softmax ] !
| imilarity 1
Memory Key T i | :
Agent speeds | = |
Agent 0 Agent 1 | % % % .
| || [ [ | !
! || ] !
! ||| ] !
! || [ [ |
' [ | [ (I i
\ Shared o T /,

\\\ Memory ’/’
Agent 2 Agent3 T TTTTToToTTTTTTomoo
H#H
Scaling to more crowdy scenarios - SSA dataset
With 7 agents
A2 Al A2
Al . A3 ) A3
A4 p A4
A5 A5
A6 A6
A7 A7
GROUND-TRUTH SMEMO

#3$
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Comparative table — SSA dataset

Evaluation metrics

Method ADE | | FDE | | Kendall t Instant T
Linear 0.091 0.141 0.67 Puture 2
MLP 0.087 0.138 0.65 -

GRU ENC-DEC 0.087 0.138 0.64 Present;  "rediction
Expert-Goals 0.095 0.149 0.49 Horizon: E’f""
ik 0.045 0.136 0.71 FDE Final Displacement Errol: ..... e D
Trajectron++ ! 0.084 0.132 0.59 ADE Average Displacement Error
Social-GAN 0.051 0.085 0.67
AgentFormer 0.040 0.064 0.70 Kendall: agents’ order passing through the center
SMEMO 0.027 0.038 0.83 Agent3
Agent 2
e
Ablation study | ADE | | FDE | | Kendall Agent1 | -
SMEMO 0.027 | 0.038 0.83
Memory reset 0.030 | 0.045 0.79 P
Zero reading 0.087 | 0.137 0.64 Agent 0 *
Random reading | 0.087 0.137 0.65
State pooling 0.045 0.069 0.69

#h

Explainability

Time: 0

Memory-based future forecasting provides explainability
Explains which information is relevant to the the task
4 agents with different speeds, 60 seconds

Agent Controllers’
reading attention

ABCD

Agent-wise partitioned memory

#&

18



05/07/22

From Oto 31

Agent Cis slightly faster than the other agents

Agent D is faster than its closest agent A and faster than B
Agent A is slightly faster than its closest agent B but

had to stop so It is late wrt B

Agent B gives some attention to Agent A

Agent D focuses on Agent C

Agent A focuses on Agent D
Agent C focuses on Agent D

o

From 31 to 42

Agent C and D already passsed through the center so
no collision can occur

A is faster than its closest Agent B although being late

Agent B gives some focus on Agent A

Agent A, C, D read empty space almost everywherg
/| so don’t stop

#(
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From 31to 42

All Agents read empty space

All Agents safely passed through the center

#)

Conclusions

Exploits an episodic working memory to manipulate observations and reason about social interactions

Multimodality: each read controller can generate a different prediction trajectory.
Real trajectories are enforced by the variety loss

Memory: maintains updated internal state indefinitely

Information filtering: model parameters are trained from relevant instances only, avoiding irrelevant
information that can disturbe the performance

Explainability: by checking which information items in memory the reading controller focuses on
we can understand the task-relevant information. Suitable for safety-sensitive applications

$*
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