

AIDA Course

Domain Adaptation and Generalization

Vittorio Murino, Pietro Morerio

Credits

- Tutorial by Pietro Morerio and Massimiliano Mancini
- Some slides are courtesy of Prof. Elisa Ricci and Dr. Riccardo Volpi
- Other material is referred in the corresponding slides

Outline

Session 1 - Introduction (lh)

- What is domain adaptation and why do we need it?
- The domain shift issue in vision
- Domain shift formal statement
- Common Domain Adaptation scenarios
- Classical methods and benchmarks

Session 2 - Recent Methods (Deep learning) (lh)

- Adversarial DA
- Image translation methods
- Feature alignment/confusion
- Batchnorm-based methods
- Pseudo-labeling (TODO)

Outline

Session 3 - Beyond Domain Adaptation (lh)

- Source Free UDA (TODO)
- Domain Discovery
- Continuous DA
- Predictive DA
- Validation issues in Unsupervised Domain adaptation

Session 4 - Domain generalization (lh)

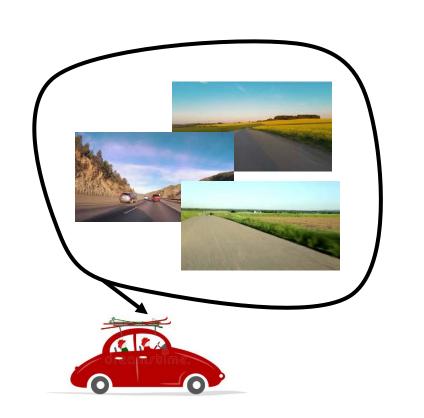
- A more challenging problem
- Single source domain generalization
- Other issues
- Conclusions

Session 4

Domain Generalization

Problem formulation

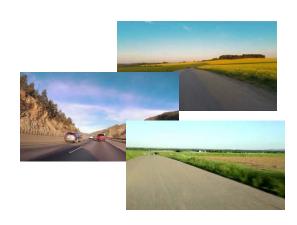
Each dataset carries its own bias [1], and models trained on it result biased, too.



Domain adaptation has been the main strategy to bridge the gap between source and target distributions.

Assumptions: we can fix *a priori* a target distribution and we are able to sample from it.

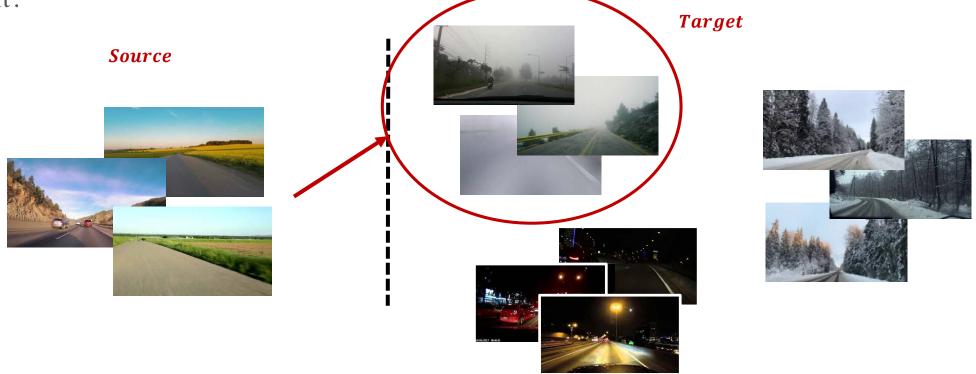
Source



Domain adaptation has been the main strategy to bridge the gap between source and target distributions.

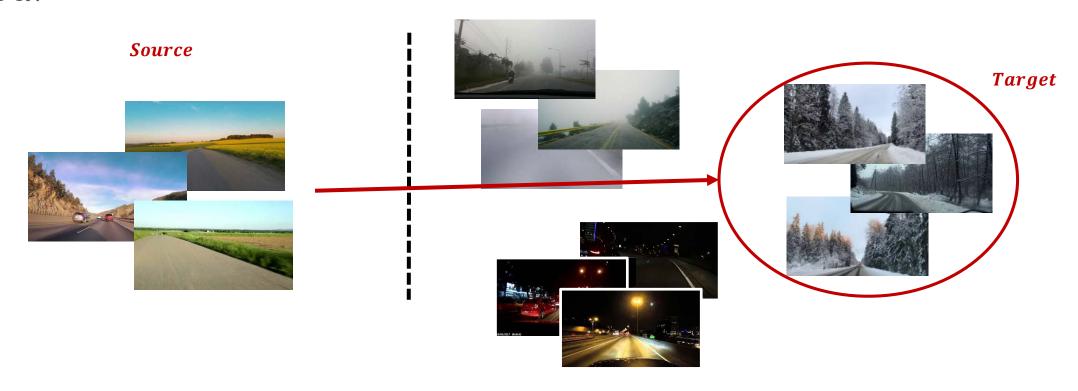
Assumptions: we can fix a prioria target distribution and we are able to sample

