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Learning and Reasoning

IHINKING,

both needed o

DANIEI

® System | - thinking fast - can do things like 2+2 = ? and recognise |, «:vax
objects in image

® System 2 - thinking slow - can reason about solving complex
problems - planning a complex task

® alternative terms — data-driven vs knowledge-driven, symbolic vs
subsymbolic, solvers and learners, neuro-symbolic...

® A lot of work on integrating learning and reasoning,
neural symbolic computation to integrate logic /
symbols reasoning with neural networks

see also arguments
by Marcus, Darwiche, Levesque, Tenenbaum, Geffner, e
Bengio, Le Cun, Kaut%,



Real-life problems

Involve

two important aspects.

Who can go first ?

ne red car

. The blue van

ne white car

.
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Real-life problems involve
two important aspects.

Who can go first ?

A. The red car

B. The blue van

C. The white car

Reasoning

Sub-symbolic perception

.
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Thinking fast

MAIN PARADIGM in Al
Focus on Learning

NEURAL
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Thinking slow = reasoning

TWO MAIN PARADIGMS in Al

PROBABILITY

LOGIC

Their integration has been well studied in
Probabilistic (Logic) Programming and Statistical Relational Al (StarAl)
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Integrating learning and
reasoning

PROBABILITY

NEURAL

How to integrate these three paradigms in Al ?



Neural Symbolic Computation:

g

* Neural symbolic computation is the area combining logic /
symbolic reasoning and neural networks
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Key Message 1

StarAl and NeSy share similar problems
and thus similar solutions apply

. WARNING

TALK MAY NOT COVER ALL of
NESY

PART 1 of the talk

See also [De Raedt et al., IJCAI 20]

A
.......



Neural Symbolic Computation:
state-of-the-art

LOGIC
NEURAL

e Most NeSy approaches : inject the logic/knowledge into
neural networks, and let the neural network do the rest

* Downside : relies only on neural networks -> the power of
reasoning, explanation and trust is (at least partly) lost
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Key Message 2

A different approach

A true integration T of X and Y should allow to
reconstruct X and Y as special cases of T

Thus, Neural Symbolic approaches should have
both logic and neural networks as special cases

PART 2 of the talk — illustration with DeepProbLog [NeurlPS 2018]
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Key Message 1

StarAl and NeSy share similar problems and

thus similar solutions apply

There are two basic types of
(uses of) logic,
graphical models, and
neural symbolic models

Statistical Relational

Artificial lntc"igvnn‘
Lagic. Prafability
urie! Comtuiaiion

Krisiam Renring




Logic Programs

as in the programming language Prolog

Propositional logic program

burglary.
hears_alarm_mary.
facts :

burglary = true
earthquake.
hears_alarm_john.

alarm :— earthquake.

alarm :— burglary.

calls_mary :—alarm, hears_alarm_mary.

calls_john :—alarm, hears_alarm_john.

.........



Logic Programs

as in the programming language Prolog
Propositional logic program

burglary.
hears_alarm_mary.

earthquake.
hears_alarm_john.

alarm :— earthquake.
rule:

alarm :—burglary. cails_mary =true IF alarm = true AND hears_alarm_mary = true

calls_mary :— alarm, hears_alarm_mary.

calls_john :—alarm, hears_alarm_john.

A
.......



Logic Programs

as in the programming language Prolog

Propositional logic program Two proofs (by refutation)

burglary.

.- calls_mary.
hears_alarm_mary. R

l

:- alarm, hears_alarm_mary.

earthquake. l
hears_alarm_john. .- earthquake, hears_alarm_m

l :- burglary, hears_alarm

alarm :— earthquake. - hears_alarm_mary.

- hears_a}arm_mary.
alarm :— burglary.

[ M

calls_mary :—alarm, hears_alarm_mary. i

calls_john :—alarm, hears_alarm_john.

A proof-theoretic vievv..;_i;;gé_';’
: erc

.......



Logic as constraints

as in SAT solvers
Propositional Iogic MOdel / POSSible WOrId

IFF AND

calls(mary) < hears_alarm(mary) A alarm { burglary,

hears_alarm(john),
calls(john) < hears_alarm(john) A alarm |
alarm,

OR .
alarm < earthquake v burglary calls(john))]

the facts that are true
in this model / possible world

A model-theoretic view:::
1 o

.........
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Two types of probabilistic graphic -

------------

models and StarAl systems

Frlends(A B)
0.1 ::burglary. RegREE - N ey
0.05 :: earthquake. Fr\'iends(A-.A\) ’émfloes(l}) { Smokes(B) /Fliequ_.Q}
alarm :— earthquake. | " ? _ | b=
alarm :— burglary. (Eancer(l}l ’ ,-.- et \Cancer(B\)
o  Friends(BA) —

0.7:calls(mary) :— alarm.

0.6::calls(john) :— alarm.

1.5 Vvx Smokes(x) = Cancer(x)
1.1 vx,y Friends(x,y) = (Smokes(x) & Smokes(y))

Probabilistic Logic Programs Markov Logic

ProblLog
_ undirected
dlre_cted Markov Net
Bayesian Net model theoretic

........

key representatives




Two types of Neural

Statistical Relational
Artificial ]nﬂ'“igrnn‘

Lz B¢ Taede

Krisrian Kenring

Seirsax Nautrsan

Dand Foole

Sty Lrcronm ow ARrisyesa.

T ae s arsons wonr Sl Lo
Rkt 3 B s Wl YA Ci sl P .

Just like in StarAl

Logic as a kind of neural Logic as the regularizer
(reminiscent of Markov Logic
program Networks)

directed StarAl approach and
logic programs undirected StarAl approach and

(soft) constraints

Also, many NeSy systems are doing
knowledge based model construction KBMC
where logic is used as a template

Just like in StarAl

.........




