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A summertime ordinary day
in Naples, Italy
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Pedestrians move with complex and stochastic behavior
Usually follow common sense and specific social rules
Often walk in groups

Observe near people’s behavior anticipating
what will happen in the neighbourhood.…..

We aim at emulating human forecasting
i.e. predicting human trajectories by 
modelling social interactions

Predicting human social behavior
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Why so important

Essential for autonomous moving platforms like self-driving cars
or social robots that will share the same ecosystem as humans
or surveillance systems where helping identifying suspicious activities…. 

Accurate prediction of the future motion of other moving agents in their working space
is essential for the following safety decision-making and control processes, 
giving mobility to handicapped people…..
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Given a social context S = {xi, i = 0, ..., N − 1} defined as the set of trajectories
representing N moving agents, the task of trajectory prediction is the problem
of predicting the future positions of each agent, given their past positions

Trajectory prediction is an inherently multimodal problem
Multiple outcomes are possible

Modeling both temporal and spatial reasoning is needed

Past
Future
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that information up to a point when it might become relevant to
produce the answer. Recurrent Neural Networks (RNN) addressed
this issue by updating an internal state that attempts to summarize
the whole history of observed inputs. Whereas this approach has
proven effective in a large variety of cases, it has been shown
to suffer from long term forgetting due to exploding/vanishing
gradients that affect memorization capabilities. This drawback has
been mitigated to some extent by improved versions of RNNs,
such as Long Short Term Memories (LSTM) [35] or Gated
Recurrent Units (GRU) [36]. RNNs, however, still represent their
memory as a latent fixed-size state that will eventually lose track
of some information for sufficiently long input sequences. Another
limitation of relying on a latent memory is that individual pieces
of information cannot be recalled, making it hard to perform
reasoning tasks that involve data manipulation. Apparently simple
tasks such as copying or sorting become therefore extremely
challenging to address.

Memory Augmented Neural Networks (MANN) [10], [11]
are Neural Networks that behave as RNNs in the sense that can
be updated through time, but instead of relying on an internal
latent state, they exploit an external addressable memory. Such
memory is fully differentiable and the model, thanks to a trainable
controller, learns to read and write relevant information. The
first embodiment of a MANN has been Neural Turing Machine
(NTM) [10], introduced to solve simple algorithmic tasks, demon-
strating large improvements when compared to RNNs. Using an
external memory, in fact, allows the network to store knowledge
that cannot be forgotten unless deleted by the model itself. At
each timestep the network can perform reasoning involving all
previous observations and can perform data manipulation to emit
its outputs.

Follow-up works have extended and refined the formulation
of the NTM [11], [12], [13], [37]. Recently, several declinations
of MANNs have been proposed to tackle more complex problems
such as online learning [38], object tracking [39], [40], visual
question answering [41], [42], person re-identification [43], action
recognition [44] and garment recommendation [45].

Recently MANTRA, a fist attempt to use Memory Augmented
Neural Networks for trajectory prediction, has been recently
proposed by Marchetti et al. [46], [47]. However, this approach
is not end-to-end since each component is trained independently.
Moreover, the external memory is a persistent memory populated
during training to describe possible future trajectories and per-
form multimodal predictions. Differently from MANTRA, which
completely discards any social component, we exploit an end-to-
end trainable episodic memory to reason about social interactions
between multiple agents.

3 METHOD

3.1 Problem Formulation
Given a social context S = {xi, i = 0, ..., N � 1}, defined as the
set of trajectories representing N moving agents, we formulate the
task of trajectory prediction as the problem of predicting the future
positions of each agent, given their past positions. We consider se-
quences of agent trajectories belonging to different social contexts
as independent episodes. Within each episode, trajectories span
from an initial observation point up to a prediction horizon.

All trajectories, past and future, are sequences of top-view
2D spatial coordinates in a fixed reference frame, independent
from the agents. Past trajectories are observed over a temporal

Fig. 2. A social context S with two agents x0 and x1. For each agent
the past (blue) is observed and multiple futures are predicted (shades of
red).

interval up to an instant P , identified as the present xi
0:P =

{xi
0, xi

1, ..., xi
P }. All movements taking place after the present

and up to an instant F belong to future trajectories xi
P +1:F =

{xi
P +1, ..., xi

F }.
Trajectory prediction is an inherently multimodal problem,

meaning that given a single observation, multiple outcomes are
possible. Following the recent literature [6], [17], [26] we generate
multiple future estimates to provide a variety of futures in order to
cover this uncertainty.

To provide a comprehensive notation, throughout the paper we
define variables with a superscript identifying the referred agent
and two subscripts indicating the current timestep and current
future estimate identifier. Therefore the t-th timestep of the k-th
future prediction for agent i is denoted as xi

t,k. Fig. 2 exemplifies
such notation, depicting a social context with two agents and three
diverse future predictions.

3.2 Architecture Overview
In SMEMO, the motion of each agent is processed into two
separate streams, which we refer to as Egocentric and Social, as
shown in Fig. 3. The former is dedicated to modeling relative
displacements of an agent from one timestep to another. This
allows to understand how agents move, regardless of their actual
position in space. The latter instead, processes absolute agent
positions to obtain knowledge of where an agent is, with respect to
the environment. This information is then stored into an external
memory, shared across agents. Our model therefore can learn
to perform social reasoning by manipulating memory entries to
effectively predict future positions for all agents in the scene.

In the Egocentric Stream, at each timestep t, past displace-
ments �xi

t are observed for each agent trajectory xi 2 S .
Each displacement is first processed by an encoder E� to obtain
a projection �i

t into a higher dimensional space. The temporal
sequence of �i

t is then fed to a recurrent motion encoder ET ,
which generates a condensed feature representation ⌧ i

t .
In the Social Stream, past absolute positions xi

t are considered
for each agent trajectory xi 2 S . A projection ⇡i

t is obtained with
an encoder E⇧. This yields a sequence of temporized descriptors,
which is directly fed to the Social Memory Module. This module
acts as a recurrent neural network and processes a sequence of
input features in parallel for each agent. It generates a compact
social descriptor �i

t, summarizing social behaviors between all
agents in the social context S up to the current timestep t. The
i superscript denotes a separate social descriptor for each agent,
despite belonging to a common social context. This is necessary
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Fig. 2. Temporal Transformer. The temporal transformer takes the trajectory
embeddings from 1 to T as inputs and captures the temporal dependencies not
in sequence but by attention mechanism. The temporal transformer is shared by
N pedestrians.

in a group. The relation matrix R is symmetrical, thus only
one nonlinear function g0 is used in the calculations. With the
learned relation matrix R, we compute an information-richer
tensor for the individual spatial embedding:

{ĥt
i}Ni=1 = fc

(
{ĥt

i}Ni=1 +R{ĥt
i}Ni=1

)
(2)

Where fc is a fully connected layer network. And the spatial
embeddings are obtained with skip-connections. We use the
mean squared error(mse)to calculate the loss between ground
truth Ra and R.

C. Temporal Transformer

The temporal transformer views the spatial dimension as a
batch dimension and captures the temporal dynamical evolution
clues. The temporal context is enriched by highlighting each
individual’s informative features along the temporal dimension
with the self-attention mechanism. As shown in Fig. 2, the
temporal transformer is a modified version of the standard trans-
former, which is better for modelling temporal dependencies for
pedestrian trajectories. It takes the temporal features {ht

i}Tt=1 of
pedestrians i with observation from 1 to T as input and outputs
an enhanced feature with temporal dependencies.

Qi = fQ

({
h
t
i

}T

t=1

)
(3)

Ki = fK

({
h
t
i

}T

t=1

)
(4)

V i = fV

({
h
t
i

}T

t=1

)
(5)

Where fQ, fK and fV are fully connected layers that embed
the temporal feature to the query, key and value vector with
D dimension and shared by all pedestrians. And then, a self-
attention mechanism is used to capture temporal dependencies
by concluding the attention scores among every frame for each
pedestrian separately.