from it.



Domain adaptation has been the main strategy to bridge the gap between source and target distributions.

Assumptions: we can fix *a priori* a target distribution and we are able to sample from it.



Domain adaptation has been the main strategy to bridge the gap between source and target distributions.

Assumptions: we can fix *a priori* a target distribution and we are able to sample from it.

Generalising to unseen domains

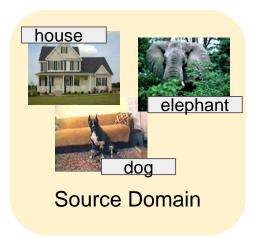
Goal: generalizing to unseen domains using data from a single source.



Domain Generalization (DG)

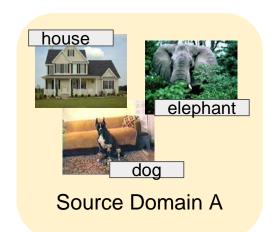
Domain Adaptation:

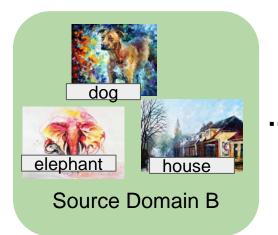
Given a one or multiple source domains for which we have labeled data, we want to find a model able to generalize to a target domain for which few or no labeled data are available during training.



Domain Generalization:

Given a set of multiple labeled source domains, we want to find a model able to generalize to any target domain for which no data are available during training:

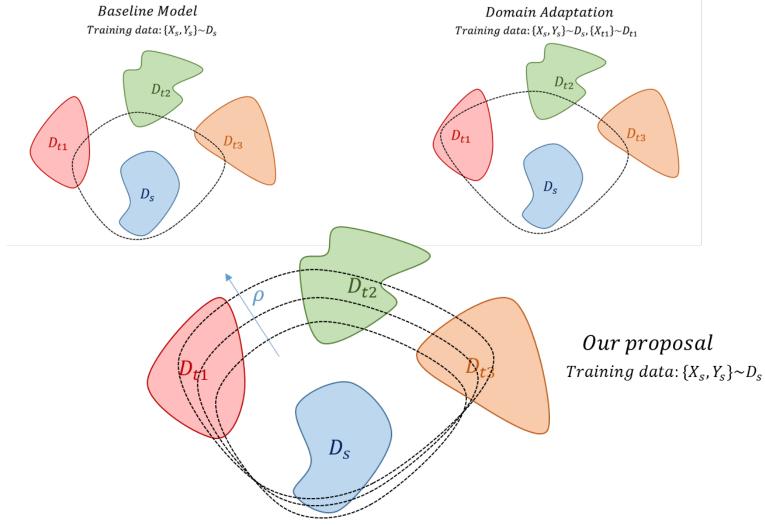




Training

Test

Generalising to unseen domains



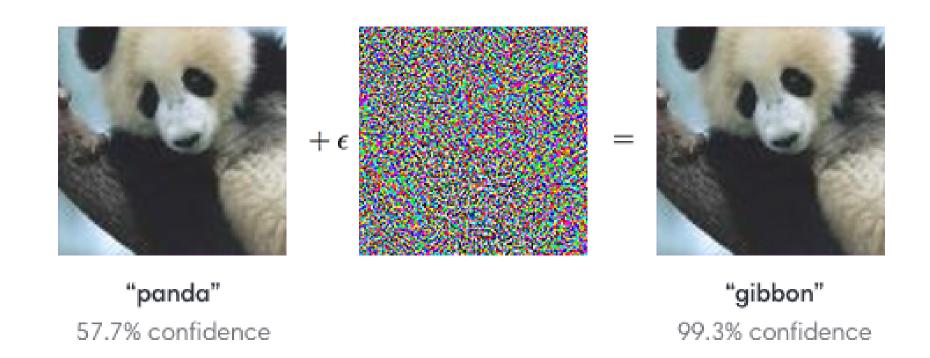
Volpi et al., Generalizing to Unseen Domains via Adversarial Data Augmentation, NeurIPS 2018

