
From Statistical Relational AI to 
Neural Symbolic Computation

Luc De Raedt 
luc.deraedt@cs.kuleuven.be

joint work with Robin Manhaeve, Angelika Kimmig, Giuseppe Marra, 
Sebastijan Dumancic, Thomas De Meester, Thomas Winters



Learning and Reasoning
both needed

• System 1 - thinking fast - can do things like 2+2 = ? and recognise 
objects in image

• System 2 - thinking slow - can reason about solving complex 
problems - planning a complex task 

• alternative terms — data-driven vs knowledge-driven, symbolic vs 
subsymbolic, solvers and learners, neuro-symbolic… 

• A lot of work on integrating learning and reasoning, 
neural symbolic computation to integrate logic / 
symbols reasoning with neural networks 
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see also arguments 
by Marcus, Darwiche, Levesque, Tenenbaum, Geffner, 
Bengio, Le Cun, Kautz, …



Real-life problems involve 
two important aspects.

Who can go first ? 

A. The red car

https://www.theorie-blokken.be/nl/gratis-proefexamen

B. The blue van
C. The white car

https://www.theorie-blokken.be/nl/gratis-proefexamen


Real-life problems involve 
two important aspects.

Who can go first ? 

A. The red car

https://www.theorie-blokken.be/nl/gratis-proefexamen

B. The blue van
C. The white car

Reasoning
Sub-symbolic perception

https://www.theorie-blokken.be/nl/gratis-proefexamen


Thinking fast 

NEURAL

MAIN PARADIGM in AI 
Focus on Learning



PROBABILITY

LOGIC

TWO MAIN PARADIGMS in AI

Their integration has been well studied in 
Probabilistic (Logic) Programming and Statistical Relational AI (StarAI)

Thinking slow = reasoning 



Integrating learning and 
reasoning

PROBABILITY

LOGIC NEURAL

How to integrate these three paradigms in AI ? 



Neural Symbolic Computation:  

• Neural symbolic computation is the area combining logic / 
symbolic reasoning and neural networks

LOGICLOGICLOGICNEURAL



StarAI and NeSy share similar problems 
and thus similar solutions apply 

See also [De Raedt et al., IJCAI 20] 

Key Message 1
LOGICLOGICLOGICNEURALLOGIC

PROBABI
LITYFROM TO

PART 1 of the talkWARNING!
TALK MAY NOT COVER ALL of 

NESY



Neural Symbolic Computation:  
state-of-the-art

• Neural symbolic computation is the area combining logic / 
symbolic reasoning and neural networks


• Most NeSy approaches : inject the logic/knowledge into 
neural networks, and let the neural network do the rest


• Downside : relies only on neural networks -> the power of 
reasoning, explanation and trust is (at least partly) lost

LOGIC

NEURAL



Key Message 2

A different approach 

A true integration T of X and Y should allow to 
reconstruct X and Y as special cases of T 

Thus, Neural Symbolic approaches should have 
both logic and neural networks as special cases

PART 2 of the talk — illustration with DeepProbLog [NeurIPS 2018]



PART 1
LOGICLOGICLOGICNEURALLOGIC

PROBABI
LITYFROM TO



There are two basic types of 
(uses of) logic, 

graphical models, and 
neural symbolic models

13

StarAI and NeSy share similar problems and 
thus similar solutions apply 

Key Message 1



Logic Programs

burglary. 
hears_alarm_mary. 

earthquake. 
hears_alarm_john. 

alarm :– earthquake. 

alarm :– burglary. 

calls_mary :– alarm, hears_alarm_mary.

calls_john :– alarm, hears_alarm_john. 

Propositional logic program

as in the programming language Prolog

LOGIC

facts : 
burglary = true   



Logic Programs

burglary. 
hears_alarm_mary. 

earthquake. 
hears_alarm_john. 

alarm :– earthquake. 

alarm :– burglary. 

calls_mary :– alarm, hears_alarm_mary.

calls_john :– alarm, hears_alarm_john. 

