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Session 1-Introduction (1h)

Whatis domain adaptation and why do we need it?
The domain shift issue in vision

Domain shift - formal statement

Common Domain Adaptation scenarios

Classical methods and benchmarks

Session 2 - Recent Methods (Deep learning) (1h)

Adversarial DA

Image translation methods
Feature alignment/confusion
Batchnorm-based methods
Pseudo-labeling (TODO)




Outline

Session 4 - Domain generalization (1h)

A more challenging problem

Single source domain generalization
Other issues

Conclusions




Session 4

Domain Generalization




Problem formulation

Each dataset carries its own bias [1],and models trained on it result
biased, too.

-

PAVIS

[]] A. Torralba and A Efros.Unbiased Look at Dataset Bias. CVPRI1L



Domain adaptation

Domain adaptation has been the main strategyto bridge the gap between source
and target distributions.

Assumptions:we can fix a prioria target distribution and we are able to sample
from it.

Source
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Domain adaptation

Domain adaptation has been the main strategyto bridge the gap between source
and target distributions.

Assumptions:we can fix a prioria target distribution and we are able to sample
from it.
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Generalising to unseen domains

Goal:generalizing to unseen domains using data from a single
source.

I




Domain Generalization (DG)

Domain Adaptation: Domain Generalization:

Given a one or multiple source domains for which we have Given a set of multiple labeled source domains, we
labeled data, we want to find a model able to generalize to | want to find a model able to generalize to any target

a target domain for which few or no labeled data are domain for which no data are available during training:

available during training.
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Generalising to unseen domains

Baseline Model Domain Adaptation
Training data: {X;, Y }~Ds Training data: {Xs, Ys}~D, {Xt13~Dey

Our proposal
Training data: {X,, Y }~Dq

Volpietal, Generalizing to Unseen Domains via Adversarial Data Augmentation, NeurlIPS 2018




Locating the work ...

Robust statistics

min B,y {1y, s w)) |

N

min max E:c,ywp’ {l(ya f(.ZE, w))}

w  p’ st. A('p,,psource)g(s

PAVIS

Volpietal, Generalizing to Unseen Domains via Adversarial Data Augmentation, NeurlIPS 2018




Locating the work ...

Defense against adversarialsamples

“panda” “gibbon”

57.7% confidence Q0 3% confidence

Goodfellowet al., Explaining and harnessing Adversarial Samples, ICLR15
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Locating the work ...

Defense against adversarialsamples

4 )
Conv, pool, batchnorm J { Softmax I 5

layers, etc.
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Goodfellowet al.,, Explaining and harnessing Adversarial Samples, ICLR15
Madry et al, Toward Deep Learning Models Resistant to Adversarial Attacks, ICLR18




Locating the work ...

Defense against adversarialsamples (pic from Madry et al.)

[ ...squares

.. g..

PAVIS

Goodfellowet al, Explaining and harnessing Adversarial Samples, ICLR15
Madry et al.,, Toward Deep Learning Models Resistant to Adversarial Attacks, ICLR18




Locating the work ...

Defense against adversarialsamples

-

Wasserstein ball

\_

Conv, pool, batchnorm
layers, etc.
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Locating the work ...

Defense against perturbations in the feature space, which —in high
capacity networks —approximates a semantic space

4 ) m
v
Conv, pool, batchnorm {Softmax I .

X : layers, etc. ~— Y

Wasserstein ball
N\ )

PAVIS

Johnson et al,, Perceptual Losses for Real-Time Style Transfer and Super-Resolution, ECCV16
Dosovitskiy A.and Brox T., Generating Images with Perceptual Similarity Metrics Based on Deep Networks, NIPS16




Method formulation (from robust statistics)

Distributionally robust optimization

111116}1181263 sup{Ep[l(0;: (X,Y))] : Do(P, Py) < p}
€€ P
We consider the Lagrangian relaxation [17]

11111{;)1161%)11263 sup{Ep[l(0; (X,Y))] —vDo(P, Py)}
P

Defining the surrogate loss ¢,

We finally have:

Voo, (0 (z0,y0)) = Vel(0; (27, y0)) PAVIS

Volpietal, Generalizing to Unseen Domains via Adversarial Data Augmentation, NeurlIPS 2018 O N




Method formulation (from robust statistics)

Distributionally robust optimization

nmgél})nze sup {Ep[l(6;(X,Y))]: Do(P, Py) < p}

We consider the Lagrangian relaxation [17]

11111;1618126 sup {Ep[t(0;(X,Y))] —vDg(P, Py)}

Defining the surrogate loss ¢,

We finally have: Computed by gradient ascent over
the surrogate loss. Cis a distance

VQGS’}/ (9~ (m[]j yO)) — VQP(Q. yo)) Tf“ = argmax,cy {F(Q? (33,3}0)) o ﬁ/'CQ((mayO)a (m{]a yO))}g

[I7]1Sinha et al., Certifying Some Distributional Robustness with Principled Adversarial Training, ICLR 2018