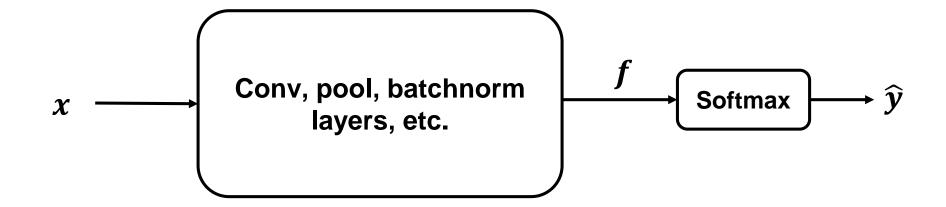
Robust statistics

$$\min_{w} E_{x,y \sim p'} \Big\{ l(y, f(x; w)) \Big\}$$

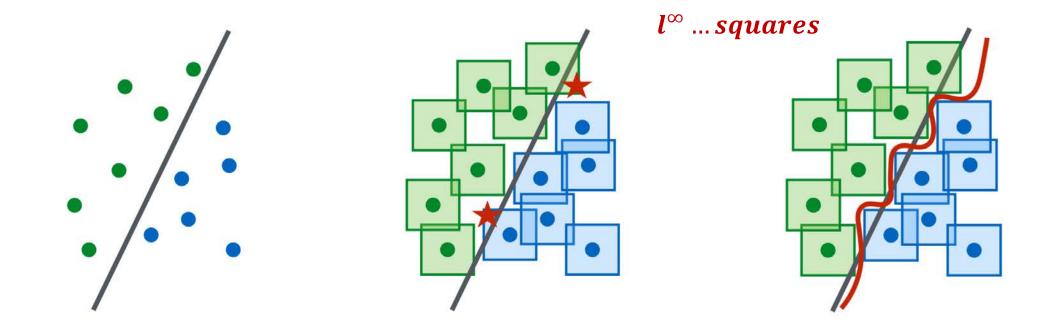


$$\min_{w} \max_{p' \text{ st. } \Delta(p', p_{source}) \le \delta} E_{x, y \sim p'} \Big\{ l(y, f(x; w)) \Big\}$$





Defense against adversarial samples (pic from Madry et al.)



Defense against perturbations in the feature space, which -in high capacity networks -approximates a semantic space

Method formulation (from robust statistics)

Distributionally robust optimization

$$\underset{\theta \in \Theta}{\text{minimize}} \sup_{P} \left\{ \mathbb{E}_{P}[\ell(\theta; (X, Y))] : D_{\theta}(P, P_{0}) \leq \rho \right\}$$

We consider the Lagrangian relaxation [17]

$$\underset{\theta \in \Theta}{\text{minimize}} \sup_{P} \left\{ \mathbb{E}_{P}[\ell(\theta; (X, Y))] - \gamma D_{\theta}(P, P_{0}) \right\}$$

Defining the surrogate loss ϕ_{ν}

We finally have:

$$\nabla_{\theta} \phi_{\gamma}(\theta; (x_0, y_0)) = \nabla_{\theta} \ell(\theta; (x_{\gamma}^{\star}, y_0))$$

Method formulation (from robust statistics)

Distributionally robust optimization

$$\underset{\theta \in \Theta}{\text{minimize}} \sup_{P} \left\{ \mathbb{E}_{P}[\ell(\theta; (X, Y))] : D_{\theta}(P, P_{0}) \leq \rho \right\}$$

We consider the Lagrangian relaxation [17]

$$\underset{\theta \in \Theta}{\text{minimize}} \sup_{P} \left\{ \mathbb{E}_{P}[\ell(\theta; (X, Y))] - \gamma D_{\theta}(P, P_{0}) \right\}$$

