

Dipartimento di **INFORMATICA**

Domain Adaptation and Generalization Vittorio Murino, Pietro Morerio

April 8, 2022

Session 3 Beyond Domain Adaptation

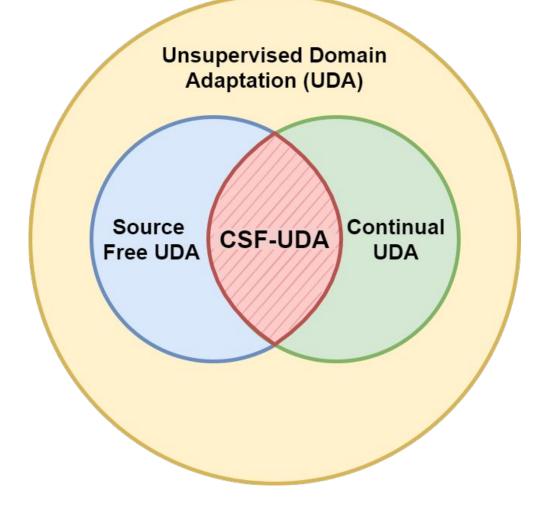
Outline

Session 3 - Beyond Domain Adaptation (1h)

- Source Free UDA
- Domain Discovery
- Continuous DA
- Predictive DA
- Validation issues in Unsupervised Domain adaptation

Source-free UDA

Continual & Source Free UDA

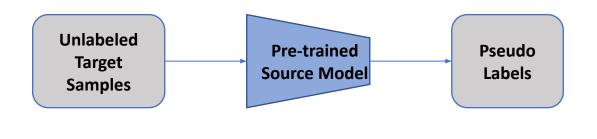


E.g. Pseudo-Labeling methods are source-free

Continual UDA: adapt to target with limited drop in performance on the source

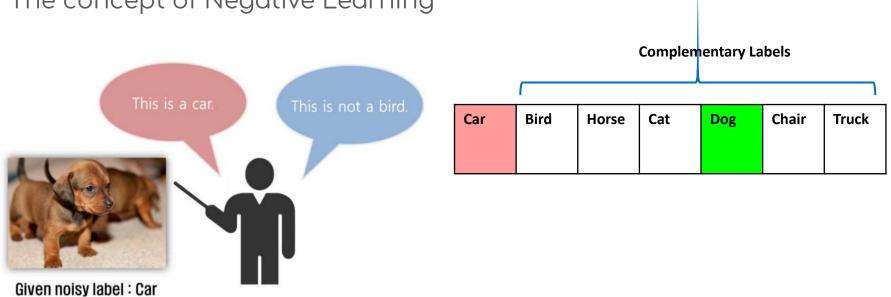
Challenge: how to limit the drop on Source if no samples are available?

Stage 1: Inferring Pseudo-Labels for the target set



Given noisy label : Car

Cleaning Noisy Labels by Negative Ensemble Learning for Source-Free Unsupervised Domain Adaptation Ahmed W, Morerio P, Murino V. WACV 2022

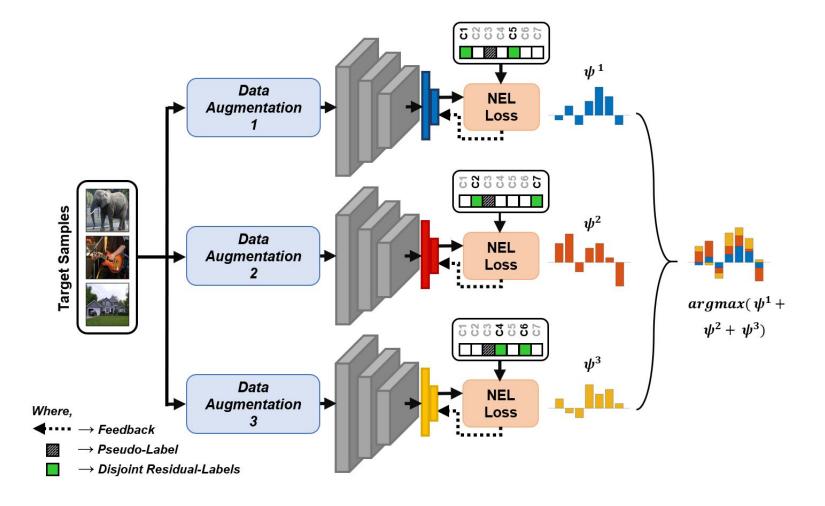


The concept of Negative Learning

$$\mathcal{L}_{NL}(\mathcal{D}_t) = -\mathbb{E}_{x_t \sim \mathcal{D}_t} \sum_{c=1}^C \mathbb{1}_{[c=\bar{y}]} \log(1-p^c)$$

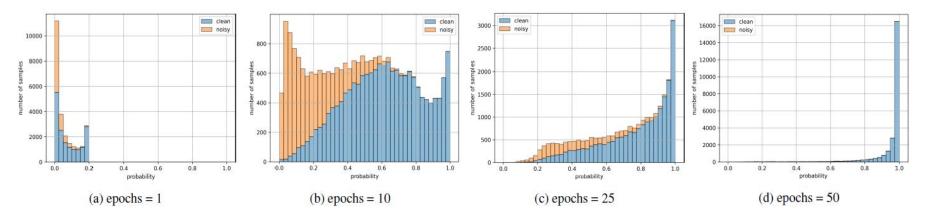
 $\bar{y}^j \text{ (randomly selected from } \{1,\ldots,C\} \setminus \{\tilde{y}\})$

Stage 2: Pseudo-Label Refinement

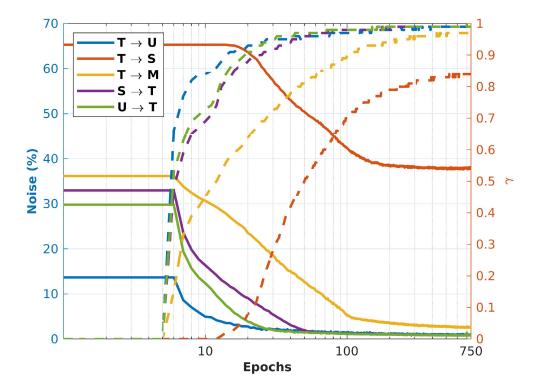


Adaptive Reassignment Rule

 $\gamma = \frac{\# \text{ of } HCS}{N_t} \qquad \tilde{p} > \alpha \text{ as High Confidence Samples (HCS)}$ $\tilde{y}^j(n) = \begin{cases} \operatorname{argmax}(\boldsymbol{p}^j), & \text{if } \tilde{p}^j < \gamma \\ \tilde{y}^j(n-1), & \text{otherwise} \end{cases} \forall j$