Propositional logic program

as in the programming language Prolog

LOGIC

rule:  
calls_mary =true IF alarm = true AND hears_alarm_mary = true 

 



Logic Programs

burglary. 
hears_alarm_mary. 

earthquake. 
hears_alarm_john. 

alarm :– earthquake. 

alarm :– burglary. 

calls_mary :– alarm, hears_alarm_mary.

calls_john :– alarm, hears_alarm_john. 

Propositional logic program Two proofs (by refutation) 

:- calls_mary.

:- alarm, hears_alarm_mary.

:- earthquake, hears_alarm_mary.

 []  

:- hears_alarm_mary.

:- burglary, hears_alarm_mary).

:- hears_alarm_mary.

 []  

as in the programming language Prolog

A proof-theoretic view
LOGIC



Logic as constraints

calls(mary)  ↔   hears_alarm(mary) ∧ alarm

calls(john)  ↔  hears_alarm(john) ∧ alarm

alarm ↔  earthquake v burglary

Propositional logic Model / Possible World

{ burglary, 

hears_alarm(john), 

alarm, 

calls(john)}

as in SAT solvers

A model-theoretic view
LOGIC

the facts that are true 
in this model / possible world

IFF AND

OR



Two types of probabilistic graphical 
models and StarAI systems

0.1 :: burglary.

0.05 :: earthquake.

alarm :– earthquake. 

alarm :– burglary.

0.7::calls(mary) :– alarm.

0.6::calls(john) :– alarm. 

alarm

burglary. earthquake. 

calls(mary) calls(john) 

Markov LogicProbabilistic  Logic Programs  
ProbLog

undirected 
Markov Net 

model theoretic
directed 

Bayesian Net 

LOGIC
PROBABI

LITY key representatives



Two types of Neural 
Symbolic Systems

Logic as a kind of neural 
program 

directed StarAI approach and 
logic programs
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Logic as the regularizer                             
(reminiscent of Markov Logic 

Networks) 

undirected StarAI approach and 
(soft) constraints

Just like in StarAI 

LOGICLOGICLOGICNEURAL

Also, many NeSy systems are doing  
knowledge based model construction  KBMC 

where logic is used as a template

Just like in StarAI 



• KBANN (Towell and Shavlik AIJ 94)

• Turn a (propositional) Prolog program into a 
neural network and learn
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A :− B, Z.
B :− C, D.
B :− E, F, G.
Z :− Y, not X.
Y :− S, T.

A   :− B, Z.
B   :− B’.
B   :− B’’.
B’  :− C, D.
B’’ :− E, F, G.
Z   :− Y, not X.
Y   :− S, T.

REWRITE

directed StarAI approach and logic programs

Logic as a neural program

LOGICLOGICLOGICNEURAL
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HIDDEN UNITADD LINKS — ALSO SPURIOUS ONES

and then learn
(Details of activation & loss functions not mentioned)LOGICLOGICLOGICNEURAL

directed StarAI approach and logic programs

Logic as a neural program



Lifted Relational Neural Networks

• Directed (fuzzy) NeSy    

• similar in spirit to the Bayesian Logic Programs and 
Probabilistic Relational Models

• Of course, other kind of (fuzzy) operations for AND, 
OR and Aggregation (cf. later)

22

LOGICLOGICLOGICNEURAL

[Sourek, Kuzelka, et al JAIR]

directed StarAI approach and logic programs



Neural Theorem Prover

[Rocktäschel Riedel, NeurIPS 17; Minervini et al.]
LOGICLOGICLOGICNEURAL

the logic is encoded in the network 
how to reason logically ?

directed StarAI approach and logic programs



Two types of Neural 
Symbolic Systems

Logic as a kind of neural 
program 

directed StarAI approach and 
logic programs
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Logic as the regularizer                             
(reminiscent of Markov Logic 

Networks) 

undirected StarAI approach and 
(soft) constraints

Just like in StarAI 

LOGICLOGICLOGICNEURAL

Also, many NeSy systems are doing  
knowledge based model construction  KBMC 

where logic is used as a template



Logic as constraints

25

multi-class classification

This constraint should be satisfied

(¬x1 ^ ¬x2 ^ x3)_ (1)