Logic as a neural program

directed StarAl approach and logic programs

e KBANN (Towell and Shavlik Al] 94)

 Turn a (propositional) Prolog program into a
neural network and learn

Key A
A - B, Z.
— .ﬁ _ , ﬁ R Z

B C, D B B"'". conjunction -
B - E, F, G. B, - C’ Do /\ L.I‘
Z :— Y, not X. B’ - E, F, G. unne guled B’ B’ i
Y i— S, T. 7 - Y, not X. dependency b\ /ﬂ /é\ .

Y - S, T. negated | C D E F G S T

dependency C S[el) ]

A
.......

20



Logic as a neural program

directed StarAl approach and logic programs

ADD LINKS — ALSO SPURIOUS ONES HIDDEN UNIT

and then learn

iIs of activation & loss functions not mentloned,c



Lifted Relational Neural Networks

directed StarAl approach and logic programs

® Directed (fuzzy) NeSy

® similar in spirit to the Bayesian Logic Programs and
Probabilistic Relational Models

® Of course, other kind of (fuzzy) operations for AND,
OR and Aggregation (cf. later)
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Fact neurons Atoms neurons
. 2 ! w > l
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2 [Sourek, Kuzelka, et al JAIR]



directed StarAl approach and logic programs

Neural T heorem Prover

Towards Neural Theorem Provlng at Scale

amplz Kn nwl dz Rase:
L‘ the BLu}.m
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Yasar 0 0 32 pareatuf(Z,Y)

are t KK BAKI parentor HAR] HAR]
e Y LR RS Y
£00 9[0]0)
LA LA
1 2 1. 2

\\\\\\\

theloglc IS encoded in thenetwork

how to reason logically ? e

[Rocktédschel Riedel, NeurIPS 17; Minervini et al. ] i



Statistical Relational
Artificial ]nﬂ'“igrnn‘

Lz B¢ Taede

Krisrian Kenring

Srsan Nateegan

Dand Foole
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Two types of Neural

Just like in StarAl

. . Logic as the regularizer
Logic as a kind of neural . :
(reminiscent of Markov Logic

program Networks)

directed StarAl approach and

logic programs undirected StarAl approach and

(soft) constraints

Also, many NeSy systems are doing
knowledge based model construction KBMC
where logic is used as a template

........

24



Logic as constraints

undirected StarAl approach and (soft) constraints

multi-class classification

This constraint should be satisfied

(_15131 N\ —Xo N xg)\/
(_15131 N\ L9 N\ _15133)\/

(331 N\ —XZo N _ng)

figures and example from Xu et al., ICML 2018

25



Logic as constraints

undirected StarAl approach and (soft) constraints

multi-class classification

Probability that constraint is satisfied

(1 — :131)(1 — 562)5133—-
(1 —xz1)zo(1 — x3)+
.CU1(1 — 5132)(1 — 5133)

basis for SEMANTIC LOSS

(weighted model counting)

26



egw StarAl 27

Logic as a regularizer

undirected StarAl approach and (soft) constraints
Semantic Loss:

® Use logic as constraints (very much like
“propositional MLNs)

® Semantic loss

SLoss(T") o< —log Z H Di H (1 —ps)

® Used as regulariser

Loss = T'raditional Loss + w.SLoss

® Use weighted model counting , close to
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Logic lensor Networks

undirected StarAl approach and (soft) constraints
P(z,y) — A(y), withG(z) = vand G(y) = u

GIP(v,u) =+ A(u)

Serafini & Garcez
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Semantic Based Regularization

undirected StarAl approach and (soft) constraints

I wad Pald) — A(d) Evidence Predicate
Fp = Ydvd R{d.d)= ((A(d) »n A(d)) v (-A(d) n =A(d)) Groundings
(= {di.da} Pa(d) =1
R‘:d;,d_g:' ==
A Dulput
Output Layer /\
\ -
Lt
e
P Pri )
Quantifier Layers ey )

tep (2{ds,da), fal(dq), falda))

-

- -~ o
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Diligenti et al. AlJ



Two types of Neural
Symbolic Systems = _

Just like in StarAl

Logic as a kind of neural Logic as the regularizer
J (reminiscent of Markov Logic

program Networks)

directed StarAl approach and

logic programs undirected StarAl approach and

(soft) constraints

Conseqguence :
the logic Iis encoded in the network

the ability to logically reason is lost g
logic is not a special case Lere




Key Message 1

StarAl and NeSy share similar problems and
thus similar solutions apply

What do the humbers mean !

Statistical Relational

. .
Three possible choices:
. Artificial Intelligence
Lo gic,
oo Rssin sy
Probability &
b ol

Just like in StarAl erc

31



Logic, Probability and Fuzzy

Just like in StarAl

Three types of approaches to NeSy:

® Purely Logic — keep everything logical (e.g., Dai et al, NeurlPS 19)
e difficult to optimise

® Probabilistic
® use e.g.arithmetic circuits and knowledge compilation

® Fuzzy

® easy to translate in neural networks and optimise (but not really logical)

32

.......



Logic as constraints

Propositional logic Model / Possible World

0.1 {burglary,

calls(mary) <- hears_alarm(mary) A alarm 04 | jarm(john)
: ears_alarm(john),

calls(john) <- hears_alarm(john) A alarm alarm,

alarm <- earthquake v burglary calls(john)}

probability of world = 0.1 x 0.4 x ...