Results



Source Target		Si	ingle-So	urce UI	DA		Multi-Source UDA							
	Т	T	T	S	U	Avg.	5 × ×	M, S, D, U	<i>T,S, D,U</i>	<i>T,M, D,U</i>	<i>T,M,</i> <i>S,U</i>	<i>T,M,</i> <i>S,D</i>	Avg.	
	U	S	M	Т	Т	-		Т	М	S	D	U	_	
ATT [37]	229	52.8	94.0	85.8	<u>. 19</u>	<u>en</u> e	DCTN [43]		70.9	77.5	0 <u>10</u>		<u></u>	
SBA [36]	97.1	50.9	98.4	74.2	87.5	81.6	MM [33]	98.4	72.8	81.3	89.5	96.1	87.6	
MALT [28]	97.0	78.7	71.4	98.7	20.7	73.3	OML [24]	98.7	71.7	84.8	91.1	97.8	88.8	
MTDA [16]	94.2	52.0	85.5	84.6	91.5	81.5	CMSS [45]	99.0	75.3	88.4	93.7	97.7	90.8	
GPLR [29]	89.3	63.4	94.3	97.3	91.8	87.5		1001					• 5.5 × 6.1	
AdaPLR	97.4	61.6	95.4	99.2	99.2	90.6	9	99.1	95.5	89.6	90.0	97.8	94.4	

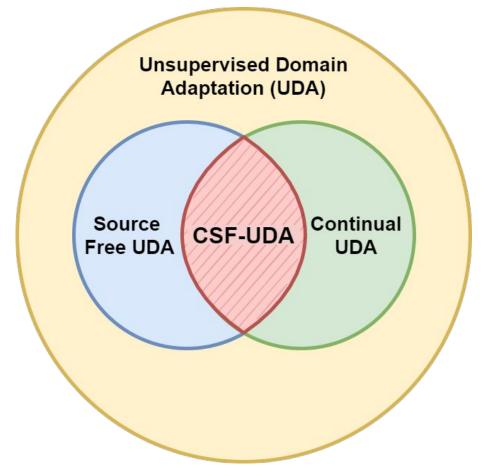
Table 1: Classification accuracy on Digit5 with a naive 3-layer CNN. Legend: T: MNIST, S: SVHN, U: USPS, M: MNIST-M, and D: Synthetic-Digits.

Source			Mult	i-Target	UDA	50		Multi-Source UDA						
		P			A		Ava		C, P, S	A,P,S	A,C,S	A,C,P	Aug	
Target	A	С	S	P	С	S	Avg.		A	С	Р	S	Avg	
1-NN*	15.2	18.1	25.6	22.7	19.7	22.7	20.7	DD [27]	87.5	87.0	96.6	71.6	85.7	
ADDA*	24.3	20.1	22.4	32.5	17.6	18.9	22.6	SIB [18]	88.9	89.0	98.3	82.2	89.6	
DSN*	28.4	21.1	25.6	29.5	25.8	24.6	25.8	OML [24]	87.4	86.1	97.1	78.2	87.2	
ITA*	31.4	23.0	28.2	35.7	27.0	28.9	29.0	RABN [42]	86.8	86.5	98.0	71.5	85.7	
KD [1]	24.6	32.2	33.8	35.6	46.6	57.5	46.6	JiGen [2]	84.8	81.0	97.9	79.0	85.7	
								CMSS [45]	88.6	90.4	96.9	82.0	89.5	
AdaPLR	80.1	76.1	25.9	96.0	82.8	49.8	68.4		90.8	89.5	98.8	85.2	91.1	

Table 2: Classification accuracy on PACS with ResNet18. * results are taken from [16]. Legend: A: Art-Painting, C: Cartoon, P: Photo, and S: Sketch.

Continual Source Free UDA

The adapted model suffers a drop in performance when tested back on the Source Domain



Continual Source Free Unsupervised Domain Adaptation Ahmed W, Morerio P, Murino V. *Under Review*

Continual Source Free UDA

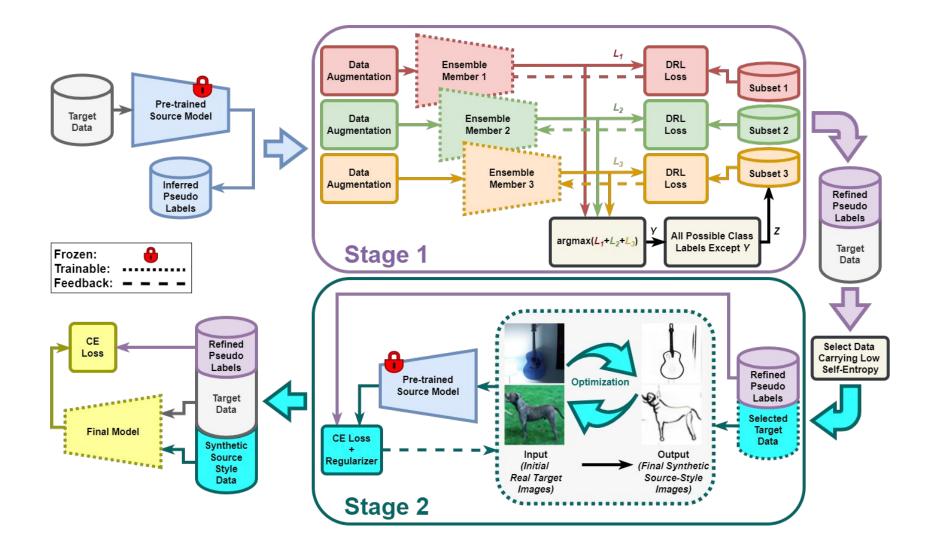
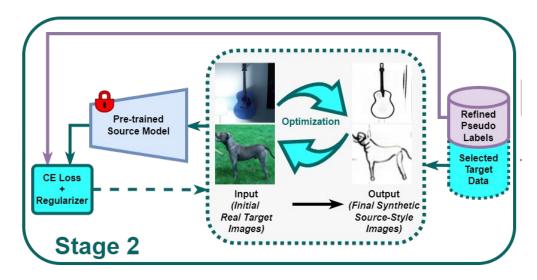