Att
(
Qi,Ki, V i

)
=

Softmax
(
QiKiT

)
√
D

V i (6)

MultiHead
(
Qi,Ki, V i

)
= fO

([
Att

(
Qi,Ki, V i

)]k
j=1

)

(7)

V i = MultiHead
(
Qi,Ki, V i

)
+ V i (8)

Fig. 3. Spatial Transformer. We represent the crowds as a graph. The im-
portance of neighbour nodes to target nodes is computed by the attention
mechanism, and then the messages are passed between nodes based on the
learned weight.

{h′T
i } = FFN

(
V i

)
(9)

Where Att(Qi,Ki, V i) is a self-attention head. Multi-head
attention is applied to learn the feature from different feature sub-
spaces, and fo is a fully connected layer that merges the k heads.
The final spatial feature is obtained by skip connections and FFN
layer, the feed-forward network in canonical Transformer. This
temporal transformer module is shared for all pedestrians. The
output temporal features for i-th pedestrians at timeT is denoted
as {h′T

i }.

D. Spatial Transformer

The spatial transformer is used to model the interaction by a
novel attention mechanism. Most of the existing methods use
distance as guidance to construct social relations. The spatial
transformer has a similar structure to the temporal transformer
but does not model the sequence data and treats the crowd at
time T as a graph to capture the spatial interaction as shown in
Fig. 3. The query, key and value vector are rewritten as follows:

QT = fQ

({
ĥT
i

}N

i=1

)
(10)

KT = fK

({
ĥT
i

}N

i=1

)
(11)

V T = fV

({
ĥT
i

}N

i=1

)
(12)

And the (4–7) are rewritten as follows:

Att
(
QT ,KT , V T

)
=

Softmax
(
QTKTT

)
√
D

V T (13)

MultiHead
(
QT ,KT , V T

)
= fO

([
Att

(
QT ,KT , V T

)]k
j=1

)

(14)

V T = MultiHead
(
QT ,KT , V T

)
+ V T (15)

{ĥ′T
i } = FFN

(
V T

)
(16)

The output spatial features for i-th pedestrians at time T is

denoted as {ĥ′T
i }.
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Fig. 2. Temporal Transformer. The temporal transformer takes the trajectory
embeddings from 1 to T as inputs and captures the temporal dependencies not
in sequence but by attention mechanism. The temporal transformer is shared by
N pedestrians.
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mechanism, and then the messages are passed between nodes based on the
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Where Att(Qi,Ki, V i) is a self-attention head. Multi-head
attention is applied to learn the feature from different feature sub-
spaces, and fo is a fully connected layer that merges the k heads.
The final spatial feature is obtained by skip connections and FFN
layer, the feed-forward network in canonical Transformer. This
temporal transformer module is shared for all pedestrians. The
output temporal features for i-th pedestrians at timeT is denoted
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D. Spatial Transformer

The spatial transformer is used to model the interaction by a
novel attention mechanism. Most of the existing methods use
distance as guidance to construct social relations. The spatial
transformer has a similar structure to the temporal transformer
but does not model the sequence data and treats the crowd at
time T as a graph to capture the spatial interaction as shown in
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All trajectories are sequences of top-view 2D 
spatial coordinates in a fixed reference frame 
independent from the agents 

Problem definition
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Literature: Recurrent Network and Pooling-based

• LSTM recurrent network to encode the motion of each agent
• Pooling to aggregate information of individuals
• LSTM recurrent network to decode and generate the future trajectory

conditioned on person state and pooled vector

Trained using GAN
- a generative model that captures the data distribution
- a discriminative model that estimates the probability that a sample   

came from the training data

Temporal features first
Spatial features afterwards
LSTM Memory network

Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks
A. Gupta et al. , Proc. of CVPR 2018

decoder as:
ct

i = �(Pi, ht
ei;Wc)

ht
di = [ct

i, z]
(3)

where �(·) is a multi-layer perceptron (MLP) with ReLU
non-linearity and Wc is the embedding weight. We deviate
from prior work in two important ways regarding trajectory
prediction:

• Prior work [1] uses the hidden state to predict pa-
rameters of a bivariate Gaussian distribution. How-
ever, this introduces difficulty in the training process
as backpropagation through sampling process in non-
differentiable. We avoid this by directly predicting the
coordinates (x̂t

i, ŷt
i).

• “Social” context is generally provided as input to the
LSTM cell [1, 28] . Instead we provide the pooled
context only once as input to the decoder. This also
provides us with the ability to choose to pool at spe-
cific time steps and results in 16x speed increase as
compared to S-LSTM [1] (see Table 2).

After initializing the decoder states as described above we
can obtain predictions as follows:

et
i = �(xt�1

i , yt�1
i ;Wed)

Pi = P M(ht�1
d1 , ..., ht

dn)

ht
di = LSTM(�(Pi, ht�1

di ), et
i;Wdecoder)

(x̂t
i, ŷt

i) = �(ht
di)

(4)

where �(·) is an embedding function with ReLU non-
linearity with Wed as the embedding weights. The LSTM
weights are denoted by Wdecoder and � is an MLP.

Discriminator. The discriminator consists of a separate
encoder. Specifically, it takes as input Treal = [Xi, Yi] or
Tfake = [Xi, Ŷi] and classifies them as real/fake. We apply
a MLP on the encoder’s last hidden state to obtain a clas-
sification score. The discriminator will ideally learn subtle
social interaction rules and classify trajectories which are
not socially acceptable as “fake”.

Losses. In addition to adversarial loss, we also apply L2
loss on the predicted trajectory which measures how far the
generated samples are from the actual ground truth.

3.4. Pooling Module
In order to jointly reason across multiple people we need

a mechanism to share information across LSTMs. However,
there are several challenges which a method should address:

• Variable and (potentially) large number of people in a
scene. We need a compact representation which com-
bines information from all the people.

• Scattered Human-Human Interaction. Local informa-
tion is not always sufficient. Far-away pedestrians
might impact each others. Hence, the network needs
to model global configuration.

Figure 3: Comparison between our pooling mechanism (red
dotted arrows) and Social Pooling [1] (red dashed grid) for
the red person. Our method computes relative positions be-
tween the red and all other people; these positions are con-
catenated with each person’s hidden state, processed inde-
pendently by an MLP, then pooled elementwise to compute
red person’s pooling vector P1. Social pooling only con-
siders people inside the grid, and cannot model interactions
between all pairs of people.

Social Pooling [1] addresses the first issue by proposing
a grid based pooling scheme. However, this hand-crafted
solution is slow and fails to capture global context. Qi et al.
[37] show that above properties can be achieved by apply-
ing a learned symmetric function on transformed elements
of the input set of points. As shown in Figure 2 this can be
achieved by passing the input coordinates through a MLP
followed by a symmetric function (we use Max-Pooling).
The pooled vector Pi needs to summarize all the informa-
tion a person needs to make a decision. Since, we use rel-
ative coordinates for translation invariance we augment the
input to the pooling module with relative position of each
person with respect to person i.

3.5. Encouraging Diverse Sample Generation
Trajectory prediction is challenging as given limited past

history a model has to reason about multiple possible out-
comes. The method described so far produces good pre-
dictions, but these predictions try to produce the “average”
prediction in cases where there can be multiple outputs.
Further, we found that outputs were not very sensitive to
changes in noise and produced very similar predictions.

We propose a variety loss function that encourages the
network to produce diverse samples. For each scene we
generate k possible output predictions by randomly sam-
pling z from N (0, 1) and choosing the “best” prediction in
L2 sense as our prediction.

Lvariety = min
k

kYi � Ŷ (k)
i k2, (5)

where k is a hyperparameter.
By considering only the best trajectory, this loss encour-

ages the network to hedge its bets and cover the space of
outputs that conform to the past trajectory. The loss is struc-
turally akin to Minimum over N (MoN) loss [11] but to the

47

Passing the input coordinates through a MLP followed
by Max-Pooling

Pooling computes relative positions between the red and 
all other people: the positions are concatenated with each
person’s hidden state and processed independently

Recurrent architectures are parameter inefficient and expensive in
training. Temporal ordering is lost and agent-wise knowledge is
disregarded in favor of a coarse global descriptor

The pooling aggregation in feature states is not intuitive in modelling
interactions between people as the physical meaning of feature states
is difficult to interpret

GAN generates highly diverse trajectories but tend to neglect the 
physical structure of the environment. The resulting trajectories are not
necessarily feasible, and often do not fully cover multiple possible
directions that a pedestrian can take 

While pooling the information, we try to preserve the spatial
information through grid based pooling as explained below.

