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Adversarial Domain Adaptation
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Domain Adversarial Training
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Ganin, Y, et al. “Domain-adversarial training of neural networks". The Journal of Machine Learning Research, 17(1), 2096-2030, 2016..



Domain Adversarial Training
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Ganin, Y, et al. “Domain-adversarial training of neural networks”. The Journal of Machine Learning Research, 17(1), 2096-2030, 2016..



Domain Adversarial Training

MNIST — MNIST-M: top feature extractor layer

(a) Non-adapted

Ganin, Y, et al. “Domain-adversarial training of neural networks”. The Journal of Machine Learning Research, 17(1), 2096-2030, 2016..
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ADDA
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Tzeng, E., Hoffman, J., Saenko, K, & Darrell, T, " Adversarial discriminative domain adaptation®. In CVPR 2017




ADDA - methodology

Pre-training Adversarial Adaptation Testing
(" B /source images 3
source images i g
+ labels £ | Source ! _ o
I CNN ! targetimage . _ i 1
- o - - P B L
Source & class © domain ! Target | ;& 1 class
— v
CNN o label | | target images = label : CN'!_,' i o | label
(@) 8 [ : @l
0 P |
a
e W

Tzeng, E., Hoffman, J., Saenko, K, & Darrell, T, " Adversarial discriminative domain adaptation®. In CVPR 2017




Domain invariant Feature Augmentation

(DIFA)
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Domain Adaptation through
Image Translation



Generative Adversarial Networks (GAN)
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Pixel-Level DA
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Bousmalis, K, Silberman, N., Dohan, D,, Erhan, D, & Krishnan, D., “Unsupervised pixel-level domain adaptation with generative adversarial
networks". In CVPR 2017



Cycle GAN
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Zhu, J. Y, Park, T, Isolo, P, & Efros, A.. “Unpaired image-to-image translation using cycle-consistent adversariol networks”. In ICCV 2017,



Unpaired Image-to-Image Translation

Monet Photos Zebras S, Horses Summer T Winter

zebra —> horse

horse — zebra

Phtograph ‘ Van Gogh » zann

Zhu, J. Y, Park, T, Isolo, P, & Efros, A.. “Unpaired image-to-image translation using cycle-consistent adversariol networks”. In ICCV 2017,
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Russo, P, Carlucci, FE M, Tommasi, T, & Caputo, B. From source to target and back: symmetric bi-directional adoptive gan®. In CVPR 2018.



SBADA-GAN: source images path
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Russo, P, Carlucci, FE M, Tommasi, T, & Caputo, B. From source to target and back: symmetric bi-directional adoptive gan®. In CVPR 2018.



SBADA-GAN: target images path
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Domain Adaptation through
Batch Normalization



How the problem looks like

Li et al. (2017) “Revisiting Batch Normalization For Practical Domain Adaptation”, ICLR-WS.



Some Background: Batch Normalization

FC Input: Values of = over a mini-batch: B = {z; . };
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loffe, S., & Szegedy, C. “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift: Automatic Domain
Alignment Layers". ICML 20185.
http://cs231n.github.io/neural-networks-2/#batchnorm



Some Background: Batch Normalization
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loffe, S., & Szegedy, C. “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift: Automatic Domain
Alignment Layers". ICML 20185.

http://cs231n.github.io/neural-networks-2/#batchnorm



DA through Batch Normalization
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Carlucci, k. M., Porzi, L., Caputo, B, Ricci, E., & Rota Bulo, S. “AutoDIAL: Automatic Domain Alignment Layers®. ICCV 2017.
Carlucci, F. M, Porzi, L., Caputo, B, Ricci, E., & Rota Bulo, S. “Just dial: Domain alignment layers for unsupervised domain adaptation®. ICIAP 2017,



DA through Batch Normalization
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Carlucci, k. M., Porzi, L., Caputo, B, Ricci, E., & Rota Bulo, S. “AutoDIAL: Automatic Domain Alignment Layers®. ICCV 2017.
Carlucci, F. M, Porzi, L., Caputo, B, Ricci, E., & Rota Bulo, S. “Just dial: Domain alignment layers for unsupervised domain adaptation®. ICIAP 2017,



Results
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Carlucci, F. M, Porzi, L., Caputo, B, Ricci, E., & Rota Bulo, S.. “AutoDIAL: Automatic Domain Alignment Layers". ICCV 2017.