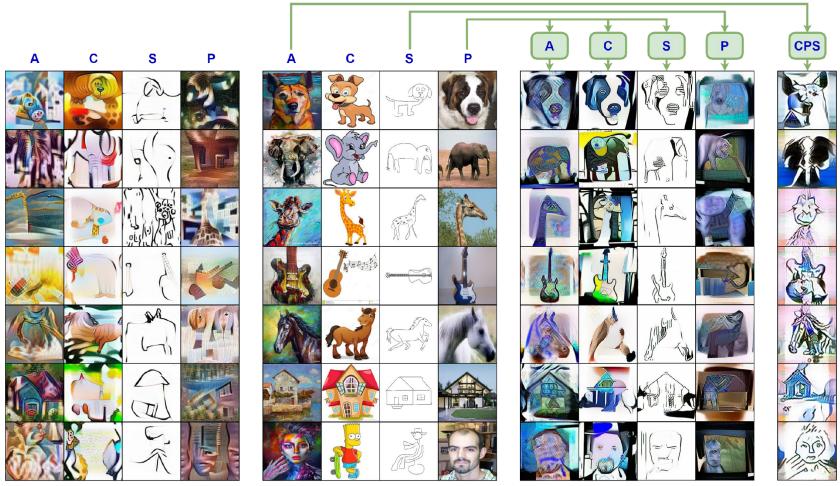
Image Synthesis for Continual Adaptation

Target Images are **directly optimized in the pixel space** in order to minimize the classification loss for the source model.



$$oldsymbol{x} \leftarrow oldsymbol{x} - \eta
abla_{oldsymbol{x}} \mathcal{L}(f_s(oldsymbol{x}), ilde{y}), \quad oldsymbol{x}_0 = oldsymbol{x}_t^j \ \mathcal{L}(f_s(oldsymbol{x}), ilde{y}) = \ell_{CE}((f_s(oldsymbol{x})), ilde{y}) + \lambda_{TV} \mathcal{R}_{TV}(oldsymbol{x}) + \lambda_{BN} \mathcal{R}_{BN}(oldsymbol{x}), \ \mathcal{R}_{TV}(oldsymbol{x}) = \sum_{u,v} ((oldsymbol{x}_{u,v+1} - oldsymbol{x}_{uv})^2 + (oldsymbol{x}_{u+1,v} - oldsymbol{x}_{uv})^2)^{rac{1}{2}}, \ \mathcal{R}_{BN} = \sum_{l,j} \parallel \mu_l(oldsymbol{x}^j) - \mu_l \parallel + \parallel \sigma_l^2(oldsymbol{x}^j) - \sigma_l^2) \parallel_2,$$

Image Synthesis for Continual Adaptation



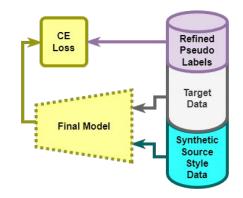
(Generated Images Using Noise)

(Real Images)

(Generated Images Using Selected Target Images)

Continual Source Free UDA

Synthetic images are then fed back to the model



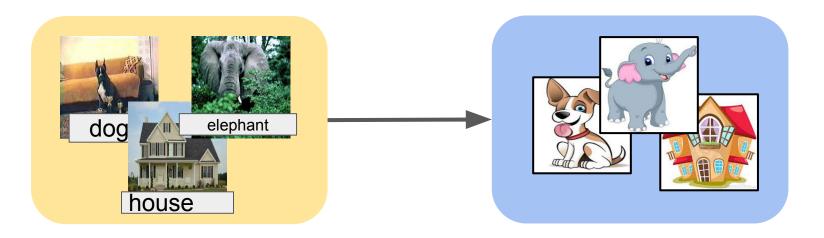
Results

Methods	plane	bcycl	bus	car	horse	knife	mcycl	person	plant	skate	train	truck	Avg.
Inferred	64.2	6.3	75.2	21.7	55.9	95.7	22.8	1.4	79.8	0.7	82.8	19.8	46.3
GPDA [16]	83.0	74.3	80.4	66.0	87.6	75.3	83.8	73.1	90.1	57.3	80.2	37.9	73.3
DADA [40]	92.9	74.2	82.5	65.0	90.9	93.8	87.2	74.2	89.9	71.5	86.5	48.7	79.8
SHOT [25]	94.3	88.5	80.1	57.3	93.1	94.9	80.7	80.3	91.5	89.1	86.3	58.2	82.9
A^2Net [44]	94.0	87.8	85.6	66.8	93.7	95.1	85.8	81.2	91.6	88.2	86.5	56.0	84.3
$Sc \rightarrow Tg$	64.2	6.3	75.2	21.7	55.9	95.7	22.8	1.4	79.8	0.7	82.8	19.8	46.3
PLR	95.2	64.8	90.8	89.7	87.4	93.7	91.5	88.5	56.4	82.9	97.1	93.8	85.1
SF-UDA	94.8	68.1	89.5	88.1	86.5	90.4	87.4	89.0	53.2	81.5	96.9	93.0	84.8
CSF-UDA	94.9	67.3	89.2	87.8	86.1	90.0	86.6	88.7	53.1	80.9	96.5	94.6	84.6
$SF-UDA^*$	45.2	18.5	55.9	52.7	54.8	44.3	12.5	41.4	24.6	35.1	40.2	51.2	39.7
$CSF-UDA^{\star}$	47.6	21.4	58.2	54.3	61.1	49.5	27.9	41.9	44.8	36.2	43.1	55.4	45.1

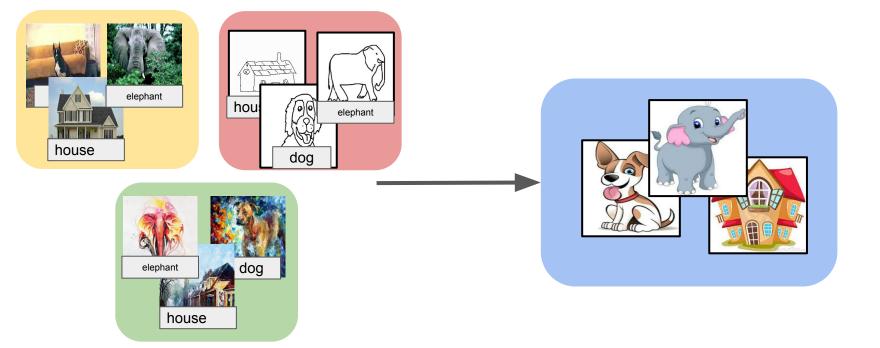
Table 3: Classification accuracy on Visda-C with ResNet101. Legend: Sc: Source (real), Tg: Target (real), $Sc \rightarrow Tg$: Inferred pseudo-labels, PLR: Pseudo-label refinement (output of Stage 1), SF-UDA: Source-free UDA, CSF-UDA: Continual source-free UDA, \star : Accuracy on real-source.