Defining the surrogate loss ϕ_{γ}

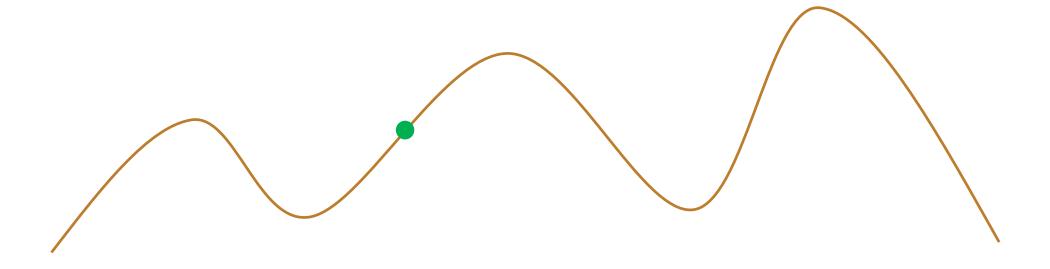
We finally have:

$$\nabla_{\theta} \phi_{\gamma}(\theta; (x_0, y_0)) = \nabla_{\theta} \ell(\theta; (x_{\gamma}^{\star}) y_0))$$

Computed by gradient ascent over the surrogate loss. c is a distance

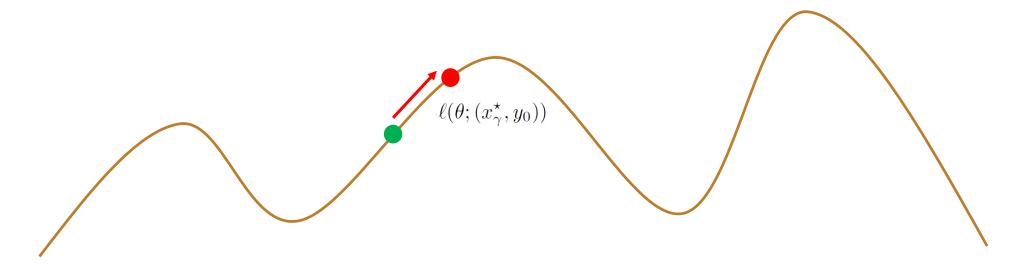
$$x_{\gamma}^{\star} = \operatorname{arg\,max}_{x \in \mathcal{X}} \left\{ \ell(\theta; (x, y_0)) - \gamma c_{\theta}((x, y_0), (x_0, y_0)) \right\}_{\text{US}}$$

"Long-story short"



$$\nabla_{\theta} \phi_{\gamma}(\theta; (x_0, y_0)) = \nabla_{\theta} \ell(\theta; (x_{\gamma}^{\star}, y_0))$$

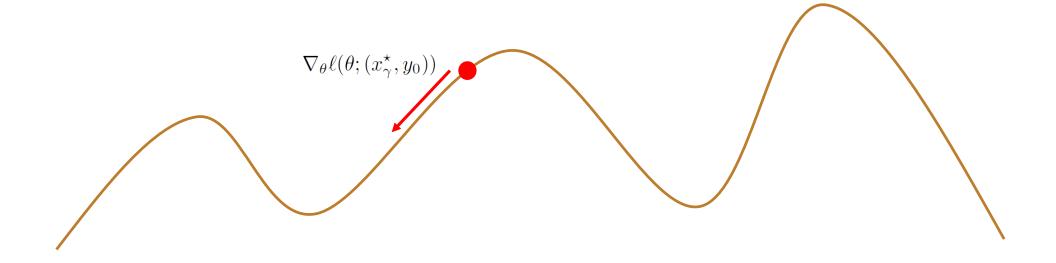
"Long-story short"



Gradient ascent

 $\nabla_{\theta} \phi_{\gamma}(\theta; (x_0, y_0)) = \nabla_{\theta} \ell(\theta; (x_{\gamma}^{\star}) y_0))$

"Long-story short"



$$\nabla_{\theta} \phi_{\gamma}(\theta; (x_0, y_0)) = \nabla_{\theta} \ell(\theta; (x_{\gamma}^{\star}, y_0))$$

Gradient descent

Adversarial Data Augmentation

Algorithm:

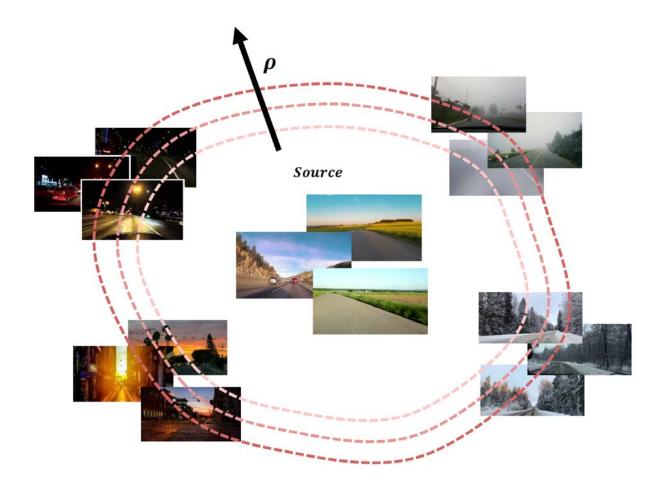
Input: model θ and dataset D

For K iterations:

- 1. Update θ via stochastic gradient descent
- 2. Generate perturbed samples and append them to D

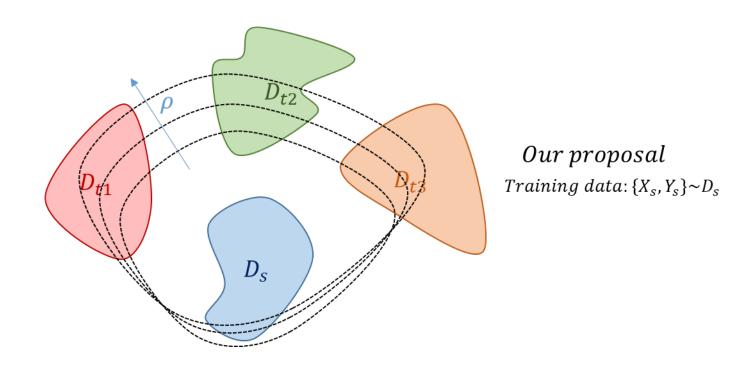
Update θ via stochastic gradient descent until convergence

Adversarial Data Augmentation



The 'unknown-domain' problem

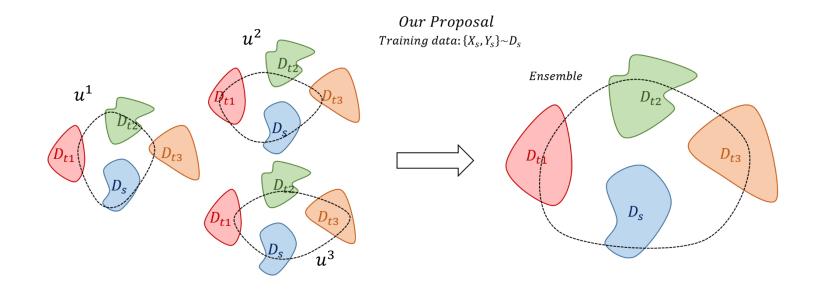
We don't know the target domain, thus it is difficult to set p



The 'unknown-domain' problem

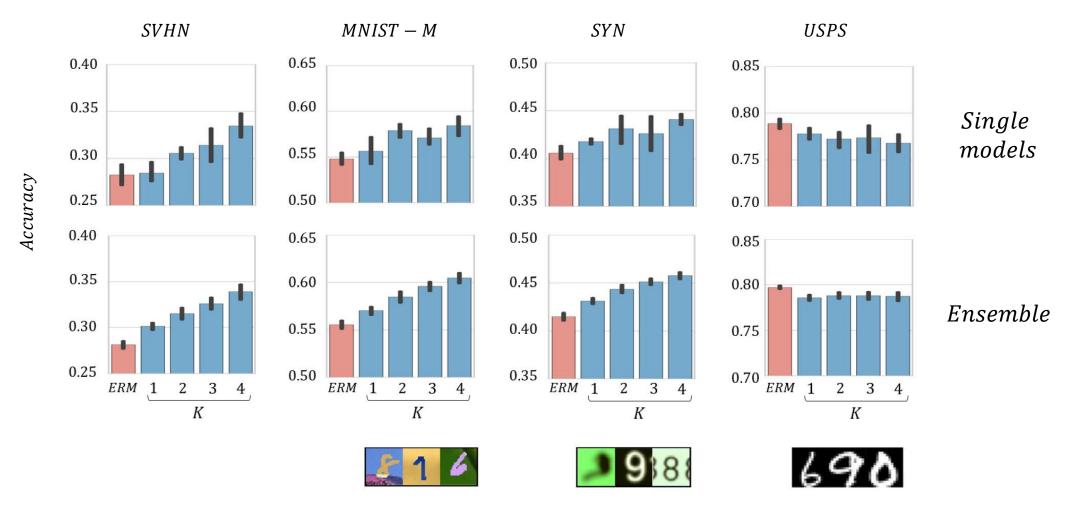
We don't know the target domain, thus it is difficult to set p