SEMANTIC LOSS =
probability that a random possible world satisfies the formula

using weighted model counting (WMC)
weights/probabilities are on the literals




Logic as soft constraints
Markov Logic

Propositional logic Model / Possible World

e™0 { fl,
e"20
e”30 f3,

10 : f1 <-> calls(mary) <- hears_alarm(mary) A alarm

20 : f2 <-> calls(john) <- hears_alarm(john) A alarm

burglary, hears alarm(john),

30:1f3 <-> alarm <- earthquake v burglary alarm, calls(john),}

probability of world — e*10 x e*20 x e*30

using weighted model counting (WMC)
weights/probabilities are on the formulae (soft constraints)

the higher the weight , the harder or more logical the constraint

w(fl) =e/10 w(not f1) =er0 =1
w(f2) = e”20 w(not {2) =e/0 =1

w(f3)=eA30  wnot £3) =er0 = 1 ere

(need to normalise to get probability distribution)




Logic as soft constraints
Probabilistic Soft Logic [Bach & Getoor]

Propositional logic Model / Possible World

10 : calls(mary) <- hears_alarm(mary) A alarm {0.7 burglary,

0.8 hears_alarm(john),
20 : calls(john) <- hears_alarm(john) A alarm

0.5 alarm,

30: alarm <- earthquake v burglary 0.3 calls(john),}
atoms are no longer true or false in worlds

logic : a constraint is satisfied (1) or not (O)% e true ?  false to a certain degree

fuzzy logic : the distance to satisfaction
the higher the distance, the less likely the world

Lukasiewicz T-norm

For 0 and 1 we get boolean logic
AV B =min(1,A + B)
AAB=min(1,,A+B—-1)

Z 05 07 08 A <« B =min(1,1 + A — B) (residuum)

A A B = WLll’l(l 1 5 1) _ O 5 evaluates to 1 when rule is satisfied

Rule evaluates to min(1,1 — 0.5 + 0.3) = 0.8 when calls(john) =0.3

calls(john) <- hears_alarm(john) A alarm

when B < A

w= e’ [—20 x (1-0.8)]



Logic lensor Networks

undirected StarAl approach and (soft) constraints
P(z,y) — A(y), with G(z) = vand G(y) = u

GIFP(v,u) = A(u)

a fUzzy logic Is used

Serafini & Garcez



Semantic Based Regularization

undirected StarAl approach and (soft) constraints

Evidence Predicate

It (— Wd Pa(d) — A(d)
Fp = Ydvd R{d.d)= ((A(d) »n A(d)) v (-A(d) n =A(d)) Groundings
Y o .
¢ = A{di.dp} Fa(dy) =1
R(d,,ds;) — 1
,nr\ ()llmlﬂ
Output Layer |
\ -
2t
——T R
__--__-_-__-_____-_-_---_-_---_---__-_::;_;,,-ﬁf.-_-_-__.‘_\_“___:: ........................
q)f" & @F? g
Quantitier Layers avqg
Propesitional Layer [ ,*,,,(/",,(..11)’.f’f.‘.:dl):. ‘ trp (1{dy,da), fal(di), faida))
—— e
.................... oA . /5 oD - S, S
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Lifted Relational Neural Networks

directed StarAl approach and logic programs

® Directed (fuzzy) NeSy

® similar in spirit to the Bayesian Logic Programs and
Probabilistic Relational Models

® Of course, other kind of (fuzzy) operations for AND,
OR and Aggregation (cf. later)

Fact neurons Atoms neurons
parent(star,aida) ——— parent(staraida) ‘ Rulb: ncurons
— | ‘ ' : e Aggregation neurans
AR . ; ( =l fml(sm)]
Y S~ Pl N ' horse(aida) = *’horse(aida) —— AT~ ‘
parent(A,B)|( A ){borse(B) =>Qaizmj s B foal(siar} | | Atoms neuron
\ y - ‘ - ; P - ¥
— parent(star,cheyenne) “—4[ parent(star,cheyenne) [ 4 | foal(slar)l
| J v ™ —— v
i - s foal(star)J b .
e, : - 4 0
A~ ~. £ /_\\ horw(chovonno)l _ horse{cheyenne) [-—: v > ' ]
smm.g(,x.n))( A )horse(B) | =) foal(A) | . | y foal (star)
/ - — 3
-

a fuzzy logic is used

38 [Sourek, Kuzelka, et al JAIR]
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Logic, Probability and Fuzzy

Three types of approaches to NeSy:
® Purely Logic - keep everything logical (e.g., Dai et al, NeurlPS)
e difficult to optimise
® Probabilistic with e.g. arithmetic circuits and knowledge compilation
® knowledge compilation (hard to compile, fast inference and learning afterwards)

® Fuzzy

Consequence :
faster / convex optimisation

fuzzy logic differs from traditional logic#
unexpected behaviours can occur §




Key Message 2

A different approach

A true integration T of X and Y should allow to
reconstruct X and Y as special cases of T

Thus, Neural Symbolic approaches should have
both logic and neural networks as special cases

Our approach: “an interface layer (<> pipeline)
between neural & symbolic components”

will be illustrated with DeepProblLog
See also [Manhaeve et al., NeurlPS 18; arXiv: 1907.08194]

PROBABI

(S

Part 2 of the talk — illustration with DeepProbLog [NeurlPS 2018]



DeepProblLog

DeepProblLog = Probability + Logic + Neural Network

DeepProbLog = ProbLog + Neural Network

Related work in NeSy

Logic is made less expressive
Logic is pushed into the neural network

Fuzzy logic

Language semantics unclear

4]

DeepProblLog

Full expressivity is retained
Maintain both logic and neural network

Probabillistic logic programming

Clear semantics

.......



PART 2

FROM o @@ ") Problog
FROM TO DeepProbLog
\/

a logic programming perspective

.......



PART 2 A

From Prolog to
ProbLog

QBABI



Logic Programs

as in the programming language Prolog

Propositional logic program Two proofs (by refutation)
burglary. .
hears_alarm(mary). - Ialls(mary).

:- alarm, hears_alarm(mary).

earthquake. l
hears_alarm(john). .- earthquake, hears_alarm(ma

l .- burglary, hears_alarm(|

alarm :— earthquake. - hears_alarm(mary).

- hears_a*arm(mary)

alarm :— burglary. !

[ M

calls(mary) :— alarm, hears_alarm(mary). [

calls(john) :— alarm, hears_alarm(john).