Latent Domain Discovery (Towards Domain Generalization)

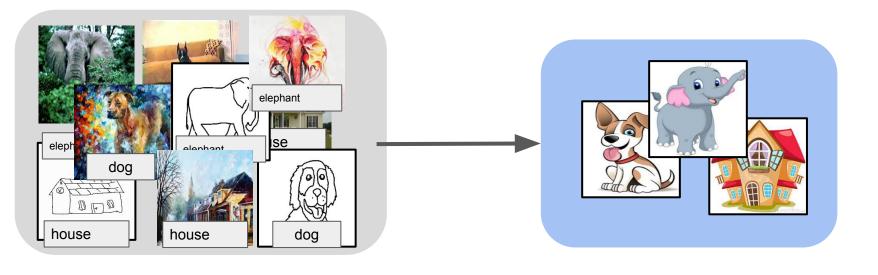
Unsupervised Domain Adaptation



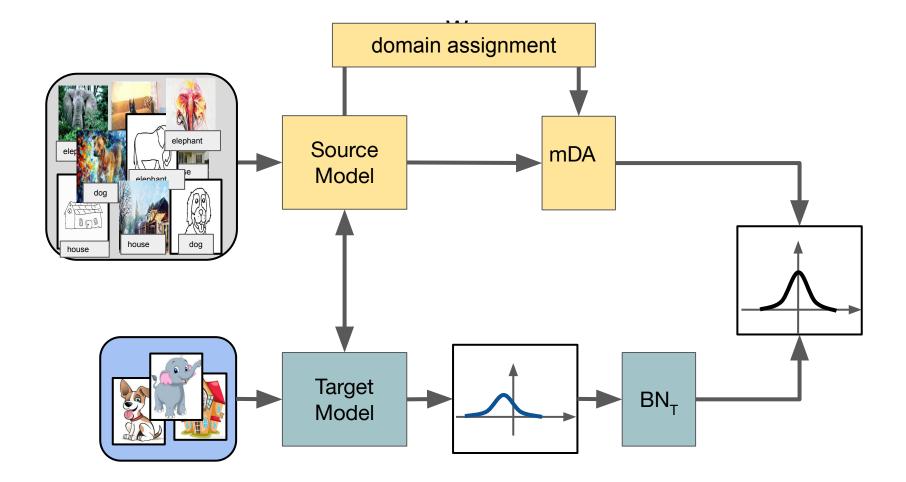
Multi-source Domain Adaptation



Domain Discovery + Adaptation

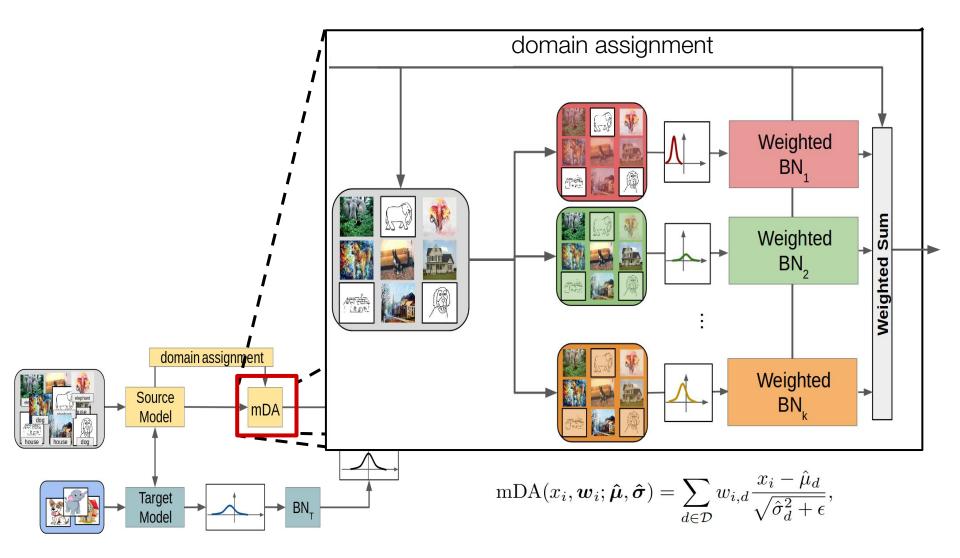


Multi Domain Alignment Layer (mDA)



Mancini, M., Porzi, L., Rota Bulò, S., Caputo, B., & Ricci, E. "Boosting Domain Adaptation by Discovering Latent Domains". CVPR 2018.

Multi Domain Alignment Layer (mDA)



Mancini, M., Porzi, L., Rota Bulò, S., Caputo, B., & Ricci, E. "Boosting Domain Adaptation by Discovering Latent Domains". CVPR 2018.