→ ENSEMBLE APPROACH



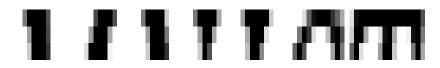
$$u^{\star}(x) := \underset{1 \leq u \leq s}{\arg \max} \underset{1 \leq j \leq k}{\max} \theta_{c,j}^{u \top} g(\theta_f^u; x)$$
s oftmax

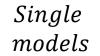
Results – Digits



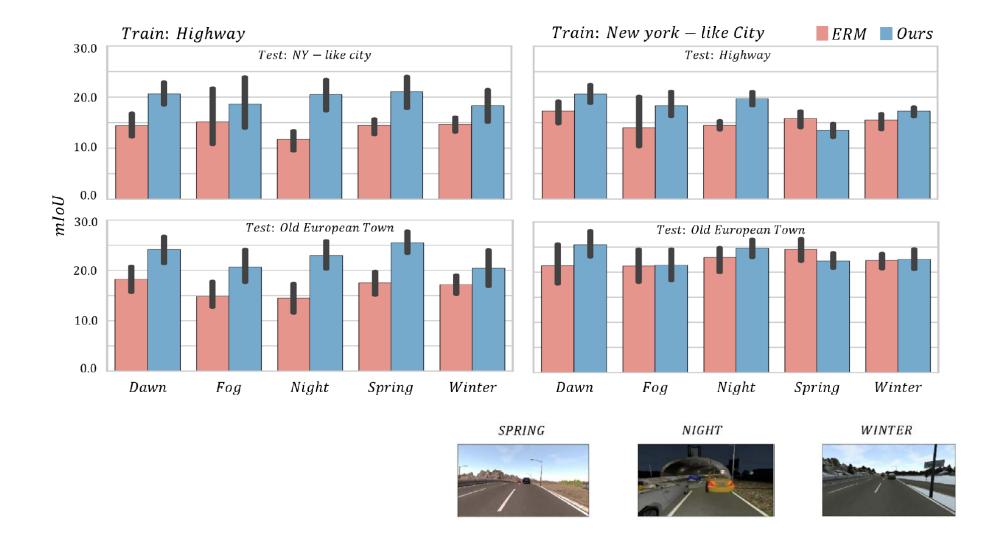
Results – Digits

Accuracy





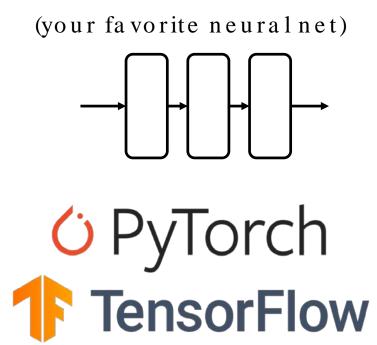
Results SYNTHIA dataset



Wrapping up ...