The hidden state ht
i of the LSTM at time t captures the

latent representation of the ith person in the scene at that in-
stant. We share this representation with neighbors by build-
ing a “Social” hidden-state tensor Hi

t . Given a hidden-state
dimension D, and neighborhood size No, we construct a
No ⇥ No ⇥ D tensor Hi

t for the ith trajectory:

Hi
t(m, n, :) =

X

j2Ni

1mn[xj
t � xi

t, yj
t � yi

t]h
j
t�1, (1)

where hj
t�1 is the hidden state of the LSTM corresponding

to the jth person at t� 1, 1mn[x, y] is an indicator function
to check if (x, y) is in the (m, n) cell of the grid, and Ni is
the set of neighbors corresponding to person i. This pooling
operation is visualized in Fig. 3.

We embed the the pooled Social hidden-state tensor into
a vector at

i and the co-ordinates into et
i.These embeddings

are concatenated and used as the input to the LSTM cell of
the corresponding trajectory at time t. This introduces the
following recurrence:

ri
t = �(xi

t, yi
t; Wr) (2)

et
i = �(ai

t, Hi
t ; We),

ht
i = LSTM

�
ht�1

i , et
i; Wl

�

where �(.) is an embedding function with ReLU non-
linearlity, Wr and We are embedding weights. The LSTM
weights are denoted by Wl.

Position estimation The hidden-state at time t is used to
predict the distribution of the trajectory position (x̂, ŷ)i

t+1

at the next time-step t + 1. Similar to Graves et al. [20], we
assume a bivariate Gaussian distribution parametrized by
the mean µi

t+1 = (µx, µy)i
t+1, standard deviation �i

t+1 =

(�x, �y)i
t+1 and correlation coefficient ⇢i

t+1. These param-
eters are predicted by a linear layer with a 5 ⇥ D weight
matrix Wp. The predicted coordinates (x̂i

t, ŷi
t) at time t are

given by

(x̂, ŷ)i
t ⇠ N (µi

t, �i
t, ⇢i

t) (3)

The parameters of the LSTM model are learned by min-
imizing the negative log-Likelihood loss (Li for the ith tra-
jectory):

⇥
µi

t, �i
t, ⇢i

t

⇤
= Wpht�1

i (4)

Li(We, Wl, Wp) = �
TpredX

t=Tobs+1

log
�
P(xi

t, yi
t|�i

t, µi
t, ⇢i

t)
�

,

h1 

h3 

h2 
h1 

h3 

h2 h1++h2 

h3 

Figure 3. We show the Social pooling for the person represented
by a black-dot. We pool the hidden states of the neighbors (shown
in yellow, blue and orange) within a certain spatial distance. The
pooling partially preserves the spatial information of neighbors as
shown in the last two steps.

We train the model by minimizing this loss for all the tra-
jectories in a training dataset. Note that our “Social” pool-
ing layer does not introduce any additional parameters.

An important distinction from the traditional LSTM is
that the hidden states of multiple LSTMs are coupled by
our “Social” pooling layer and we jointly back-propagate
through multiple LSTMs in a scene at every time-step.

Occupancy map pooling The ”Social” LSTM model can
be used to pool any set of features from neighboring tra-
jectories. As a simplification, we also experiment with a
model which only pools the co-ordinates of the neighbors
(referred to as O-LSTM in the experiments Sect. 4). This
is a reduction of the original model and does not require
joint back-propagation across all trajectories during train-
ing. This model can still learn to reposition a trajectory to
avoid immediate collision with neighbors. However, in the
absence of more information from neighboring people, this
model would be unable to smoothly change paths to avoid
future collisions.

For a person i, we modify the definition of the tensor
Hi

t , as a No ⇥ No matrix at time t centered at the person’s
position, and call it the occupancy map Oi

t . The positions of
all the neighbors are pooled in this map. The m, n element
of the map is simply given by:

Oi
t(m, n) =

X

j2Ni

1mn[xj
t � xi

t, yj
t � yi

t], (5)

where 1mn[.] is an indicator function as defined previ-
ously. This can also be viewed as a simplification of the so-
cial tensor in Eq. 1 where the hidden state vector is replaced
by a constant value indicating the presence or absence of
neighbors in the corresponding cell.

The vectorized occupancy map is used in place of Hi
t in

Eq. 2 while learning this simpler model.

Inference for path prediction During test time, we use
the trained Social-LSTM models to predict the future posi-
tion (x̂i

t, ŷi
t) of the ith person. From time Tobs+1 to Tpred,

Max 
(h1,h2)
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Social-STGCNN: A Social Spatio-Temporal Graph Convolutional Neural Network for Human Trajectory Prediction
A. Mohamed et al. , Proc.  CVPR 2020

• Spatio-temporal graph represent T frames
• Spatio-temporal Graph Convolution Neural Network creates a spatio-temporal embedding 
• Time-Extrapolator-CNN predicts future trajectories through convolution operators

• Spatial graph represents the relative locations vit of the agents in a scene at time t

Literature: Graph-based and Attention pooling

The topology of G1, . . . , GT is the same, while different
attributes are assigned to vit when t varies

Spatial features first
Temporal features afterwards
Stateless system

9

Models relationships between signals but relies on some
fixed-size hidden representation blending them together

Only models the interactions of spatially proximal trac-agents
Ignore the influence beyond the given spatial limits

Graphs are a natural more direct, intuitive and efficient way to model 
pedestrians interactions than aggregation based methods

The Convolution operation over graphs is a weighted aggregation of target node
attributes with the attributes of its neighbor nodes
Attention-based pooling: attention weights according to  euclidean distance

A stateless system
Single pass prediction: high gain in parameter efficiency wrt LSTM

10
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Goal-GAN: Multimodal Trajectory Prediction Based on Goal Position Estimation
P. Dendorfer et al. Proc. of ACCV 2020

• Motion Encoder: LSTM encodes the speed and direction of motion of the agent’s past trajectory
• Goal Module: predicts the most likely target positions of the agent combining visual scene information and agent’s dynamics
• Routing Module: estimates a set of plausible trajectories that route towards the estimated goal

Literature: Recurrent Network and Intention estimation-based

GAN to train the trajectory generator to output realistic
and physically feasible trajectories

Goal-GAN 9

due to the fact, the original formulation [28] using a classifier with sigmoid cross-
entropy function potentially leads to the vanishing gradient problem.

To encourage the network to take into account the estimated goal positions
for the prediction, we propose a goal achievement losses LG that measures the
L2 distance between the goal prediction g and the actual output Ŷ tpred ,

LG = kg � Ŷ
tpredk2. (2)

In addition, we use a cross-entropy loss

LGCE = � log (pi) , (3)

where pi is the probability that is predicted from the Goal Module for the grid
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trajectory prediction. The RM consists of an LSTM network, a visual soft atten-
tion network (ATT), and an additional MLP layer that combines the attention
map with the output of the LSTM iteratively at each timestep.

First, we forward the goal estimate embedding eg and the object dynamics
embedding hME (given by the motion encoder, ME) to an MLP to initialise the
hidden state h

0
RM of the RM.

Then, we recursively estimate predictions for the future time steps. To this
end, the LSTM in the RM obtains three inputs: the previous step prediction
Ŷ

t�1, the remaining distance to the estimated goal dt�1 = g � Ŷ
t�1 and the

current scalar timestep value t.
To assess the traversability of the local surroundings, we apply soft atten-

tion [30] on the image patch centered around the current position of the pedes-
trian. As shown in the Figure 3, we combine the output of the LSTM with the
attention map F

t to predict the next step Ŷ
t. The visual attention mechanism

allows the RM to react to obstacles or other nearby structures. Finally, we use
both the dynamic and visual features to predict the final prediction Ŷ

t.

4.4 Generative Adversarial Training

In our work, we use a Generative Adversarial Network (GAN) to train our trajec-
tory generator to output realistic and physically feasible trajectories. The GAN
consists of a Generator and Discriminator network competing in a two-player
min-max game. While the generator aims at producing feasible trajectories, the
discriminator learns to di↵erentiate between real and fake samples, i.e., feasible
and unfeasible trajectories. Adversarial training is necessary because, in contrast
to prediction accuracy, it is not possible to formulate a di↵erential loss in a closed
mathematical form that captures the concept of feasibility and realism of the
generated trajectories.