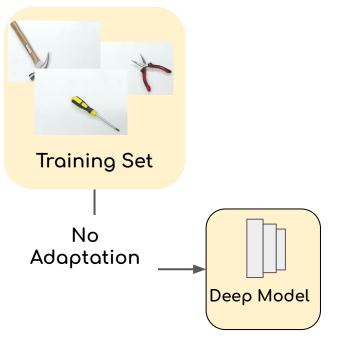
Results

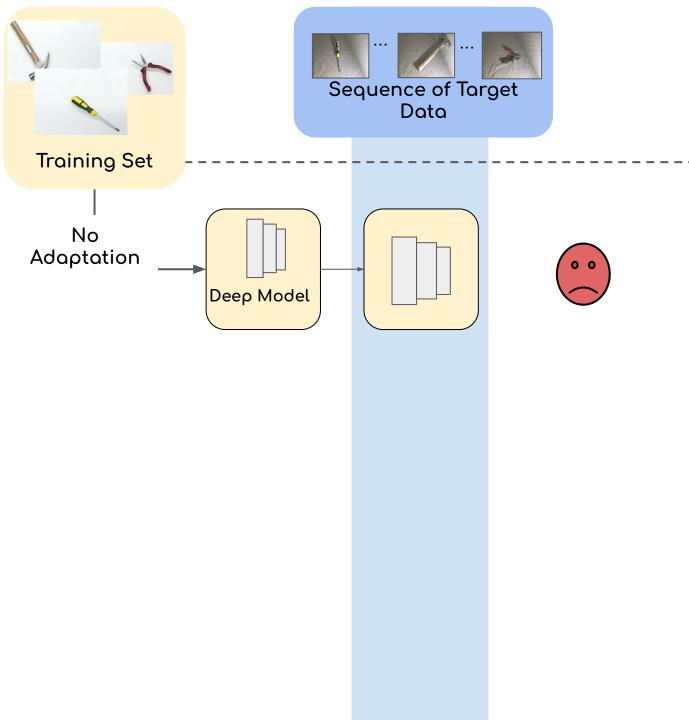
Cartoon as Target

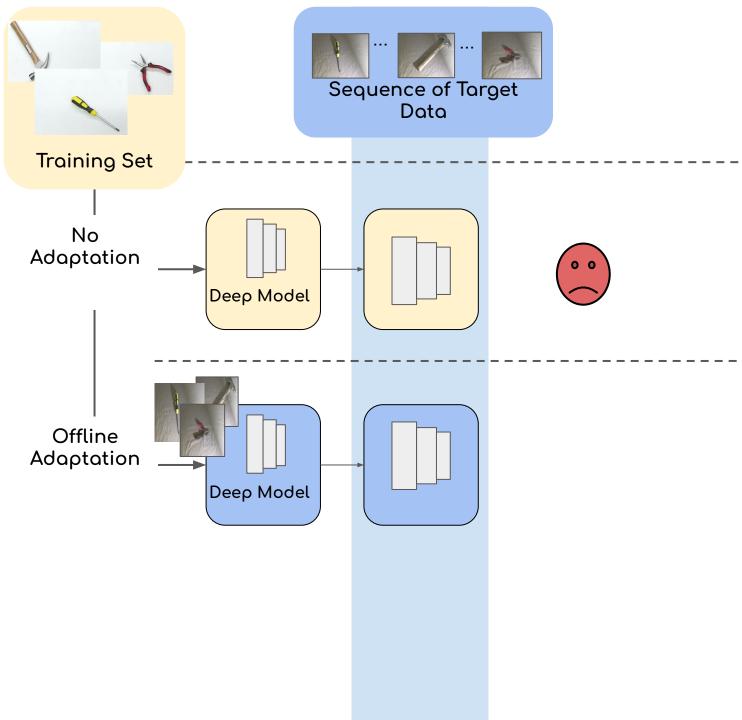
Sketch as Target

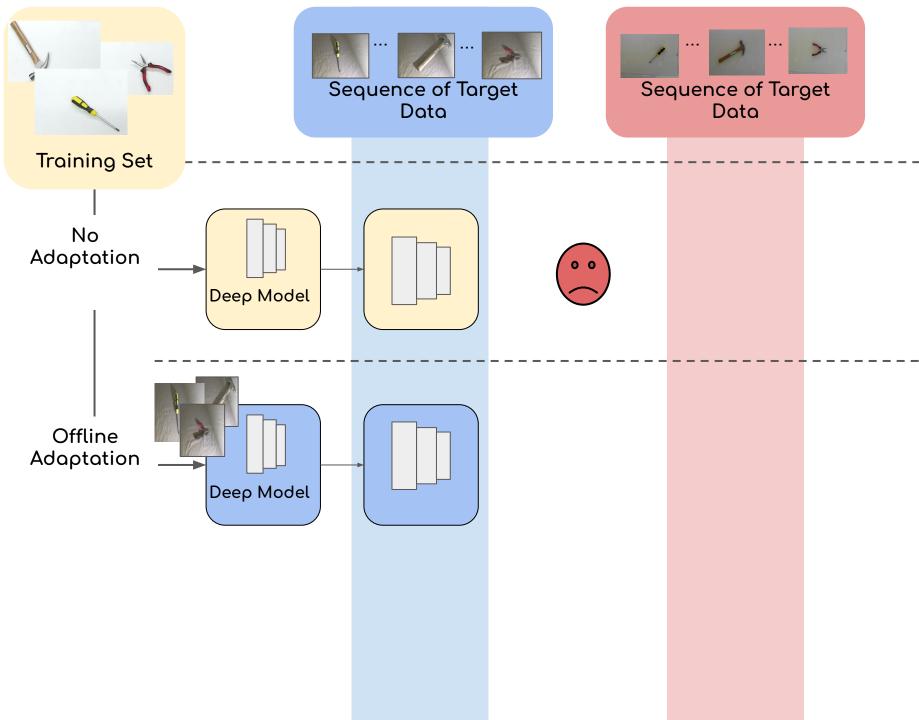
Mancini, M., Porzi, L., Rota Bulò, S., Caputo, B., & Ricci, E. "Boosting Domain Adaptation by Discovering Latent Domains". CVPR 2018.