A proof-theoretic vievv..;_i;;gé_';’
: erc

.......



Probabilistic Logic Programs

as In the probabilistic programming language ProbLog

Propositional logic program

0.1 ::burglary.
0.3 ::hears_alarm(mary).

Probabilistic facts

0.05 ::earthquake.
0.6 ::hears_alarm(john).

alarm :— earthquake.

alarm :— burglary.

calls(mary) :— alarm, hears_alarm(mary).

calls(john) :— alarm, hears_alarm(john).

Key Ildea (Sato & Poole)
the distribution semantics:

unify the basic concepts in logic
and probability:

random variable ~ propositional
variable

an interface between logic and
probability



Probabilistic Logic Programs

as In the probabilistic programming language ProbLog

Propositional logic program

0.1 ::burglary.
0.3 ::hears_alarm(mary).

0.05 ::earthquake.
0.6 ::hears_alarm(john).

alarm :— earthquake.

alarm :— burglary.

calls(mary) :— alarm, hears_alarm(mary).

calls(john) :— alarm, hears_alarm(john).

Two proofs (by refutation)

.- alarm
:- burglary. .- earthquake.
P=0.1 l P=0.05 l
[] []
Probability of one proof: H Pf

f:facteProof

.........



Probabilistic Logic Programs

as in the probabilistic programming language ProbLog

Propositional logic program Disjoint sum problem

0.1 :: burglary. .- alarm

0.3 ::hears_alarm(mary). / \

0.05 ::earthquake.

. :- burglary. .- earthquake.
0.6 ::hears_alarm(john).
P=0.1 l P=0.05 l
alarm :— earthquake. 1
alarm :— burglary.
Probability of one proof: H Pf
f:facteProof

calls(mary) :— alarm, hears_alarm(mary).

calls(john) :— alarm, hears_alarm(john). P(alarm) = P(burg OR earth)
= P(burg) + P(earth) - P(burg AND earéh);
=/= P(burg) + P(earth)



Probabilistic Logic Program
Semantics

earthquake. [Vennekens et al, ICLP 04]

0.05: :burglary. re
probabilistic causal laws

0.6::alarm :- earthquake.

0.8::alarm :- burglary.
g y earthquake |].0

alarm no alarm

0.6 0.4

burglary no burglary burglary

05 0.95\, no burglary

no alarm alarm no alarm

0.2

alarm

P(alarm)=0.6%0.05%x0.8+0.6x0.05%0.2+0.6%0.95+0.4x0.05%0.8

48



Probabilistic Logic Program
Semantics

. : Bayesian Network
Propositional logic program

0.1 :: burglary. burglary.
0.05 :: earthquake.

alarm :— earthquake.

alarm :— burglary.

0.7::calls(mary) :— alarm.

0.6::calls(john) :— alarm.

Bayesian net encoded as Probabilistic Logic Program
PLPs correspond to directed graphical models

........




Flexible and Compact Relational

ModeJ_th_Etedlgimg Grades

i
“Program” Abstraction:
e S, Clogical variable representing students, courses

* the set of individuals of a type is called a population
e Int(S), Grade(S, C), D(C) are parametrized random variables

Grounding:
« for every student s, there is a random variable Int(s)
* for every course c, there is a random variable Di(c)
for every s, c pair there is a random variable Grade(s,¢)
B¢B* all instances share the same structure and parameters™
Prxadt, K&rsting, Natarajan, Poole: Statistical Relational Al

C




Probabilistic Logic

Programs

0.4 ::int(S) :- student(S).
0.5 :: diff(C):- course(C).

S

student(john). student(anna). student(bob).
course(ai). course(ml).  course(cs).

gr(S,C,a) :- int(S), not diff(C).
0.3::gr(S,C,a); 0.5::¢r(S,C,b);0.2::¢r (S,C,c) :-
0.1:gr(S,C,b); 0.2::gr(S,C,c); 0.2::gr(S,C,f) :-
student(S), course(C),
not int(S), not diff(C).
0.3:gr(S,C,c); 0.2::gr(S,C,f) :-
not int(S), diff(C).

g&rsting, Natarajan, Poole: Statistical Relational Al

int(S), diff(C).




ProbLog by example: Grading

unsatisfactory(S) :- student(S), grade(S,C,f).

excellent(S):- student(S), not(grade(S,C1,G),below(G;,a)), grade(S,C2,a).

0.4 ::int(S) :- student(S).
0.5 :: diff(C):- course(C).

student(john). student(anna). student(bob).
course(ai). course(ml).  course(cs).

gr(S,C,a) :- int(S), not diff(C).
0.3::gr(S,C,a); 0.5::gr(S,C,b);0.2::¢r(S,C,c) :- int(S), diff(C).
0.1:gr(S,C,b); 0.2::gr(S,C,c); 0.2::gr(S,C,f) :-
student(S), course(C),
not int(S), not diff(C).
0.3::gr(S,C,c); 0.2::gr(S,C,f) :- not int(S), diff(C).

g&rsting, Natarajan, Poole: Statistical Relational Al



ProblLog by example:
Grading

Shows relational structure

grounded model: replace variables by constants

Works for any number of students / classes (for 1000
students and 100 classes, you get 101100 random
variables); still only few parameters

With SRL / PP

build and learn compact models,

from one set of individuals - > other sets;

reason also about exchangeability,

_ int(sl) . ditf(cl)
L gr{s1,cl) 4
T 0.94 _'* Obscwed Value: A ¥ -1 I C S()-
F 0.06) LFosolm
.7- 1 L ,_/‘ o N
int(s2) S -~ gr(sd2.\§1') -
T 0. (_6' | S —{ S€rve Alue z ,
: ' )\
F0.94 I s (A )
| HE -~ 61.c2) rozm
gris1.c < e
<N\ . F 0.22 ‘
. nus3) ) N\ Obsarved Valua: B | LE .
T o650 .
F o3l | D | ""“-.5’ —
LA grisd.c ¢ 47T 0.22
| Observed Value: B e
intisd) - 7~ r D'W_,-
T 0328 A & : :
FossR ‘ gri(s3,c2) /- (__diff(cd) |
and e Obsefved Value: 8 s |
' fosoll |
, a ‘ /
- **.:l - 3 — ’
[ gris3cd) N\ oA 2 / " grisd C~)
Aosoll 4(5} 1A Uu)l
B 025 Observed Value: B 8 0250
\C 026l ) C o_.m.