The discriminator network consists of an LSTM network that encodes the
observed trajectory X. This encoding is used to initialize the second LSTM that
processes the predicted trajectory Y together with visual features (obtained from
the CNN network, that encodes the image patch centered around the current
position) at each time step. Finally, the last hidden state of the LSTMpred is
used for the final output of the discriminator.

4.5 Losses

For training our Goal-GAN we use multiple losses addressing the di↵erent mod-
ules of our model. To encourage the generator to predict trajectories, that are
closely resembling the ground truth trajectories, we use a best-of-many [1] dis-
tance loss LL2 = minkkY � Ŷ

(k)k2 between our predictions Ŷ and the ground
truth Y . As an adversarial loss, we employ the lsgan [39] loss:

LAdv =
1

2
E [(D (X,Y )� 1)2] +

1

2
E [D(X, Ŷ )2], (1)
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Solely estimating trajectory goals neglects the social
context so affecting agent trajectories after the
present time-step

Two-stages process
First  estimates a posterior over possible goals taking into account 
the dynamics of the pedestrian and the visual scene context
Then predicts trajectories that route towards these estimated goals

Realistic multimodal: the Goal module estimates a multi-modal probability
distribution over the possible goal positions which is used to sample a potential
goal during the inference
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GAN baseline tends to instead span its trajectory over a wider range leading to
unfeasible paths.

(a) ETH (b) Zara 2 (c) Hyang 4 0 (d) Coupa 1

Fig. 5: Visualisation of generated trajectories (orange circles) and estimated
global goal probabilities (yellow heatmap). The figures show that the model
interacts with the visual context of the scene and ensures feasibility predictions.

Real Data: Furthermore, we present qualitative results of the datasets ETH/UCY
and SDD in Figure 5. The two figures show predictions on the Hotel (Figure 5a)
and Zara 2 (Figure 5b) sequences. Our model assigns high probability to a large
area in the scene as in Hotel sequence, as several positions could be plausible
goals. The broad distribution ensures that we generate diverse trajectories when
there are no physical obstacles. Note that the generated trajectories do not only
vary in direction but also in terms of speed. In Zara 2, the model recognizes
the feasible area on the sidewalk and predicts no probability mass on the street
or in the areas covered by the parked cars. In the scene Hyang 4 SDD dataset,
we observe that the model successfully identifies that the pedestrian is walking
on the path, assigning a very low goal probability to the areas, overgrown by
the tree. This scenario is also presented successfully with synthetic data which
shows that we can compare the results of the synthetic dataset to the behavior
of real data. The trajectories shown for Coupa 1 demonstrate that the model
generates solely paths onto concrete but avoids predictions leading towards the
area of the tree.

6 Conclusion

In this work, we present Goal-GAN, a novel two-stage network for the task
of pedestrian trajectory prediction. With the increasing interest in the inter-
pretability of data-driven models, Goal-GAN allows us to comprehend the dif-
ferent stages iduring the prediction process. This is an alternative to the current
generative models, which use a latent noise vector to encourage multimodality
and diversity of the trajectory predictions. Our model achieves state-of-the-art
results on the ETH, UCY, and SDD datasets while being able to generate mul-
timodal, diverse, and feasible trajectories, as we experimentally demonstrate.
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GA-STT: Human Trajectory Prediction with Group Aware Spatial-Temporal Transformer
L. Zhou et al., IEEE Robotics and Automation Letters, 2022

• Spatial Transformer and Temporal Transformer are respectively used to extract social interaction and temporal features
• Cross-attention modules capture the spatial-temporal dependencies

• Adjacency matrix is learned and used to enhance the individual representation with group constraints

Temporal features first
Spatial features afterwards
Transformer attention

Literature: Transformer attention-based
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Fig. 2. Temporal Transformer. The temporal transformer takes the trajectory
embeddings from 1 to T as inputs and captures the temporal dependencies not
in sequence but by attention mechanism. The temporal transformer is shared by
N pedestrians.

in a group. The relation matrix R is symmetrical, thus only
one nonlinear function g0 is used in the calculations. With the
learned relation matrix R, we compute an information-richer
tensor for the individual spatial embedding:

{ĥt
i}Ni=1 = fc

(
{ĥt

i}Ni=1 +R{ĥt
i}Ni=1

)
(2)

Where fc is a fully connected layer network. And the spatial
embeddings are obtained with skip-connections. We use the
mean squared error(mse)to calculate the loss between ground
truth Ra and R.

C. Temporal Transformer

The temporal transformer views the spatial dimension as a
batch dimension and captures the temporal dynamical evolution
clues. The temporal context is enriched by highlighting each
individual’s informative features along the temporal dimension
with the self-attention mechanism. As shown in Fig. 2, the
temporal transformer is a modified version of the standard trans-
former, which is better for modelling temporal dependencies for
pedestrian trajectories. It takes the temporal features {ht

i}Tt=1 of
pedestrians i with observation from 1 to T as input and outputs
an enhanced feature with temporal dependencies.
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Where fQ, fK and fV are fully connected layers that embed
the temporal feature to the query, key and value vector with
D dimension and shared by all pedestrians. And then, a self-
attention mechanism is used to capture temporal dependencies
by concluding the attention scores among every frame for each
pedestrian separately.

Att
(
Qi,Ki, V i

)
=

Softmax
(
QiKiT

)
√
D

V i (6)

MultiHead
(
Qi,Ki, V i

)
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([
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Qi,Ki, V i

)]k
j=1
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V i = MultiHead
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)
+ V i (8)

Fig. 3. Spatial Transformer. We represent the crowds as a graph. The im-
portance of neighbour nodes to target nodes is computed by the attention
mechanism, and then the messages are passed between nodes based on the
learned weight.

{h′T
i } = FFN

(
V i

)
(9)

Where Att(Qi,Ki, V i) is a self-attention head. Multi-head
attention is applied to learn the feature from different feature sub-
spaces, and fo is a fully connected layer that merges the k heads.
The final spatial feature is obtained by skip connections and FFN
layer, the feed-forward network in canonical Transformer. This
temporal transformer module is shared for all pedestrians. The
output temporal features for i-th pedestrians at timeT is denoted
as {h′T

i }.

D. Spatial Transformer

The spatial transformer is used to model the interaction by a
novel attention mechanism. Most of the existing methods use
distance as guidance to construct social relations. The spatial
transformer has a similar structure to the temporal transformer
but does not model the sequence data and treats the crowd at
time T as a graph to capture the spatial interaction as shown in
Fig. 3. The query, key and value vector are rewritten as follows:
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And the (4–7) are rewritten as follows:
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(
V T

)
(16)

The output spatial features for i-th pedestrians at time T is

denoted as {ĥ′T
i }.
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The Spatial Transformer treats the crowd at time T 
as a graph to capture the spatial interaction

The Temporal Transformer takes the temporal
features of pedestrians i with observation from 1 to T 
as input and outputs an enhanced feature with 
temporal dependencies

Cross attention modules capture spatial and temporal dependencies and 
consider them integrally
- For the Spatial-temporal cross attention the spatial feature vector is

the query and the individual temporal feature is key and value
- For the Temporal-spatial cross attention, the individual temporal

feature vector is the query the spatial feature is key and value

The output of these two cross attention are fused by a fully connected
layer to generate the enhanced individual representation
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Fig. 2. Temporal Transformer. The temporal transformer takes the trajectory
embeddings from 1 to T as inputs and captures the temporal dependencies not
in sequence but by attention mechanism. The temporal transformer is shared by
N pedestrians.

in a group. The relation matrix R is symmetrical, thus only
one nonlinear function g0 is used in the calculations. With the
learned relation matrix R, we compute an information-richer
tensor for the individual spatial embedding:

{ĥt
i}Ni=1 = fc

(
{ĥt

i}Ni=1 +R{ĥt
i}Ni=1

)
(2)

Where fc is a fully connected layer network. And the spatial
embeddings are obtained with skip-connections. We use the
mean squared error(mse)to calculate the loss between ground
truth Ra and R.