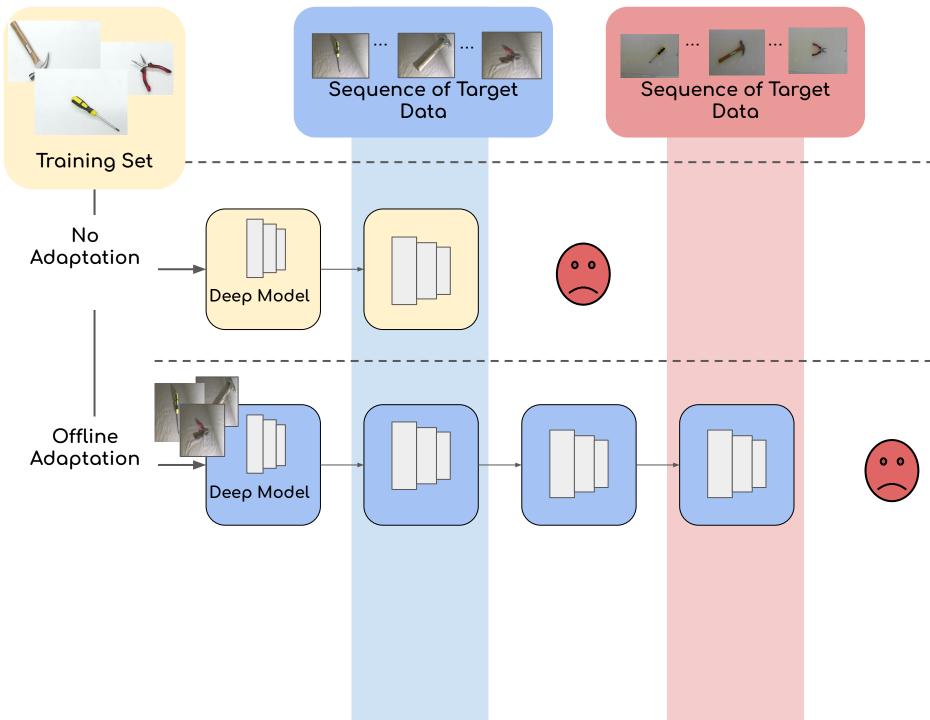
Continuous DA

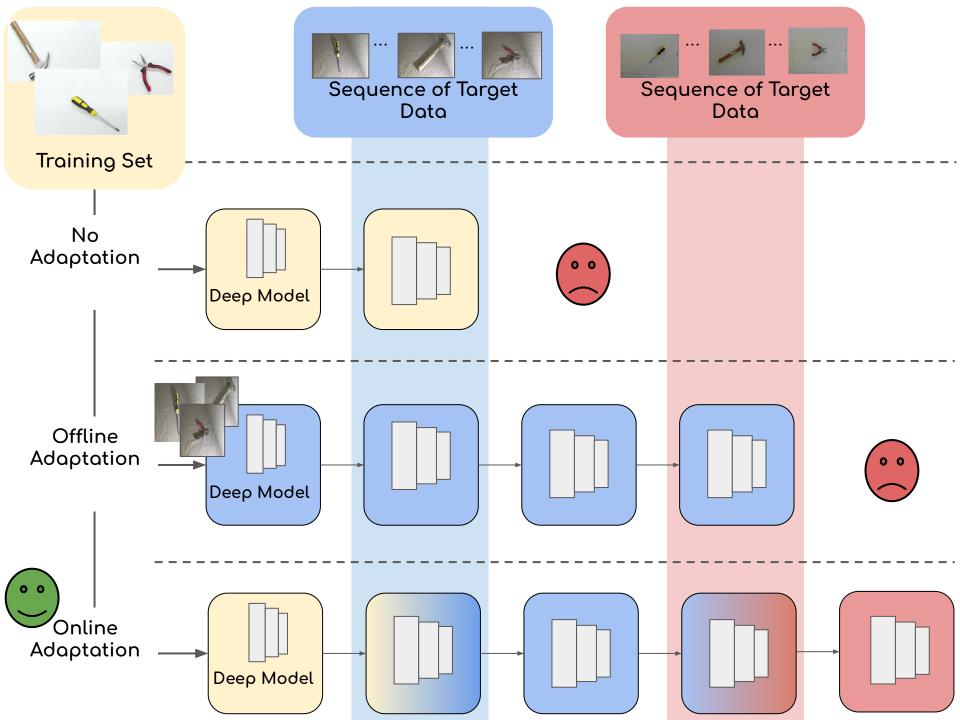




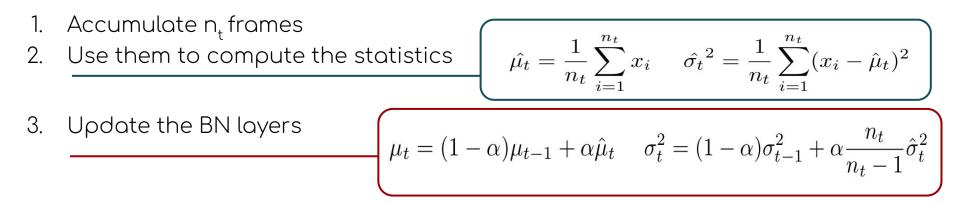


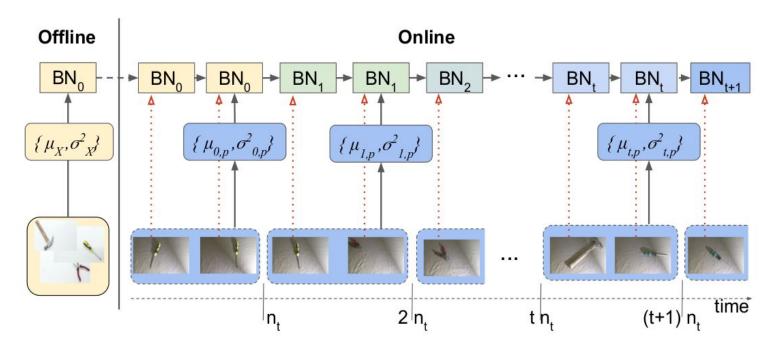






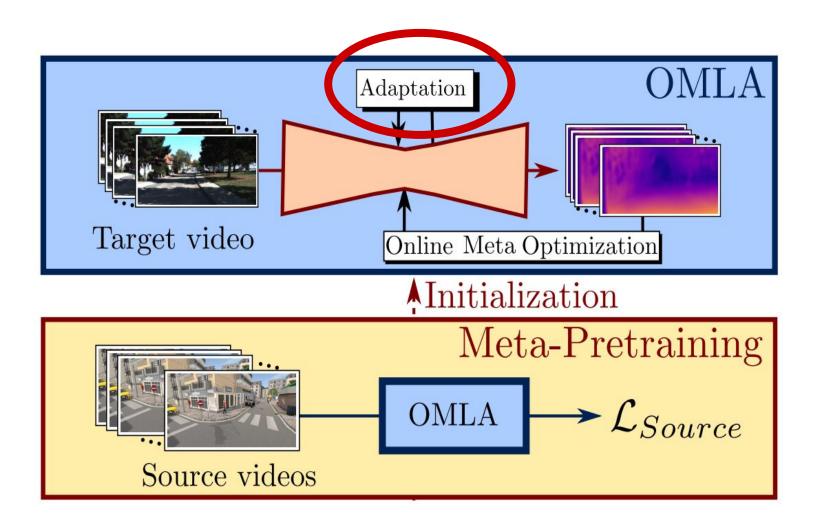
Online DA with Batch Normalization (ONDA)





Mancini, M., Karaoguz, H., Ricci, E., Jensfelt, P., & Caputo, B. "Kitting in the Wild through Online Domain Adaptation". IROS 2018.

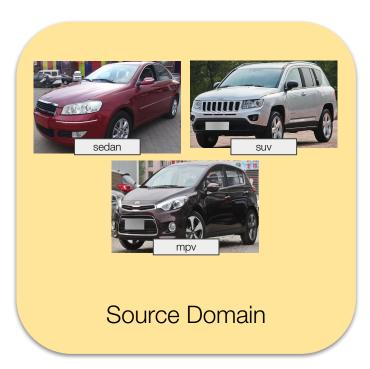
... beyond classification!