(¬x1 ^ x2 ^ ¬x3)_ (2)

(x1 ^ ¬x2 ^ ¬x3) (3)

<latexit sha1_base64="XbG4kwy4F1ZEo1s2e3tSfbPsnUI="></latexit>

figures and example from Xu et al., ICML 2018
LOGICLOGICLOGICNEURAL

undirected StarAI approach and (soft) constraints
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multi-class classification

Probability that constraint is satisfied

(1� x1)(1� x2)x3+

(1� x1)x2(1� x3)+

x1(1� x2)(1� x3)

<latexit sha1_base64="siUg7I1JwVFi32UgItD2G0F9eAQ="></latexit>

basis for SEMANTIC LOSS
   (weighted model counting)

Logic as constraints

LOGICLOGICLOGICNEURAL

undirected StarAI approach and (soft) constraints



Semantic Loss:

• Use logic as constraints (very much like 
“propositional MLNs)

• Semantic loss

• Used as regulariser 

• Use weighted model counting , close to 
StarAI

27

SLoss(T ) / � log
X

X|=T

Y

x2X

pi
Y

¬x2X

(1� pi)

<latexit sha1_base64="dER/6fh2D1SpLgkfxgf7GKJqOOM="></latexit>

Loss = TraditionalLoss+ w.SLoss

<latexit sha1_base64="+S53KnNUSBsAI7yKvOjzIEBijB0=">AAACDHicbZDLSsNAGIUn9dbGW9Wlm8EiCEJIRNGNUHTjwkXF3rANZTKZtEMnF2Ymagl9ADfufYpuXCji1gdw59PoJO1CWw8MfJzz/wz/cSJGhTTNLy03N7+wuJQv6Msrq2vrxY3NughjjkkNhyzkTQcJwmhAapJKRpoRJ8h3GGk4/fM0b9wSLmgYVOUgIraPugH1KEZSWZ1iSb8MhYCnsMqRS1MPMZhZ+/DOgNcpqinTMDPBWbAmUCoXoqeb0f13pVP8bLshjn0SSMyQEC3LjKSdIC4pZmSot2NBIoT7qEtaCgPkE2En2TFDuKscF3ohVy+QMHN/byTIF2LgO2rSR7InprPU/C9rxdI7sRMaRLEkAR5/5MUMyhCmzUCXcoIlGyhAmKsuMMQ9xBGWqj9dlWBNnzwL9QPDOjSOrlQbZ2CsPNgGO2APWOAYlMEFqIAawOABjMALeNUetWftTXsfj+a0yc4W+CPt4wf0Wp1n</latexit>

Logic as a regularizer

LOGICLOGICLOGICNEURAL

undirected StarAI approach and (soft) constraints



Logic Tensor Networks

Serafini & Garcez
LOGICLOGICLOGICNEURAL

undirected StarAI approach and (soft) constraints



Semantic Based Regularization 

Diligenti et al. AIJ
LOGICLOGICLOGICNEURAL

the logic is encoded in the network 
how to reason logically ?

undirected StarAI approach and (soft) constraints



Two types of Neural 
Symbolic Systems

Logic as a kind of neural 
program 

directed StarAI approach and 
logic programs
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Logic as the regularizer                             
(reminiscent of Markov Logic 

Networks) 

undirected StarAI approach and 
(soft) constraints

Just like in StarAI 

LOGICLOGICLOGICNEURAL

Also, many NeSy systems are doing  
knowledge based model construction  KBMC 

where logic is used as a template

Consequence : 
the logic is encoded in the network 
the ability to logically reason is lost 

logic is not a special case 
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StarAI and NeSy share similar problems and 
thus similar solutions apply 

Key Message 1

What do the numbers mean ?
 