Whitening vs Batch Normalization

Key Idea: improve over DIAL with Domain Whitening Layers (DWT)

- Domain-alignment layers based on feature whitening
Exploit target data with a novel consensus loss (integrate entropy and

consistency in a single loss)
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Roy, S., Siarohin, A, Sangineto, E,, Bulo, S. R, Sebe, N, Ricci, E."Unsupervised Domain Adaptation using Feature-Whitening and Consensus Loss". CVPR 2019



Domain Adaptation
Via Pseudo-Labelling



Pseudo-Labeling: A Naive Semi-Supervised
Learning Method

First proposed by Lee in 2013, in which network is trained in a
supervised fashion with labeled and unlabeled data
simultaneously.
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Dong-Hyun Lee. "Pseudo-label: The simple and efficient
semi-supervised learning method for deep neural

networks." Workshop on Challenges in Representation Learning, @
ICML 2013.


http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.664.3543&rep=rep1&type=pdf

Cont'd.

 For unlabeled data, just picking up the class which has the
maximum predicted probability — pseudo-labels — and use that as
if they were true labels.

Y;: = .
0 otherwise

; {1 if 1 = argmax;, fi'(x)

« Because the total number of labeled data and unlabeled data is
quite different and the training balance between them is quite
important for the network performance, the overall loss function is

m=1 i=1 m=1 1=1
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Loss per Batch = Labeled Loss + Weight * Unlabeled Loss



Pseudo-labelled data is noisy!

UDA reduces to the problem of Learning with Noisy Labels

Issue: Deep nets can easily overfit noise

Standard supervised Temporal ensembling
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Figure 2: Percentage of correct SVHN classifications as a function of training epoch when a part of
the labels is randomized. With standard supervised training (left) the classification accuracy suffers
when even a small portion of the labels give disinformation, and the situation worsens quickly as
the portion of randomized labels increases to 50% or more. On the other hand, temporal ensembling
(right) shows almost perfect resistance to disinformation when half of the labels are random, and
retains over ninety percent classification accuracy even when 80% of the labels are random.

Samuli Laine and Timo Aila. "Temporal ensembling for semi-supervised learning." ICLR 2017.



Temporal ensembling
(Averaging label predictions)

Temporal ensembling
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» After every training epoch, the network outputs z; are accumulated into ensemble outputs Z; by
* updating Z; < oZ; + (1 — a) z;, where a is a momentum term that controls how far the ensemble
reaches into training history.

Because of dropout regularization and stochastic augmentation, Z thus contains a weighted average of

the outputs of an ensemble of networks f from previous training epochs, with recent epochs having
larger weight than distant epochs.

For generating the training targets Z;, we need to correct for the startup bias in Z by dividing by factor
(1-db).



Mean Teachers
(Averaging model weights)

The teacher model is an average of consecutive student models, so we call it
Mean Teacher method.

Averaging model weights over training steps tends to produce a more
accurate model than using the final weights directly

Instead of sharing the weights with the student model, the teacher model
uses the exponential moving average (EMA) weights of the student model: it
can aggregate information ofter every step instead of every epoch.

In addition, since the weight averages improve all layer outputs, not just the
top output, the target model has better intermediate representations.

As a result, Mean Teacher improves test accuracy and enables training with
fewer labels than Temporal Ensembling, without changing the network

architecture.

Tarvainen, Antti, and Harri Valpola. "Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results.“ NIPS 2017.



Mean Teachers
(Averaging model weights)

Take a supervised model.
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Mean Teachers
(Averaging model weights)
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Mean Teachers
(Averaging model weights)
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Mutual Mean Teaching
UDA for Person -Re-identification

« Person re-identification (re-ID) aims at identifying the same
persons’ images across different comeras.

« However, domain diversities between different datasets pose an
evident challenge for adapting the re-ID model trained on one
dataset to another one.

Y. Ge, Chen, and Li. "Mutual Mean-Teaching: Pseudo label refinery for unsupervised domain adaptation
on person re-identification." ICLR 2020. https://www.youtube.com/watch?v=IQFL3nlYavk



https://www.youtube.com/watch?v=lQFL3nlYavk

Person Re-identification

Raw Videos Detected Pedestrians

Cam 2, 3,...

(a) Pedestrian Detection (b) Person Re-identification



Person Re-identification & Domain Shift
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General Pipeline for CLustering Based
Pseudo Labelling for UDA
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Step #1: Pseudo labels generation

Issue: noisy hard labels  Solution: robust soft labels
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Y. Ge, Chen, and Li. "Mutual Mean-Teaching: Pseudo label refinery for unsupervised domain adaptation
on person re-identification." ICLR 2020. https://www.youtube.com/watch?v=IQFL3nlYavk
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