ild even more complex models,

drporate background knowledge

#rsting, Natarajan, Poole: Statistical Relation®3 Al
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ProblLog Inference

&



2. Rewrite the ground logic program into a propositional logic formula
3. Compile the formula into an arithmetic circuit

ProbLog Inference

Answering a query in a ProbLog program happens in four steps
1. Grounding the program w.r.t. the query

4. Evaluate the arithmetic circuit

0.1::
0.5 ::

0.2 ::
04 ::

burglary.
hears_alarm(mary).

earthquake.
hears_alarm(john).

alarm :— earthquake.

alarm :— burglary.

calls(X) :— alarm, hears_alarm(X).

Query

P(calls(mary))



ProbLog Inference

Answering a query in a ProbLog program happens in four steps

1. Grounding the program w.r.t. the query (only relevant part !)
2. Rewrite the ground logic program into a propositional logic formula
3. Compile the formula into an arithmetic circuit

4. Evaluate the arithmetic circuit

0.1 :: burglary.

0.5 :: hears_alarm(mary). Query

0.2 :: earthquake. P(calls(mary))
0.4 :: hears_alarm(john).

alarm :— earthquake.

alarm :— burglary.
calls(mary) :— alarm, hears_alarm(mary).

calls(john) :— alarm, hears_alarm(john).



ProbLog Inference

Answering a query in a ProbLog program happens in four steps

1. Grounding the program w.r.t. the query

2. Rewrite the ground logic program into a propositional logic formula
3. Compile the formula into an arithmetic circuit

4. Evaluate the arithmetic circuit

0.1 :: burglary.
0.5 :: hears_alarm(mary).

calls(mar
0.2 :: earthquake. (mary)
0.4 :: hears_alarm(john). <>
alarm :— earthquake. hears_alarm(mary) A (burglary v earthquake)

alarm :— burglary.
calls(mary) :— alarm, hears_alarm(mary).

calls(john) :— alarm, hears_alarm(john).



ProbLog Inference

Answering a query in a ProblLog program happens in four steps

1.

Grounding the program w.r.t. the query

2. Rewrite the ground logic program into a propositional logic formula
3.
4. Evaluate the arithmetic circuit

Compile the formula into an arithmetic circuit (knowledge compilation)

OR | 6.14 calls(mary)

AND _@_;_0_4__\

AND | o606 | \ AND [ 6.7 -
J J

hears_alarm(mary) A (burglary v earthquake)

‘
.......
N



ProbLog Inference

Answering a query in a ProbLog program happens in four steps

1. Grounding the program w.r.t. the query

2. Rewrite the ground logic program into a propositional logic formula

3. Compile the formula into an arithmetic circuit (knowledge compilation)
4. Evaluate the arithmetic circuit - replace AND by X and OR by +

OR | 6.14 calls(mary)

AND _@_;_0_4__\

AND | o606 | \ AND [ 6.7 -
J J




ProblLog applications
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Travian: A massively multiplayer
real-time strategy game
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Can we build a model
of this world ?
Can we use it for playing
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Activity analysis
and tracking

A-A05 4

Recognize activities!? g gg g !
Infer object properties!? ESF’:‘
LA = |

[Skarlatidis et al, TPLP 14; [Persson et al, IEEE Trans on
Nitti et al, IROS |3, ICRA 14, Cogn. & Dev. Sys. 19;

ML) 16] JCAI 20]

Track people or objects over

time! Even if temporarily
hidden?
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Learning relational affordances

Learn probabilistic model

Learning relational
affordances
between

two objects
(learnt by experience)

similar to probabilistic Strips

(with continuous distributions)

_ _ _ Moldovan et al. ICRA 12, |13, |4;Auton. Robots |8
From two object interactions

Generalize to N r—

I




Probabilistic Sub-network
network generation inference

| |
Interaction network B I O I O g y

il 2
o 2. ”
g 43
P \N/4
Noe o - .
- ,fk_ [ o | o e
e ' éd .Y
o % &:—:—V L’—V P ¥ o
PN . b |
- ﬁ’ ‘ v * P
b

1Y

~ ¢ 1+ % Inferred
L"“P‘/ _ sub-network

Molecular profiling Gene list

Figure 1. Overview of PheNetic, a web service for network-based interpretation of ‘omics’ data. The web service uses as input a genome wide interaction
network for the organism of interest, a user generated molecular profiling data set and a gene list derived from these data. Interaction networks for a wide
variety of organisms are readily available from the web server. Using the uploaded user-generated molecular data the interaction network is converted into
a probabilistic network: edges receive a probability proportional to the levels measured for the terminal nodes in the molecular profiling data set. This
probabilistic interaction network is used to infer the sub-network that best links the genes from the gene list. The inferred sub-network provides a trade-off
between linking as many genes as possible from the gene list and selecting the least number of edges.

e Causes: Mutations * Interaction network: _
o All related to similar 30063 nodes Goal: connect causes to effects
N through common subnetwork
phenotype * Genes * = Find mechanism

* Effects: Differentially expressed < Proteins

genes + 16794 edges * Techniques:

 DTProbLog

* 27 000 cause effect pairs * Molecular interactions Approximate inference
e Uncertain A

Herc
64




& C _ nhitos//dtai.cs kuleuven be/pron og/

Home

" LS UG /]

e 10 aid in the interpretation of gene lists, PheNetic:.was built:on top of Problog.