Zhang, Z., Lathuilière, S., Pilzer, A., Sebe, N., Ricci, E., & Yang, J. (2019). Online Adaptation through Meta-Learning for Stereo Depth Estimation. *arXiv preprint arXiv:1904.08462.*

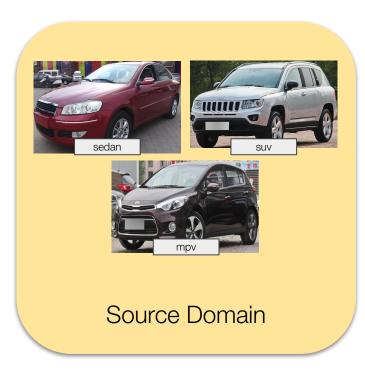
Predictive DA

Standard DA



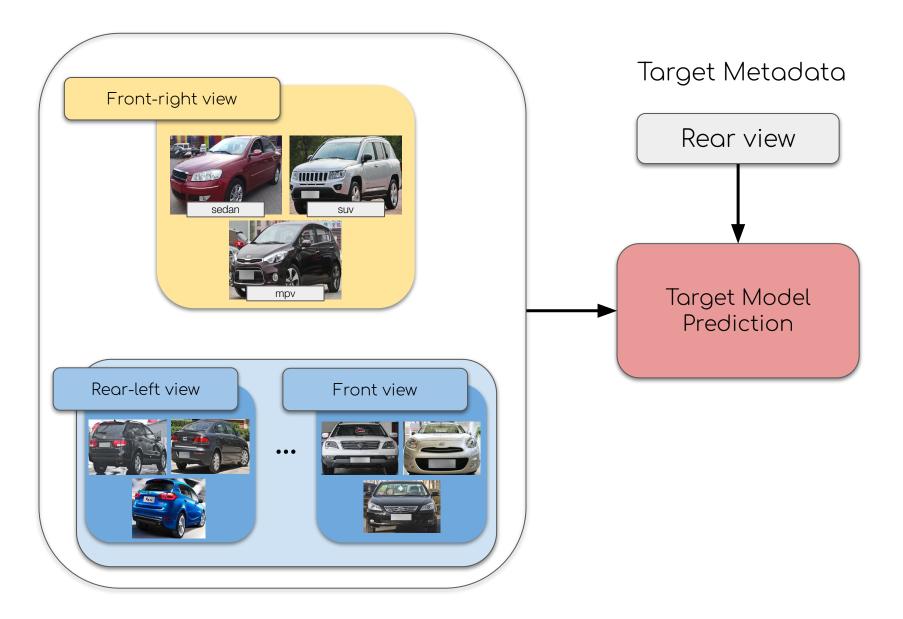
Target Domain

Predictive DA



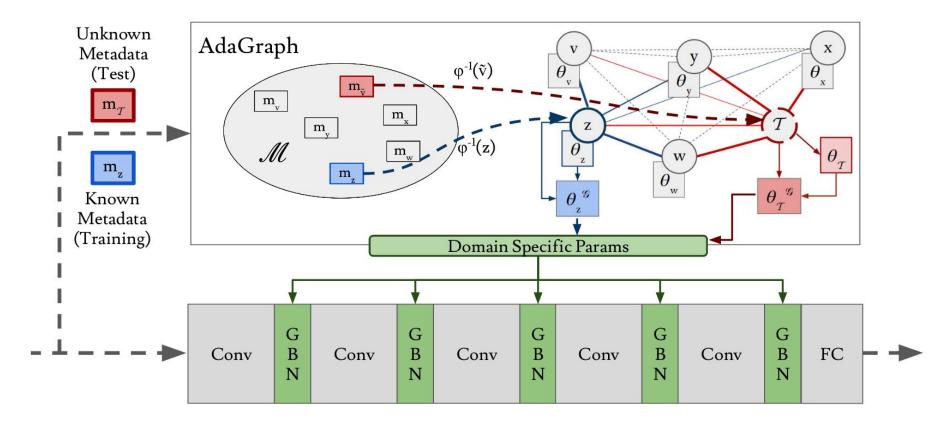
Rear view

Predictive DA



AdaGraph

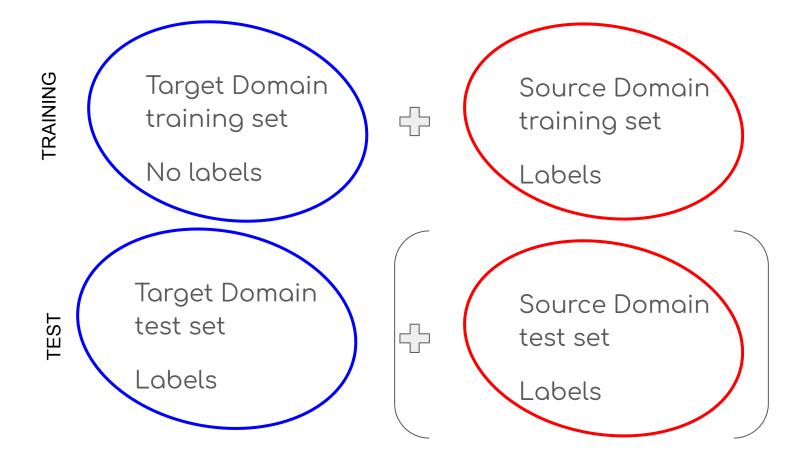
$$\operatorname{GBN}(x, v, \mathcal{G}) = \gamma_v^{\mathcal{G}} \cdot \frac{x - \mu_v}{\sqrt{\sigma_v^2 + \epsilon}} + \beta_v^{\mathcal{G}}$$



Mancini, M., Rota Bulò, S., Caputo, B., & Ricci, E. "AdaGraph: Unifying Predictive and Continuous Domain Adaptation through Graphs". CVPR 2019.

Unsupervised Domain Adaptation Validation issues

Unsupervised Domain Adaptation - recap



Validation in UDA

How to ...

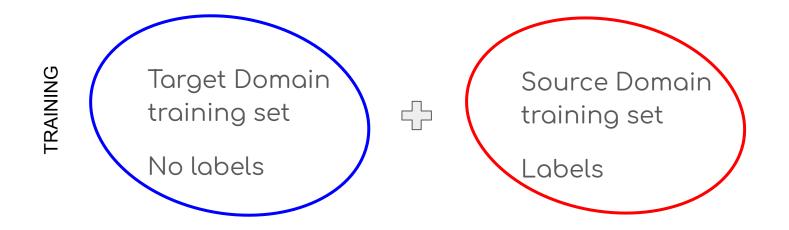
- choose/validate hyperparameters?
- Early-stop your training

Remember:

every time you peek at performance on the *target* set, you are actually using target labels.

Is your UDA method really UNSUPERVISED?