C. Temporal Transformer

The temporal transformer views the spatial dimension as a
batch dimension and captures the temporal dynamical evolution
clues. The temporal context is enriched by highlighting each
individual’s informative features along the temporal dimension
with the self-attention mechanism. As shown in Fig. 2, the
temporal transformer is a modified version of the standard trans-
former, which is better for modelling temporal dependencies for
pedestrian trajectories. It takes the temporal features {ht

i}Tt=1 of
pedestrians i with observation from 1 to T as input and outputs
an enhanced feature with temporal dependencies.
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Where fQ, fK and fV are fully connected layers that embed
the temporal feature to the query, key and value vector with
D dimension and shared by all pedestrians. And then, a self-
attention mechanism is used to capture temporal dependencies
by concluding the attention scores among every frame for each
pedestrian separately.

Att
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=
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Fig. 3. Spatial Transformer. We represent the crowds as a graph. The im-
portance of neighbour nodes to target nodes is computed by the attention
mechanism, and then the messages are passed between nodes based on the
learned weight.
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(
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)
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Where Att(Qi,Ki, V i) is a self-attention head. Multi-head
attention is applied to learn the feature from different feature sub-
spaces, and fo is a fully connected layer that merges the k heads.
The final spatial feature is obtained by skip connections and FFN
layer, the feed-forward network in canonical Transformer. This
temporal transformer module is shared for all pedestrians. The
output temporal features for i-th pedestrians at timeT is denoted
as {h′T

i }.

D. Spatial Transformer

The spatial transformer is used to model the interaction by a
novel attention mechanism. Most of the existing methods use
distance as guidance to construct social relations. The spatial
transformer has a similar structure to the temporal transformer
but does not model the sequence data and treats the crowd at
time T as a graph to capture the spatial interaction as shown in
Fig. 3. The query, key and value vector are rewritten as follows:
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And the (4–7) are rewritten as follows:
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The output spatial features for i-th pedestrians at time T is

denoted as {ĥ′T
i }.
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Fig. 2. Temporal Transformer. The temporal transformer takes the trajectory
embeddings from 1 to T as inputs and captures the temporal dependencies not
in sequence but by attention mechanism. The temporal transformer is shared by
N pedestrians.

in a group. The relation matrix R is symmetrical, thus only
one nonlinear function g0 is used in the calculations. With the
learned relation matrix R, we compute an information-richer
tensor for the individual spatial embedding:
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Where fc is a fully connected layer network. And the spatial
embeddings are obtained with skip-connections. We use the
mean squared error(mse)to calculate the loss between ground
truth Ra and R.

C. Temporal Transformer

The temporal transformer views the spatial dimension as a
batch dimension and captures the temporal dynamical evolution
clues. The temporal context is enriched by highlighting each
individual’s informative features along the temporal dimension
with the self-attention mechanism. As shown in Fig. 2, the
temporal transformer is a modified version of the standard trans-
former, which is better for modelling temporal dependencies for
pedestrian trajectories. It takes the temporal features {ht

i}Tt=1 of
pedestrians i with observation from 1 to T as input and outputs
an enhanced feature with temporal dependencies.
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Where fQ, fK and fV are fully connected layers that embed
the temporal feature to the query, key and value vector with
D dimension and shared by all pedestrians. And then, a self-
attention mechanism is used to capture temporal dependencies
by concluding the attention scores among every frame for each
pedestrian separately.
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Fig. 3. Spatial Transformer. We represent the crowds as a graph. The im-
portance of neighbour nodes to target nodes is computed by the attention
mechanism, and then the messages are passed between nodes based on the
learned weight.
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Where Att(Qi,Ki, V i) is a self-attention head. Multi-head
attention is applied to learn the feature from different feature sub-
spaces, and fo is a fully connected layer that merges the k heads.
The final spatial feature is obtained by skip connections and FFN
layer, the feed-forward network in canonical Transformer. This
temporal transformer module is shared for all pedestrians. The
output temporal features for i-th pedestrians at timeT is denoted
as {h′T

i }.

D. Spatial Transformer

The spatial transformer is used to model the interaction by a
novel attention mechanism. Most of the existing methods use
distance as guidance to construct social relations. The spatial
transformer has a similar structure to the temporal transformer
but does not model the sequence data and treats the crowd at
time T as a graph to capture the spatial interaction as shown in
Fig. 3. The query, key and value vector are rewritten as follows:
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ĥT
i

}N

i=1

)
(10)

KT = fK

({
ĥT
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（a） Spatial Self-Attention 
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（b） Temporal Self-Attention 
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Figure 2: Spatial and Temporal Self-Attention. (a) The spatial interactions of node 4 in
frame t is modeled. n

t
i (i = 1, 2, 3, 4) is the embeddings of node i. m

t
4j (j =

1, 2, 3, 4) is the message passing from node j to 4. (b) The temporal correlations
between inter-frame are computed in temporal Transformer where the nodes are
independent of each other.

layer. In order to further capture the temporal dependencies on all history frames, we
perform post-processing of the input embeddings with the second temporal Transformer
encoder. Temporal Transformer decoder refines the output embeddings based on the spatio-
temporal features provided by encoders and the previously predicted output embeddings
produced by previously output coordinates. Finally, the trajectory generator outputs all
the tra�c-agents future trajectories Y(tobs+1,tfut) simultaneously by decoding the output
embeddings.

3.2. Spatio-temporal Transformer

In order to handle the spatial interactions coupled with temporal continuity, we creatively
design a spatio-temporal Transformer encoder that captures spatial information through
a spatial self-attention sub-layer and extracts dependencies along the temporal dimension
through a TCN sub-layer. We interleave two sub-layers to merge the spatio-temporal fea-
tures.
Spatial Self-attention sub-layer From a di↵erent perspective of Transformer, the spa-
tial attention could be regard as spatial-edge in the spatio-temporal graph. We adopt
message passing mechanism on the spatial-edge to preform the suitable processing. For
each node i in the scene at time t, query q

t
i 2 Rdq , key k

t
i 2 Rdk and value v

t
i 2 Rdv is

computed by the linear projection from input embeddings hti 2 RC :

q
t
i = Wq · hti, kti = Wk · hti, vti = Wv · hti (6)

where Wq 2 RC⇥dq ,Wk 2 RC⇥dk ,Wv 2 RC⇥dv . Attention score between node i and j 2
(1, V ) is then obtained by applying scaled dot-product between q

t
i and k

t
j , representing the

14
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Limits:
Inability to track very long sequences and process hierarchical inputs or algorithmic tasks

Only a fixed number of transformations can be applied to its internal states
The total number of transformations between the input and output is limited by the sub-layers depth

At each layer, the representations for the input sequence are treated in parallel. The high-level representations from 
the past are not exploited to compute the current representation

Both  essential and non-essential information are considered, with more and less attention

Strengths and weaknesses of Transformer-based

More powerful than LSTM in modelling temporal dependencies
due to self-attention mechanism

More powerful network structure than social pooling
for spatial interaction modelling

The feedforward nature of Transformers makes them efficient on 
modern hardware

15

An alternative option: usage of a working memory

ENC DEC

Storage of items of relevant information to decision-making
Avoids blending past information into a single latent state, but instead uses memory to keep track
of relevant cues across time and store them separately to be recalled

Memorize what happens in the scene step by step 
Decoupling mechanism

Short-term 
episodic memory 

Encoding Decoding

16
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Memory Augmented Neural Networks

A Recurrent Network-based Memory Controller and an external trainable Memory
The Memory Controller is trained to write all the examples in memory and to read what is necessary
to produce the output  

Keeps in memory a set of independent states instead of incrementally creating a state 
This helps to find the structure in the training data and to generalize to sequences in algorithmic tasks

Think the Controller network as the CPU and the external memory as the RAM

MANN Output

Read 
Controller 
module

Memory 
module Write 

Input

17

Memory Augmented Neural Network model

LSTM/GRU

CONTROLLER
network

Memory Network Memory Augmented Network

Inputs are fed to LSTM one-by-one
LSTM has only one chance to look at
an input symbol

Place all input symbols in memory and 
let the model decide which part it reads next

18
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Neural Turing Machine  
Graves, G. Wayne, I. Danihelka, ArXiv preprint, 2014

11 
 

 

Fig.  9. External memory access pattern [4]; 
inputs are received by network(controller), and after training outputs are read from Read head of controller and with Write head are transmitted to memory for 

subsequent referrals. also, Write head has two basic writing steps that can be done to clear the memory(e) or add to memory(a), depending on how you teach and use 
the network. The Read head also has the task of reading from the controller and read from the memory. 