. ’ ®2000

Introduction.
Probabilistic logic programs are logic programs in which some of ths facis are annotated with probabilities,

FroblLeg is a tool that allows you to intitivey bu ld programs that do not only encode complex interactions between a larce sets of heterogenous compenents bl
uncertainties that are prasent in real-life situations,

The engire “ackles severa tasks such as computing the marg nals given evidenca and learring from (partial) interpratations. Problog is 2 sute of effident algorithms
tasks. It is based on a conversion of the program and the queries and evidence to a weighted Boolean farmula. This allows us to reduce the inferenca tasxs to well-s
weignted model courtirg, which can be solved using state-cf-the-art methode known from the graphical mcdel and knowledge compilation literature.

The Language. Probabilistic Logic Programming.

FroblLog makes t easy 10 express complex, precbabilistic models.

@.3::strass(X) :- person(X).
@.2::influences(X,Y) ;- person(X), person(Y),

smokes(X) : stress(X).
smokes(X) - friend(X,Y), influences(Y,X), smokas(Y).

|BABI

Y
65




PART 2 B

From ProblLog to
DeepProblLog




Neural predicate

Qutput distribution
Neural
>

® Neural networks have uncertainty
in their predictions

RS  BSSSNE  SEEEERSSSS———— . -

® A normalized output can be Key Idea DeepProbLog
interpreted as a probability
distribution unify the basic concepts in logic

and neural networks:

® Neural predicate models the

output as probabilistic facts
PROBABI

neural predicate ~ neural net

an interface between logic and
neural nets

No changes needed in the
brobabilistic host language

67



The neural predicate

The output of the neural network is probabilistic facts in
DeepProblog

Example:
:: digit(X,Y).
Instantiated into a (neural) Annotated Disjunction:

0.04::digit(l,0) ; 0.35::digit(H,1) ; ... ;

0.53::digit(l,7) ; ... ; 0.014::digit(H,9).

¥

ratantey
RSN L)
s o S uby

y 'y
AL
Vess
e g
S
‘_.‘.".u‘
ve g e
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DeepProbLog exemplified:
MNIST addition

Task: Classity pairs of MNIST digits with their sum

ElBis
O
Ed ES 11

Benefit of DeepProblLog:
 Encode addition in logic

e Separate addition from digit classification

nn(mnist net, [X], Y, [0 ... 9] ) :: (X,Y).
addition(X,Y,2) :- (X,N1), (Y,N2), Z is N1+N2.
Examples:

addition( El,H ,8), addition(ls] 2 ,4), addition(Ed B .,11), ..

.
.......



DeepProbLog exemplified:
MNIST addition

Task: Classity pairs of MNIST digits with their sum

ElBis
O
Ed ES 11

Benefit of DeepProblLog:
 Encode addition in logic

e Separate addition from digit classification

nn(mnist net, [X], Y, [0 ... 9] ) :: (X,Y).
addition(X,Y,Z) :- (X,N1), (Y,N2), Z is N1+N2.
addition(E],B,8) :- digit(Ej}N1l), digit(p§,N2), 8 is N1 + N2.
Examples:

addition( g, pg,8), addition(gy m ,4), addition(g ,gg,11), - A



MNIST Addition

® Pairs of MNIST images, labeled with sum

® Baseline: CNN

Loss Accuracy
0 1.0

® C(Classifies concatenation of both images *m\{,»«"“—"’ DeepPrablog
into classes 0 ...18 %2 |

f ’ > s
f M ¥

2 . O ”

o' ‘W,\ 0.6

—— CNN

- 0.8

® DeepProblog: 15 | Ww
: : : Loy | ’ \*W'p ntH — a
® CNN that classifies images into 0 ... 9 el / “ PWW'WWWW 5%
¢ TWO Ilnes Of DeePPrObIOg COde - 6 =~ 5000 10600 |[}5-0[p-0~ 20600 25600 :300:00 0-0
® Result:

71




Example

Learn to classify the sum of pairs of MNIST digits

Individual digits are not labeled!

Eg ( ’ ’8)

Could be done by a CNN: classify the
concatenation of both images into |9 classes

EINMECIA-REN-~

1OWEVEr.

(G

72
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Multi-digit MNIST
addition with MNIST

number ([ | , Result , Result) .

number ( [HIT],Acc, Result) :— a dusi
digit(H, Nr ), Acc2 1s Nr +10*Acc , 2.5 N a1
number (T , Acc2 ,Result) . - ,--/ |
number (X,Y) :— number (X,0,Y) . W 0.6
1.0 ’, =
multiaddition(X, Y, Z ) :— \ .
0.5 1 | - Q.
number (X, X2 ), | _ AL A
number (Y,Y2), > 5 5000 10000 15000 20000 25000 30000
7 is X2+Y2 . remtons
(b) Multi-digit (T2)
erc

.......

e

73



Inference & Learning




Gradient Semiring

nn(mnist net, [X], Y, [0 ... 9] )

(X,Y).
addition(X,Y,Z) :- \
(X 4 Nl ) 4 0.5, @
(Y,N2) [0.6,0.2,0.1,0.8]
4 4
Z is N1+N2. 0.48, 0.02,
[0.6,0,0,0.8]| ® ® |0,0.2,0.1,0]
The ACs are differentiable /Y\
and there is an interface [digit(ﬂ,@) } [digit(ﬂ,n } [digit(ll,‘l) } [digit(ll,@) ]
with the neural nets o0l oy Goel 10,661  [0.0.1.0]

we use the “gradient” semi-ring) ﬁ L}
L

L aeae o

. -‘-."u 'l
HEerc
. _nas
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Experiments

PROBABI

(s

otey ot
rratanhage
st anes;
-
.:\-..u.,
Save
. _nas
s tel
[3S s
'-.o'."b..-
vt g als
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Program Induction/Sketching