Validation set



Validation set - a subset of your training set

- Subset of the labelled source
- Subset of the unlabelled target
- Both the above
- (Small fraction of the target set *with labels*)

A step back: aligning distributions

Many methods try to **align source and target distribution** (in some appropriate feature space).

$$P(X^s)$$
 (X^t)

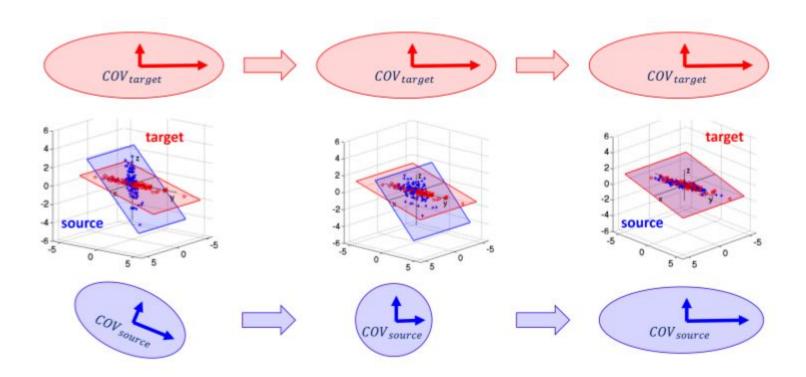
Align distributions:

- First order momentum (zero mean features)
- Second order momentum (align covariances)

• ...

E.g. CORAL, deep CORAL

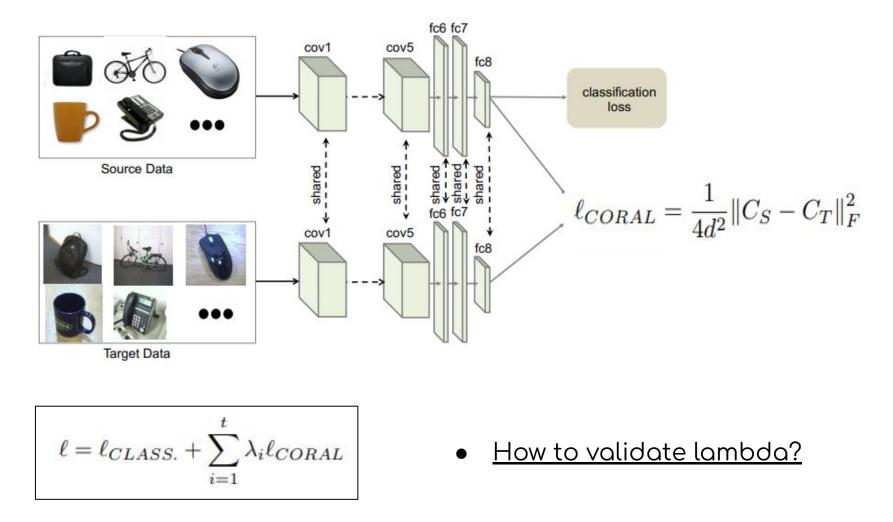
Aligning Covariances



Closed form alignment:

- Requires matrix inversion not scalable to big datasets
- Requires a fixed feature representation

Deep correlation aligment



Sun and Saenko "Deep CORAL: Correlation Alignment for Deep Domain Adaptation" ECCV 2016 workshops.

Validation on the (unlabelled) target set

(Euclidean) Correlation Alignment.

$$\min_{\theta} \left[H(\mathbf{X}_{\mathcal{S}}, \mathbf{Y}_{\mathcal{S}}) + \lambda \cdot \underbrace{\frac{1}{4d^2} \|\mathbf{C}_{\mathcal{S}} - \mathbf{C}_{\mathcal{T}}\|_F^2}_{\text{CORAL loss}} \right].$$
(1)

Entropy Regularization.

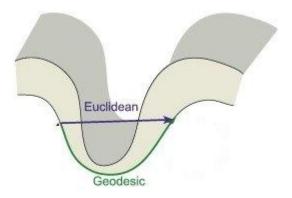
$$\min_{\theta} \left[H(\mathbf{X}_{\mathcal{S}}, \mathbf{Y}_{\mathcal{S}}) + \boldsymbol{\gamma} \cdot \left(\underbrace{-\sum_{\mathbf{z} \in \mathbf{Z}_{\mathcal{T}}} \langle f(\mathbf{z}; \theta), \log f(\mathbf{z}; \theta) \rangle}_{\text{target entropy } E(\mathbf{Z}_{\mathcal{T}})} \right) \right].$$
(2)

Theorem 1. If θ^* optimally aligns correlation in (1), then, θ^* minimizes (2) for every $\gamma > 0$.

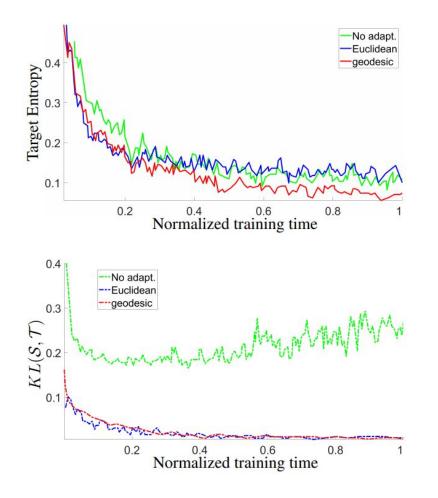
Optimal correlation aligment on the manifold of SPD matrices

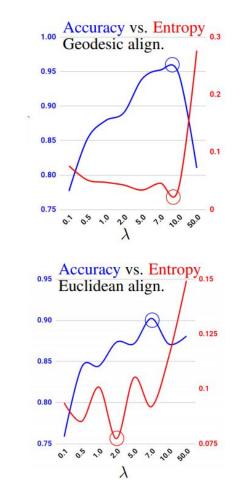
Minimal Entropy Correlation Alignment. A more principled Riemannian alignment between covariance representations which give for free an unsupervised criterion for hyper-parameters tuning.

$$\underbrace{ \min_{\theta} \left[H(\mathbf{X}_{\mathcal{S}}, \mathbf{Y}_{\mathcal{S}}) + \lambda \cdot \underbrace{\frac{1}{4d^2} \left\| \log \mathbf{C}_{\mathcal{S}} - \log \mathbf{C}_{\mathcal{T}} \right\|_F^2}_{\text{Riemannian alignment}} \right] }_{\text{Riemannian alignment}} \text{ subject to } \lambda \text{ minimizes } E(\mathbf{Z}_{\mathcal{T}}).$$



Optimal aligment induces minimal entropy





Morerio et al. "Minimal entropy correlation alignment for unsupervised deep domain adaptation" ICLR, 2018.