Graves et al [4] selects five algorithm tasks to examine NTM efficiency, here algorithmic means that for 
each task, the final output receives for the input, be computable through a simple program and be easy in 
being implemented through any of the common languages. The initial results in this article reveal that 
Neural Turing machines are able to have a deduction on algorithms like Copying, Sorting and Associative 
recall with inputs and outputs samples. For example, to copy task, the input of which is a sequential binary 
vector with fixed length and a limit number of symbols and the objective of the output is to provide a copy 
of the protracted input. As for sorting which takes place based on priority sort where the input includes a 
sequence input from the binary vectors together with a priority numeric value determined for each factor 
and the lengthy inputs in sequence sort of vectors according to their priorities. This test is to measure NTM 
to see whether it can be trained through supervised learning in order to implement correct and effective 
algorithmic tasks. The obtained solutions from this method are extended to lengthy inputs compared to the 
training set, while according to [4, 75], LSTM without external memory  is not extendable to lengthy inputs. 
NTM machines are designed to resolve problems which need rapidly-created variable rules [76]. The 
computer programs usually apply three fundamental mechanisms: 1( Elementary operations (e.g., 
arithmetic operations), 2( Logical flow control (branching), 3( External memory. Most modern learning 
machines do not consider logical flow control and external memory. 

The three architectures: 1) LSTM RNN, 2) NTM with a forward facing controller, and 3) NTM with a 
LSTM controller are assessed in [4]. For each task, both NTM architectures showed better performance 
than LSTM RNN in both training set and test data generalization as illustrated in Figures 2 to 6. For 
instance, it is observed that learning in NTM is more rapid than mere LSTM that results in reducing costs; 
nonetheless, both methods act perfectly. 

Credits S. Malekmohammadi
The heads, with the feature generated by Controller,
compute addressing to read/write in memory

Read head

Write head

Neural Turing Machine is a MANN that learns to read and  write data from/into the external memory
at different time steps to solve a given task  

- Network Controller: the interface between the input and and the memory through read and write heads
- Memory Bank:  an array of vectors

19

NTM blurry operations 

The operations argmax o select index are not differentiable: use blurry operations i.e. interact
to a greater or lesser degree with all the elements in memory rather than addressing
a single or few element directly

The degree of blurriness is determined by an attentional focus mechanism that constrains each
Read and Write operation to interact with a small portion of the memory while ignoring the rest

Credits A. Graves et al

!
!

𝑤𝑖 = 1

result

Normalized weights over N elements of the memory

A weight of 1 focuses all the attention on 
the corresponding memory location    
A weight of 0 discards that memory location

20
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Memory is a single hidden state vector
that encodes all the temporal information 

Memory is addesssable as a whole
All the past information is encoded in the 
state vector

State to state transition is unstructured
and global 

Find some structure in the training data 

The number of parameters is tied to the 
size of the hidden state

Memory networks compared

Add an external memory matrix with increased
storage capacity

Memory is element-wise addressable.    
Rely on attention to work

State to state transitions are obtained
through read/write operations

Find the structure in the training data, but also
generalize to long sequences in algorithmic tasks

The number of parameters is not tied to 
the size of the memory. 

Ability to track long sequences and process 
hierarchical inputs, maintaining an internal state 
for long time

RNN, LSTM, GRU Memory Augmented Neural Networks

21

End-to-end differentiable model
Based on Memory Augmented Neural Network

A A A A

SMEMO: Social Memory for Trajectory Forecasting
F. Marchetti, F. Becattini, L. Seidenari, A. Del Bimbo, ArXiv preprint, 2022 

decoder as:
c
t
i = �(Pi, h

t
ei;Wc)

h
t
di = [cti, z]

(3)

where �(·) is a multi-layer perceptron (MLP) with ReLU
non-linearity and Wc is the embedding weight. We deviate
from prior work in two important ways regarding trajectory
prediction:

• Prior work [1] uses the hidden state to predict pa-
rameters of a bivariate Gaussian distribution. How-
ever, this introduces difficulty in the training process
as backpropagation through sampling process in non-
differentiable. We avoid this by directly predicting the
coordinates (x̂t

i, ŷ
t
i).

• “Social” context is generally provided as input to the
LSTM cell [1, 28] . Instead we provide the pooled
context only once as input to the decoder. This also
provides us with the ability to choose to pool at spe-
cific time steps and results in 16x speed increase as
compared to S-LSTM [1] (see Table 2).

After initializing the decoder states as described above we
can obtain predictions as follows:

e
t
i = �(xt�1

i , y
t�1
i ;Wed)

Pi = PM(ht�1
d1 , ..., h

t
dn)

h
t
di = LSTM(�(Pi, h

t�1
di ), eti;Wdecoder)

(x̂t
i, ŷ

t
i) = �(ht

di)

(4)

where �(·) is an embedding function with ReLU non-
linearity with Wed as the embedding weights. The LSTM
weights are denoted by Wdecoder and � is an MLP.

Discriminator. The discriminator consists of a separate
encoder. Specifically, it takes as input Treal = [Xi, Yi] or
Tfake = [Xi, Ŷi] and classifies them as real/fake. We apply
a MLP on the encoder’s last hidden state to obtain a clas-
sification score. The discriminator will ideally learn subtle
social interaction rules and classify trajectories which are
not socially acceptable as “fake”.

Losses. In addition to adversarial loss, we also apply L2
loss on the predicted trajectory which measures how far the
generated samples are from the actual ground truth.

3.4. Pooling Module
In order to jointly reason across multiple people we need

a mechanism to share information across LSTMs. However,
there are several challenges which a method should address:

• Variable and (potentially) large number of people in a
scene. We need a compact representation which com-
bines information from all the people.

• Scattered Human-Human Interaction. Local informa-
tion is not always sufficient. Far-away pedestrians
might impact each others. Hence, the network needs
to model global configuration.

Figure 3: Comparison between our pooling mechanism (red
dotted arrows) and Social Pooling [1] (red dashed grid) for
the red person. Our method computes relative positions be-
tween the red and all other people; these positions are con-
catenated with each person’s hidden state, processed inde-
pendently by an MLP, then pooled elementwise to compute
red person’s pooling vector P1. Social pooling only con-
siders people inside the grid, and cannot model interactions
between all pairs of people.

Social Pooling [1] addresses the first issue by proposing
a grid based pooling scheme. However, this hand-crafted
solution is slow and fails to capture global context. Qi et al.
[37] show that above properties can be achieved by apply-
ing a learned symmetric function on transformed elements
of the input set of points. As shown in Figure 2 this can be
achieved by passing the input coordinates through a MLP
followed by a symmetric function (we use Max-Pooling).
The pooled vector Pi needs to summarize all the informa-
tion a person needs to make a decision. Since, we use rel-
ative coordinates for translation invariance we augment the
input to the pooling module with relative position of each
person with respect to person i.

3.5. Encouraging Diverse Sample Generation
Trajectory prediction is challenging as given limited past

history a model has to reason about multiple possible out-
comes. The method described so far produces good pre-
dictions, but these predictions try to produce the “average”
prediction in cases where there can be multiple outputs.
Further, we found that outputs were not very sensitive to
changes in noise and produced very similar predictions.

We propose a variety loss function that encourages the
network to produce diverse samples. For each scene we
generate k possible output predictions by randomly sam-
pling z from N (0, 1) and choosing the “best” prediction in
L2 sense as our prediction.