In Neural Symbolic methods
® Rule Induction — work with templates
P(X) :- R(X,Y), Q(Y)
® and have the “predicate” variables / slots BQ, R determined by the NN
® Simpler form, fill just a few slots / holes
Approach similar to ‘Programming with a Differentiable Forth Interpreter [l 04
® Partially defined Forth program with slots / holes
® Slots are filled by neural network (encoder / decoder)

[ )
PROBABI

NG :. / %(E im Rocktaschel, Jason Naradowsky, Sebastian Riedel: Programming with a Differentiable Forth Interpretef;;“f'.f?érc

Fully differentiable interpreter: NNs are trained with input / output
examples

.
......
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Tasksl1]
e Sorting

o Sort lists of numbers using Bubble sort
o Hole: Swap or don’t swap when comparing two numbers

e Addition

o Add two numbers and a carry
o Hole: What is the resulting digit and carry on each step
o (Note: not MNIST digits, but actual numbers)

e \Word Algebra Problems

o E.g. "Ann has 8 apples. She buys 4 more. She distributes them equally
among her 3 kids. How many apples does each child receive?
o Hole: Sequence of permuting, swapping and performing operations on

the three numbers

k, Tim Rocktaschel, Jason Naradowsky, Sebastian Riedel: Programming with a Differentiable Forth Interpreter. .. ...
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Example DeepProblog

neural predicate

hole(X,Y,X,Y):-
(X,Y,0).

hole(X,Y,Y,X):-
(X,Y,1).

bubble sort

Sorting: Training length Addition: training length
Test Length 2 3 4 5 6 2 4 8
, 3 8 100.0 100.0 4922 - - 100.0 100.0 100.0
=Y niak at al - 2017
S D BT 64 | 1000 1000 2065 - ~ | 1000 1000 1000
Dbl s & | 1000 1000 1000 1000 1000 | 1000 1000 1000
P & 64 100.0 100.0 100.0 100.0) 100.0 100.0) 100.0) 100.0

(a) Accuracy on the sorting and addition problems (results for 94 reported by Bosnjak et al. [2017]).

bubble([X],[],X).

bubble([H1,H2IT],[X1IT1],X):-
hole(H1,H2,X1,X2),
bubble([X2IT],T1,X).

bubblesort([],L,L).

bubblesort(L,L3,Sorted) :-
bubble(L,L2,X),

bubblesort(L2,[XIL3],Sorted).

sort(L,L2) :- bubblesort(L,[],L2).

PROBABI

I'raining length — 2 3 4 5 6
d1 on GPU 42s 1605 - - -
A4 on CPU 6ls 3905 - - -
DeepProbhl.og om CPUJ 1ls 14 32s I1ds  245%

(b) Time until 100% accurate on test length 8 for the sorting problem.

Table 1: Results on the Dilferentiable FForth experiments



PROBABI

=

Noisy Addition

nn(classifier, [X], Y, [0 .. 9]) :: digit(X,Y).
t(0.2) :: noisy.
1/19 :: uniform(X,Y,0) ; ... ; 1/19 :: uniform(X,Y,18).
addition(X,Y,Z) :- noisy, uniform(X,Y,Z).
addition(X,Y,Z) :- \+noisy, digit(X,Nl), digit(Y,NQ), Z is N1+N2.
(a) The DeepProbLog program.
Fraction of noise

0.0 0.2 0.4 0.6 0.8 1.0
Baseline 93.46 87.85 82.49 52.67 8.79 5.87
DeepProbLog 97.20 95.78 9450 9290 46.42  0.88
DeepProbLog w/ explicit noise 96.64 95.96 95.58 94.12 73.22 2.92
Learned fraction of noise 0.000 0.212 0415 0.618 0.803 0.985

\ /

Table 3: The accuracy on the test set for T4.

........



Slmpllfled Poker

o
* dealing with uncertainty v
* jgnore suits and just with A, J, Q and K
* two players, two cards, and one community card
* train the neural network to recognize the four cards
* reason probabilistically about the non-observed card
* |earn the distribution of the unlabeled community card
e 0.8:poker(|QV,Q{, A0, K], loss) poker([Q0, Q(, AO, K], A, 1oss).
in 6/10 experiments
Distribution Jack Queen King Ace o
‘,v Actual 0.2 0.4 0.15 0.25 are
Learned 0.203 +0.002 0.396 4 0.002  0.155 £ 0.003  0.246 =+ 0.002

Table 8: The results for the Poker experiment (T9).



Neural T heorem Prover

Towards Neural Theorem Proving at Scale

Fxampl= Knowledgs Base:
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A visual depiction of the NTP® recursive computation graph construction, applied to a toy KB (top left). Dash-separated
Nenote proof states (left: substitutions, right: proof score -generating neural network). All the non-=A 1L proof states are
) obtain the final proot success (depicted m Figure 2). Colours and indices on arrows correspond to the respective KB rule

Minervini Bosnjak Rocktédschel Riedel



Soft Unification

® NTP :“grandpa” softly unifies with “grandfather”, as embeddings are close

® DeepProblog : define

softunification(X,Y) :- embed(X,EX), embed(Y,EY), rbf(EX,EY).

softunification(X,Y) returns | if X and Y unify

—||ex — eyl|
otherwise returns exp( 2 )
21

grandPaOf(X,Y) :- softunification(grandPaOf,R), R(X,Y).

83



Embeddings in MNIST

Computational Graph

- soft(El,E ) :-
cnn_embed@& ,e1)

cnn_embed(El,c?),
rof(e2,e3).

>
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Embeddings in MNIST

Computational Graph

RBE succesor_n(El, H 2) :-

— cnn_embed(H,e1),

cnn_embed(E,c2),

— embed(“successor’,r),
R mul(r,2,r?),
X 2 | | add(r?,e1,e3),

ﬁ ~ | rbf( ,93).