“Long-story short”

vﬁ'@’y(e; (ajOa yO)) — v9€(93 (*/E;a yO))




“Long-story short”

Gradient ascent

Voo, (0: (w0, y0)) = Vol(0:(23) o))




“Long-story short”

Vol(0; (a:f;

%

v@@’)’(@? (‘/an yO)) — VQE(Q? (‘/Ej}r{? yO)) PAVIS
Gradient descent e




Adversarial Data Augmentation

/Algorithm:

Input: model 6 and dataset D
For K iterations:

1. Update 6 via stochastic gradient descent

~

2. Generate perturbed samples and append them to D

\Update 6 via stochastic gradient descent until convergence/




Adversarial Data Augmentation




The ‘Unknown-domain”problem

We dont know the target domain, thus it is difficult to set p

Our proposal
Training data: {X,, Y;}~Dg




The ‘Unknown-domain”problem

We dont know the target domain, thus it is difficult to set p
- ENSEMBLE APPROACH

Our Proposal

u Training data: {X;, Y;}~Ds
- Ensemble
ul I , ~~~~~~~

_"
___________
e

W (x) = ar maxmax@“ 0%:
( ) 1§u<s 1<j<k ( f )

softmax o .




Results —Digits
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Results —Digits
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Results
SYNTHIA dataset
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Wrapping up ...




To recap ..a standard situation

e Your data(set), your model

(your favorite neuralnet)

O PyTorch
F' TensorFlow

Deng etal, CVPR 2009




But then..corruption (lackof)robustness

BENCHMARKING NEURAL NETWORK ROBUSTNESS  Giitersioy of California, Berkeley
TO COMMON CORRUPTIONS AND PERTURBATIONS  Thomas Dietterich

Oregon State University

Gaussian Noise Shot Noise Impulse Noise  Defocus Blur Frosted Glass Blur

‘

Clean Error
24.2%

17.90%

23.9%

21.2%

22.47%

25.41%

24.5%

23.85%

Hendrycks & Detterich, Benchmarking Neural Networks Robustness to Common Corruptions and Perturbations, ICLR 2019




But then ...texture bias in DNNs

Robert Geirhos Patricia Rubisch

IM AGEN ET-TR A INED C N N S A RE BI A S ED T Ow AR D S University of Tiibingen & IMPRS-IS University of Tiibingen & U. of Edinburgh
TEXTURE; INCREASING SHAPE BIAS IMPROVES Slr::grl;x[;%ﬁﬁzcu & IMPRS-IS guﬁi?éﬁyiﬁﬁﬁngm
ACCURACY AND ROBUSTNESS Usivesiw of Tdbingen Untverit ot Tabingen

(a) Texture image (b) Content image (c) Texture-shape cue conflict
81.4%  Indian elephant 71.1%  tabby cat 63.9%  Indian elephant
10.3% indri 17.3% grey fox 26.4% indri
8.2% black swan 3.3% Siamese cat 9.6% Dblack swan

Geirhos et al,ImageNet-trained CNNs are biased towards texture;increasing shape bias improves accuracyand robustness,ICLR 2019




But then ...dataset bias/domain shift

e Each dataset carries its own b/as,and models trained on it result b/ased, too.

-

Training set Test set

PAVIS

Torralba A.and Efros A. A, Unbiased Look at Dataset Bias, CVPR 2011




But then ...dataset bias/domain shift

e Each datasetcarries its own b/as,and models trained on it result b/ased, too.

ﬂ'aining set Representation space
ClassO Class 1 o,
Q@0 A A / 1
Feature P
Q@@ |AA Teamng 7 ¢

oo A4

Test set Representation space

Ragonesietal,Learning Unbiased Representations via Mutual Information Backpropagation, CVPRWorkshops 2021




But then ..adversarialsamples

EXPLAINING AND HARNES SING Ian J. Goodfellow, Jonathon Shlens & Christian Szegedy
ADVERSARIAL EXAMPLES Google Inc.. Mountain View. CA

+.007 X —
T +
¥ esign(VJ (6, ,y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence




Modern machine learning models

Something to keep in mind (a@among many other things)

o Data greedy

e Vulnerabilities against domain shifts

e Datasetbias

e Human bias

e Vulnerabilities against adversarialsamples




Problem formulation(s)

Multi-source Domain Generalization

Empirical Risk Minimization
Training data

{x! y}wpsource

(sim2real)

Unsupervised Domain Adaptation
Training data

{(x, ¥)}~Psource {x}~ Ptarget

4 Target

Source

Training data
{(xr Y, d)}wpsource

[NIEN

Source,

Sourcey .ﬂ

Source,

(sim2real)
(corruption robustness)

Single-source Domain Generalization

Fair/Unbias representations
Training data
{(x, ¥, 8)}~Psource

(s is a sensitive attribute)
(s is a biased attribute)

Training data
{(xr y)}wpsource

Ve

Source




Thanks for the attention
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