Lvariety = min
k

kYi � Ŷ
(k)
i k2, (5)

where k is a hyperparameter.
By considering only the best trajectory, this loss encour-

ages the network to hedge its bets and cover the space of
outputs that conform to the past trajectory. The loss is struc-
turally akin to Minimum over N (MoN) loss [11] but to the

4
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Trajectory
Decoder

GRU Recurrent
Network

Motion Encoder
GRU Recurrent

Network

Egocentric stream

The Egocentric stream processes
agent’s motion displacements

The Trajectory Decoder produces
future agent’s motion displacements

M

Shared trainable
memory

Social stream

Social Encoder
Memory Augmented

Network

The Social stream processes
agent’s static positions in relationship
with the other agents

SMEMO two-streams architecture Two-stream process
Using Memory with attention

23

Multiple instances of the Social 
Encoder one for each agent

Trained to read and write in the 
shared memory

Shared memory

MANN controller
GRU

MANN controller
GRU

MANN controller
GRU

Shared trainable memory bank

……

Agent 2

Agent 3

Social Encoder Agent 1

Social Encoder

Social Encoder

24
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PAST

FUTURES

OTHER AGENTS

Read
HeadRead

Head Addressing

Σ
Weighted 

Sum

Read
Head

Pooling

Shared
Memory

Multiple read heads 
produce multiple social 
features that determine
multiple futures

Motion Encoder
GRU Recurrent

Network

Trajectory
Decoder

GRU  Recurrent
Network

Social Encoder
Memory Augmented Network

z-1

………

MANN controller
GRU

si condenses the history of the 
i-agent’s neghbourhood, taking into account 
the target direction of agent i

Memory reading

25

The memory controller updates memory for the next timesteps 
Erase and Add Matrix are generated using the addressed memory content
Social Pooling guarantees invariance to agent ordering

Social
Pooling

Social
PoolingWrite

Head

Recurrent Memory 
Controller 

Addressing

Erase Matrix

Add Matrix

×

Outer Product

×

Outer Product

Erase Vector

Add Vector

Sigmoid

MANN controller
GRU

Social Encoder
Memory Augmented Network

Shared Memory

Mt

Mt+1

Shared Memory

Memory writing
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ETH/UCY
Univ

Past trajectory in blue 
Predictions (3) in red

Experiment example 1

27

ETH/UCY
Zara

Past trajectory in blue 
Predictions (3)  in red

Experiment example 2
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ETH/UCY
Univ

Past trajectory in blue 
Predictions (3)  in red

ETH/UCY
Zara

SDD

Examples with Ground truth Ground truth in green 

29

ETH/UCY

K: number of predictions

OURS   

SDD

OURS      OURS      

Comparative Tables  - ETH/UCY, SDD datasets

SMEMO SMEMO
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Synthetic Social Agents dataset - SSA

From 3 to 10 agents
starting from a point on a circumference… 
- going towards the center with constant speed
- different agent speeds: 8–12 frame/sec
When two agents get close:
- the agent with greater speed passes 
- the other stops

Trajectories:
- Past: 3,2 sec
- Future: 4,8 sec

Agent 0

Agent 1

Agent 2

Agent 3

Past
Future

Suited for learning algorithmic tasks in 
trajectory prediction

31

GROUND-TRUTH SMEMO

With 4 agents

Agent 0

Agent 1

Agent 2

Agent 3

Agent 0

Agent 2

Agent 3

Learning in simple scenarios – SSA dataset

Agent 1

32
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Memory Key

Addressing 
Strength

Shared
Memory

Cosine 
Similarity

Read/Write
Head Softmax

Softplus

Addressing with attention

g
Managing to slow down predictions when
social interactions occur

MANN versus GRU

Agent speeds
Agent 0 Agent 1

Agent 2 Agent 3

33

GROUND-TRUTH SMEMO

With 7 agents

Scaling to more crowdy scenarios - SSA dataset

A1 A2
A3

A4

A5

A6

A7

A1 A2
A3

A4

A5

A6

A7
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OURS   

OURS   

Comparative table – SSA dataset

Past
Future

Prediction

Instant  T

Present t

FDE Final Displacement Error

Evaluation metrics

ADE Average Displacement Error

Kendall: agents’ order passing through the center

Agent 0

Agent 1

Agent 2

Agent 3SMEMO

SMEMO
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Explainability

Agent Controllers’ 
reading attention

Agent-wise partitioned memory

Memory-based future forecasting provides explainability
Explains which information is relevant to the the task
4 agents with different speeds, 60 seconds

A

B

C

D
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Agent C is slightly faster than the other agents
Agent D is faster than its closest agent A and faster than B
Agent A is slightly faster than its closest agent B but
had to stop so It is late wrt B

A

B

C

D

Agent D focuses on Agent C

Agent A focuses on Agent D
Agent C focuses on Agent D

Agent B gives some attention to Agent A

From 0 to 31

37

A

B

C

D

Agent A, C, D read empty space almost everywhere
so don’t stop

Agent B gives some focus on Agent A

From 31 to 42

Agent C and D already passsed through the center so 
no collision can occur
A is faster than its closest Agent B although being late

38



05/07/22

20

A

B

C

D

All Agents safely passed through the center 

From 31 to 42

All Agents read empty space

39

Conclusions

Exploits an episodic working memory to manipulate observations and reason about social interactions

Multimodality: each read controller can generate a different prediction trajectory.
Real trajectories are enforced by the variety loss

Memory: maintains updated internal state indefinitely

Information filtering: model parameters are trained from relevant instances only, avoiding irrelevant
information that can disturbe the performance

Explainability: by checking which information items in memory the reading controller focuses on
we can understand the task-relevant information. Suitable for safety-sensitive applications
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softmax, all attentions sum up to 1 at each timestep. As a conse-
quence, when no relevant social interaction is present, attentions
for agent i over the others will have similar values that oscillate
around atti(j) = 1/(N � 1), i.e. one divided by the number of
agents in the scene excluded i. In Fig. 11 and Fig. 12, to predict the
future for each agent, SMEMO can focus only on the remaining
two agents, since a total of three agents is present in the social
context. Therefore, an attention of 0.5 on both agents indicates no
relevant interaction. In such examples, when the attention for an
agent over another increases above 0.5, SMEMO has considered
such agent relevant for determining the current trajectory and has
taken it into account to generate the prediction.

In the example from the SSA dataset (Fig. 11), modeling
social interactions is necessary to perform adequate predictions.
The agents have to pass through the center of the circle with a
precise order, depending on their speed and following the rule
described in Sec. 5.1.1: first agent 2, then agent 0 and at last agent
1. When agents get close to each other, i.e. when they need to
obey social interaction rules, we can observe spikes in SMEMO’s
reading attentions. At timestep 35, agent 0 and 1 both have a very
high attention value on agent 2 in order to predict a halt in their
prediction. Instead, agent 2 has equal attention on both agents
since no counter action is required for the fastest agent, that can
proceed along its trajectory, unaffected by the others. As soon as
agent 2 has crossed the center, SMEMO resumes agent 0 while
agent 1 still waits. This can be seen at instant 41, when agent 1
has a very high level of attention on agent 0, since it must wait for
it to pass before advancing.

A similar analysis can be carried out for the ETH/UCY exam-
ple (Fig. 12). Agents 0 and 1 are in a state of possible collision
due to their speed and direction. By observing the attention values
at timestep 10 and 12, it can be seen that SMEMO focuses on the
second to predict the first and vice-versa, ignoring the behavior
of agent 2 which is not relevant in such interaction. On the other
hand, when predicting agent 2’s future, there is no relevant peak
of attention meaning that its future can be determined without any
social information.

6 CONCLUSIONS

We present SMEMO, a neural network augmented with a Social
MEMOry Module, dealing with the challenging task of multi-
modal trajectory modeling in social contexts. The algorithmic
nature of our approach is able to learn the set of social rules yield-
ing behaviors of pedestrian during their interaction. We created
a synthetic dataset to highlight the complex nature of social rule
modeling. Finally, we report state-of-the art results for SMEMO
on on ETH/UCY and SDD datasets. As a byproduct, we show that
SMEMO can provide explainable predictions by design, simply
looking at attention weights of its memory reading controllers.
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second to predict the first and vice-versa, ignoring the behavior
of agent 2 which is not relevant in such interaction. On the other
hand, when predicting agent 2’s future, there is no relevant peak
of attention meaning that its future can be determined without any
social information.
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nature of our approach is able to learn the set of social rules yield-
ing behaviors of pedestrian during their interaction. We created
a synthetic dataset to highlight the complex nature of social rule
modeling. Finally, we report state-of-the art results for SMEMO
on on ETH/UCY and SDD datasets. As a byproduct, we show that
SMEMO can provide explainable predictions by design, simply
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Barwińska, S. G. Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou
et al., “Hybrid computing using a neural network with dynamic external
memory,” Nature, vol. 538, no. 7626, pp. 471–476, 2016.