CN/i\l embe‘ddlng :@ |dea of TransE [BOI’deS et al]
|

“successor”

.........



2D MNIST image
embeddings
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The CLUTRR Dataset

Goal of the dataset [Sinha et al. EMNLP 19]:

Predict relations between named entities in the text that are
not explicitly mentioned, but can be deduced using other
mentioned relations.

E.Q.

“Alice has a son called Bob. Bob has a brother called Charlie.
Yesterday, Charlie and Bob went to visit Alice.”

INFER son(alice,charlie)

FROM son(alice,bob) and brother(bob,charlie) . erc



CFG: Context-Free Grammar

E \|

E E, P, N
P :u_l_":

N :llO":

N :ul":

N [119"]

Useful for:

- Is sequence an element of the specified language?
-What is the “part of speech”™tag of a terminal

- Generate all elements of language



PCFG: Probabilistic Context-Free Grammar

0.5 E N -
0.5 E E, P, N W
E > p N
1.0 P A b
, ' ' E 5 N
“10.1 N (2O 0. 1 0.
§§D.1 N :ul": 5N 1 0. 1
S g 1
E |& 0.
§ 0.1 N [“9"] 17 o 3 + 3
Probability of this parse = 0.50.5*0.5*0.1*1*0.11*0.1
Useful for: - 0.000125

- What iS the mOSt |.Ik€ly parSE fOr thIS Sequence Of terminalS? (useful for ambiguous grammatrs)
- What is the probability of generating this string?



DCG: Definite Clause Grammar

e(N) n(N) e(13)
e(N) e(Nl), p, n(N2),

{N N1 N2} e(>) D n(8)
p :ll_l_":

e(2) p n(3)

n(O) :IIOII:
n(l) :lll": n(2)
n(9) [119"] 2 + 3 + 8

Useful for:

- Modelling more complex languages (e.qg. context-sensitive)

- Adding constraints between non-terminals thanks to Prolog power (e.g. through unification)
- Extra inputs & outputs aside from terminal sequence (through unification of input variables)



SDCG: Stochastic Definite Clause Grammar

0.5 e(N) n(N) e(13)
0.5 e(N) e(N1l), p, n(N2), 0

{N N1 + N2} e(3) > p  n(8)
1.0 P [ A ik

e(2) B n(3)
0.1 n(0) 40" 0. 1 0.
0.1 n(l) (AL 5(2) 1 0. 1
1
0
0.1 n(9) [“9"] 15 N - N :
Probability of this parse = 0.50.5*0.5*0.1*1*0.11*0.1

Useful for: - 0.000125

- Same benefits as PCFGs give to CFG (e.g. most likely parse)
- But: loss of probability mass possible due to failing derivations



NDCG: Neural Definite Clause Grammar (= DeepStochLog)

0.5 e(N) n(N) 6(13)
0.5 e(N) e(N1l), p, n(N2), 0

{N N1 N2} e(>) E p n(8)
1.0 p [“+"] 0.

. e(2) B n(3)

number nn,[X],[Y],[digit] n(y)
[%] 0. 1 number_nnlz| =8
1 numper HHE] =3
digit(Y) member(Y,[0,1,2,3,4,5,6,7,8,91]) I§(2) e
number_nn =7
2 - Bl - [&
Probability of this parse =

USer[ for 05*05*05* number_ =2 *1* nI%‘nber_nn =3|E*1* num

- Subsymbolic processing: e.g. tensors as terminals
- Learning rule probabilities using neural networks

ber nn =8



DeepStochlLog

Little sibling of DeepProblLog [Winters, Marra, et al AAAI 22]
Based on a different semantics

e probabilistic graphical models vs grammars

e random graphs vs random walks

Underlying StarAl representation is Stochastic Logic Programs (Muggleton,
Cussens)

e close to Probabilistic Definite Clause Grammars, ako probabilistic unification
based grammar formalism

e again the idea of neural predicates

Scales better, is faster than DeepProblLog
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DeepStochlLog

Examples of the form

9

1.

5

] I 12

digit(Y)
op(Y)

nn(mnist,[I],[N],[digit])
nn(operator,[I],[N],[op])

:— member(Y [0,1,2,3,4,5,6,7,8,9]).

:— member(Y, [+,-]).

:: n(N) -->
:: O(N) --—>

0.33::e(N) --> n(N).
0.33::e(S) --> e(E1), o(+), n(E2), {S
0.33::e(S) --> e(E1), o(-), n(E2), {S

[I].
[I].

is E1 + E2}.
is E1 - E2}.

AL

oL

wlud,

oy

an

N g
._;",b"
vetlug e

S trae



Challenges

e For NeSy, DeepProblLog and others

e scaling up (in DeepProbLog — now has both approximate and exact
inference — an A* like algorithm to find the best proofs)

e which models to use
e real life applications
e peculiarities of neural nets

e need to have a signal (cf. addition of images only, and Poker ... ); aka
curriculum learning + regularization

e This is an excellent area for starting researchers / PhDs
erc



Statistical Relational

Artificial lnlr"igrnn-
wic. Prababiticy

Laogic. Prafabitity

wueie! Comtactadion

Faue e Tacde

Krieiam Kenring

Stirsan Natesan

Dand Poole

Sy Lacronm ov drisye o,

StarAl and NeSy share similar problems
and thus similar solutions apply

Part 1 of the talk

See also [De Raedt et al., IJCAI 20]
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Key Message 2

A different approach

A true integration T of X and Y should allow to
reconstruct X and Y as special cases of T

Thus, Neural Symbolic approaches should have
both logic and neural networks as special cases

Our approach: “an interface layer (<> pipeline)
between neural & symbolic components”

will be illustrated with DeepProblLog
See also [Manhaeve et al., NeurlPS 18; arXiv: 1907.08194]
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Part 2 of the talk — illustration with DeepProbLog [NeurlPS 2018]
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