To recap ... a standard situation

• Your data (set), your model

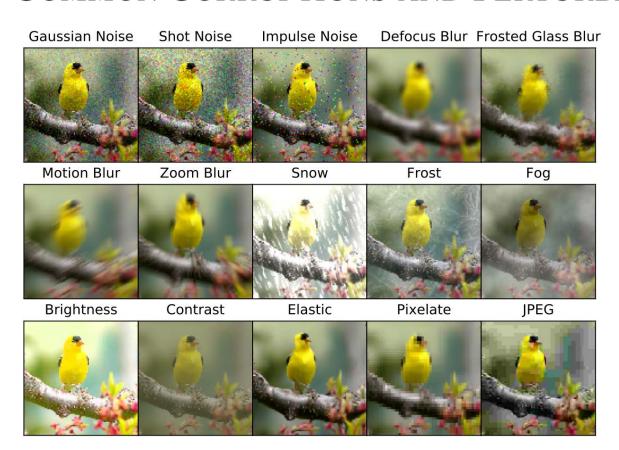


But then... corruption (lack of) robustness

BENCHMARKING NEURAL NETWORK ROBUSTNESS TO COMMON CORRUPTIONS AND PERTURBATIONS

Dan Hendrycks
University of California, Berkeley
Thomas Dietterich

Oregon State University



mCE	Clean Error
53.6%	24.2%
56.5%	17.90%
63%	23.9%
64.9%	21.2%
65.3%	22.47%
69.3%	25.41%
74.3%	24.5%
76.7%	23.85%

But then ... texture bias in DNNs

IMAGENET-TRAINED CNNs ARE BIASED TOWARDS TEXTURE; INCREASING SHAPE BIAS IMPROVES ACCURACY AND ROBUSTNESS

Robert Geirhos

University of Tübingen & IMPRS-IS

Claudio Michaelis

University of Tübingen & IMPRS-IS

Felix A. Wichmann* University of Tübingen Patricia Rubisch

University of Tübingen & U. of Edinburgh

Matthias Bethge*

University of Tübingen

Wieland Brendel* University of Tübingen

(a) Texture image

81.4% Indian elephant

10.3% indri

8.2% black swan

(b) Content image

71.1% tabby cat

17.3% grey fox

3.3% Siamese cat

(c) Texture-shape cue conflict

63.9% Indian elephant

26.4% indri

9.6% black swan

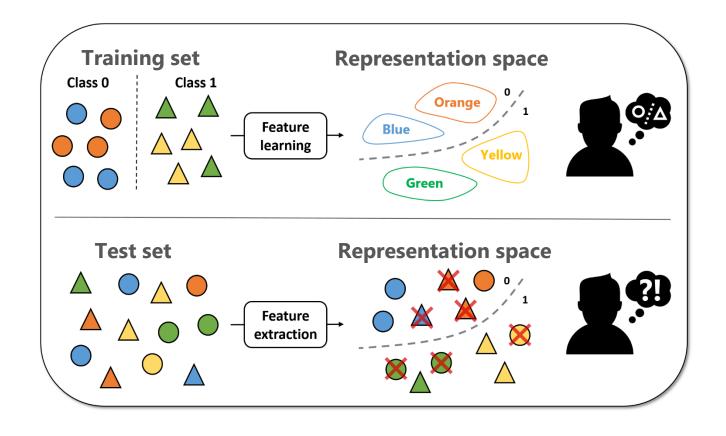
But then ... dataset bias/domain shift

• Each dataset carries its own bias, and models trained on it result biased, too.

Training set Test set

But then ... dataset bias/domain shift

• Each dataset carries its own bias, and models trained on it result biased, too.



But then ... adversarial samples

EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES

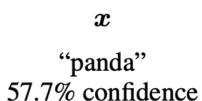
Ian J. Goodfellow, Jonathon Shlens & Christian Szegedy Google Inc., Mountain View, CA

 $+.007 \times$

 $\mathrm{sign}(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$

"nematode" 8.2% confidence

 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon"
99.3 % confidence



Modern machine learning models

Something to keep in mind (among many other things)

- Data greedy
- Vulnerabilities against domain shifts
- Dataset bias
- Human bias
- Vulnerabilities against adversarial samples

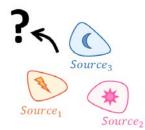
Problem formulation(s)

Empirical Risk Minimization

Training data $\{x, y\} \sim P_{source}$

Multi-source Domain Generalization

Training data $\{(x, y, d)\} \sim P_{source}$



(sim2real)

(corruption robustness)

Single-source Domain Generalization

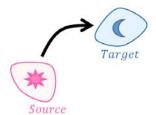
Training data $\{(x,y)\}\sim P_{source}$

(sim2real)

Unsupervised Domain Adaptation

Training data

$$\{(x,y)\}{\sim}P_{source}, \{x\}{\sim}\ P_{target}$$



Fair/Unbias representations

Training data

$$\{(x,y,s)\}\sim P_{source}$$

(s is a sensitive attribute) (s is a biased attribute)

Thanks for the attention