[13] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap,
“Meta-learning with memory-augmented neural networks,” in Interna-

tional conference on machine learning, 2016, pp. 1842–1850.
[14] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and

W. Samek, “On pixel-wise explanations for non-linear classifier decisions

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Fig. 12. Explainability analysis of an example from ETH/UCY. Left : agent
trajectories at timesteps 10 and 12. Past and future up to the current
timestep are shown with a dashed and thick line respectively. The thin
line represents the complete trajectory up to the final prediction horizon
(timestep 20). Right : SMEMO’s reading attention for each agent on the
others for each timestep.

by layer-wise relevance propagation,” PloS one, vol. 10, no. 7, p.
e0130140, 2015.

[15] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in Proceedings of the IEEE international

conference on computer vision, 2017, pp. 618–626.
[16] F. Giuliari, I. Hasan, M. Cristani, and F. Galasso, “Transformer networks

for trajectory forecasting,” arXiv preprint arXiv:2003.08111, 2020.
[17] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. Torr, and M. Chandraker,

“Desire: Distant future prediction in dynamic scenes with interacting
agents,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2017, pp. 336–345.
[18] S. Srikanth, J. A. Ansari, S. Sharma et al., “Infer: Intermediate represen-

tations for future prediction,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS 2019), 2019.
[19] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett,

D. Wang, P. Carr, S. Lucey, D. Ramanan et al., “Argoverse: 3d tracking
and forecasting with rich maps,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2019, pp. 8748–8757.
[20] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krish-

nan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal dataset
for autonomous driving,” in Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, 2020, pp. 11 621–11 631.
[21] N. Shafiee, T. Padir, and E. Elhamifar, “Introvert: Human trajectory

prediction via conditional 3d attention,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2021, pp.
16 815–16 825.

[22] Y. Ma, X. Zhu, S. Zhang, R. Yang, W. Wang, and D. Manocha,
“Trafficpredict: Trajectory prediction for heterogeneous traffic-agents,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
2019, pp. 6120–6127.

[23] Y. Yuan, X. Weng, Y. Ou, and K. Kitani, “Agentformer: Agent-aware
transformers for socio-temporal multi-agent forecasting,” arXiv preprint

arXiv:2103.14023, 2021.
[24] N. Deo and M. M. Trivedi, “Multi-modal trajectory prediction of sur-

rounding vehicles with maneuver based lstms,” in 2018 IEEE Intelligent

Vehicles Symposium (IV). IEEE, 2018, pp. 1179–1184.
[25] M. Lisotto, P. Coscia, and L. Ballan, “Social and scene-aware trajectory

prediction in crowded spaces,” in Proceedings of the IEEE International

Conference on Computer Vision Workshops, 2019, pp. 0–0.
[26] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Trajectron++:

Multi-agent generative trajectory forecasting with heterogeneous data for
control,” arXiv preprint arXiv:2001.03093, 2020.

[27] H. Zhao, J. Gao, T. Lan, C. Sun, B. Sapp, B. Varadarajan, Y. Shen,
Y. Chai, C. Schmid, C. Li, and D. Anguelov, “Tnt: Target-driven
trajectory prediction,” ArXiv, vol. abs/2008.08294, 2020.

[28] P. Dendorfer, A. Osep, and L. Leal-Taixe, “Goal-gan: Multimodal trajec-
tory prediction based on goal position estimation,” in Proceedings of the

Asian Conference on Computer Vision (ACCV), November 2020.
[29] K. Mangalam, H. Girase, S. Agarwal, K.-H. Lee, E. Adeli, J. Malik, and

A. Gaidon, “It is not the journey but the destination: Endpoint condi-
tioned trajectory prediction,” arXiv preprint arXiv:2004.02025, 2020.

[30] Z. He and R. P. Wildes, “Where are you heading? dynamic trajectory pre-
diction with expert goal examples,” in Proceedings of the International

Conference on Computer Vision (ICCV), Oct. 2021.
[31] V. Kosaraju, A. Sadeghian, R. Martin-Martin, I. Reid, H. Rezatofighi,

and S. Savarese, “Social-bigat: Multimodal trajectory forecasting using
bicycle-gan and graph attention networks,” in Advances in Neural Infor-

mation Processing Systems, vol. 32. Curran Associates, Inc., 2019.
[32] L. Shi, L. Wang, C. Long, S. Zhou, M. Zhou, Z. Niu, and G. Hua, “Sgcn:

Sparse graph convolution network for pedestrian trajectory prediction,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2021, pp. 8994–9003.
[33] P. Kothari, B. Sifringer, and A. Alahi, “Interpretable social anchors for

human trajectory forecasting in crowds,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2021, pp.
15 556–15 566.

[34] Y. Huang, H. Bi, Z. Li, T. Mao, and Z. Wang, “Stgat: Modeling
spatial-temporal interactions for human trajectory prediction,” in 2019

IEEE/CVF International Conference on Computer Vision (ICCV), 2019,
pp. 6271–6280.

[35] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

computation, vol. 9, no. 8, pp. 1735–1780, 1997.
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Fig. 12. Explainability analysis of an example from ETH/UCY. Left : agent
trajectories at timesteps 10 and 12. Past and future up to the current
timestep are shown with a dashed and thick line respectively. The thin
line represents the complete trajectory up to the final prediction horizon
(timestep 20). Right : SMEMO’s reading attention for each agent on the
others for each timestep.
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softmax, all attentions sum up to 1 at each timestep. As a conse-
quence, when no relevant social interaction is present, attentions
for agent i over the others will have similar values that oscillate
around atti(j) = 1/(N � 1), i.e. one divided by the number of
agents in the scene excluded i. In Fig. 11 and Fig. 12, to predict the
future for each agent, SMEMO can focus only on the remaining
two agents, since a total of three agents is present in the social
context. Therefore, an attention of 0.5 on both agents indicates no
relevant interaction. In such examples, when the attention for an
agent over another increases above 0.5, SMEMO has considered
such agent relevant for determining the current trajectory and has
taken it into account to generate the prediction.

In the example from the SSA dataset (Fig. 11), modeling
social interactions is necessary to perform adequate predictions.
The agents have to pass through the center of the circle with a
precise order, depending on their speed and following the rule
described in Sec. 5.1.1: first agent 2, then agent 0 and at last agent
1. When agents get close to each other, i.e. when they need to
obey social interaction rules, we can observe spikes in SMEMO’s
reading attentions. At timestep 35, agent 0 and 1 both have a very
high attention value on agent 2 in order to predict a halt in their
prediction. Instead, agent 2 has equal attention on both agents
since no counter action is required for the fastest agent, that can
proceed along its trajectory, unaffected by the others. As soon as
agent 2 has crossed the center, SMEMO resumes agent 0 while
agent 1 still waits. This can be seen at instant 41, when agent 1
has a very high level of attention on agent 0, since it must wait for
it to pass before advancing.

A similar analysis can be carried out for the ETH/UCY exam-
ple (Fig. 12). Agents 0 and 1 are in a state of possible collision
due to their speed and direction. By observing the attention values
at timestep 10 and 12, it can be seen that SMEMO focuses on the
second to predict the first and vice-versa, ignoring the behavior
of agent 2 which is not relevant in such interaction. On the other
hand, when predicting agent 2’s future, there is no relevant peak
of attention meaning that its future can be determined without any
social information.

6 CONCLUSIONS

We present SMEMO, a neural network augmented with a Social
MEMOry Module, dealing with the challenging task of multi-
modal trajectory modeling in social contexts. The algorithmic
nature of our approach is able to learn the set of social rules yield-
ing behaviors of pedestrian during their interaction. We created
a synthetic dataset to highlight the complex nature of social rule
modeling. Finally, we report state-of-the art results for SMEMO
on on ETH/UCY and SDD datasets. As a byproduct, we show that
SMEMO can provide explainable predictions by design, simply
looking at attention weights of its memory reading controllers.
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