Three possible choices:
Logic,

Probability &
Fuzzy

Just like in StarAI 



Logic, Probability and Fuzzy

Three types of approaches to NeSy:

• Purely Logic — keep everything logical (e.g., Dai et al, NeurIPS 19)

• difficult to optimise

• Probabilistic 

• use e.g. arithmetic circuits and knowledge compilation 

• Fuzzy

• easy to translate in neural networks and optimise (but not really logical)

32

Just like in StarAI 

LOGIC
PROBABI

LITY



calls(mary)  <-   hears_alarm(mary) ∧ alarm

calls(john)  <-  hears_alarm(john) ∧ alarm

alarm <-  earthquake v burglary

Propositional logic Model / Possible World

{ burglary, 

hears_alarm(john), 

alarm,  

calls(john)}

probability of world !  0.1 x 0.4 x …

using weighted model counting (WMC) 
weights/probabilities are on the literals

Logic as constraints

SEMANTIC LOSS = 
probability that a random possible world satisfies the formula

LOGIC
PROBABI

LITY

0.1
0.4

…
…



Markov Logic

calls(mary)  <-   hears_alarm(mary) ∧ alarm

calls(john)  <-  hears_alarm(john) ∧ alarm

alarm <-  earthquake v burglary

Propositional logic Model / Possible World

{ f1,

f2,

 f3,

 burglary,  hears_alarm(john), 

alarm,  calls(john),}

the higher the weight , the harder or more logical the constraint

20 : f2 <-> 

30 : f3 <-> 

10 : f1 <-> 

w(f1) = e^10       w(not f1) =e^0 = 1
w(f2) = e^20       w(not f2) =e^0 = 1
w(f3) = e^30       w(not f3) =e^0 = 1

probability of world !  e^10 x e^20 x e^30 

(need to normalise to get probability distribution)  

Logic as soft constraints

LOGIC
PROBABI

LITY

e^10
e^20

e^30

using weighted model counting (WMC) 
weights/probabilities are on the formulae (soft constraints)



Probabilistic Soft Logic [Bach & Getoor]

calls(mary)  <-   hears_alarm(mary) ∧ alarm

calls(john)  <-  hears_alarm(john) ∧ alarm

alarm <-  earthquake v burglary

Propositional logic Model / Possible World

{0.7 burglary,  

0.8 hears_alarm(john), 

0.5 alarm,  

0.3 calls(john),}

20 : 

30 :

10 : 

Logic as soft constraints

LOGIC
PROBABI

LITY

atoms are no longer true or false in worlds 
but true or false to a certain degree

Lukasiewicz T-norm       

For 0 and 1 we get boolean logic

 

      

  (residuum)

evaluates to 1 when rule is satisfied

             when   

A ∨ B = min(1,A + B)

A ∧ B = min(1,A + B − 1)

A ← B = min(1,1 + A − B)

B ≤ A

calls(john)  <-  hears_alarm(john) ∧ alarm

                        0.7                  0.8  
         

Rule evaluates to   when calls(john)=0.3 

≥ 0.5
A ∧ B = min(1,1.5 − 1) = 0.5

min(1,1 − 0.5 + 0.3) = 0.8

logic : a constraint is satisfied (1) or not (0) by a world 
fuzzy logic : the distance to satisfaction  

the higher the distance, the less likely the world  

w= e^ [—20 x (1-0.8)]



Logic Tensor Networks

Serafini & Garcez
LOGICLOGICLOGICNEURAL

undirected StarAI approach and (soft) constraints

a fuzzy logic is used 



Semantic Based Regularization 

Diligenti et al. AIJ
LOGICLOGICLOGICNEURAL

undirected StarAI approach and (soft) constraints

a fuzzy logic is used 



Lifted Relational Neural Networks

• Directed (fuzzy) NeSy    

• similar in spirit to the Bayesian Logic Programs and 
Probabilistic Relational Models

• Of course, other kind of (fuzzy) operations for AND, 
OR and Aggregation (cf. later)

38

LOGICLOGICLOGICNEURAL

[Sourek, Kuzelka, et al JAIR]

directed StarAI approach and logic programs

a fuzzy logic is used 



Logic, Probability and Fuzzy

Three types of approaches to NeSy:

• Purely Logic - keep everything logical (e.g., Dai et al, NeurIPS)

• difficult to optimise

• Probabilistic with e.g. arithmetic circuits and knowledge compilation 

• knowledge compilation (hard to compile, fast inference and learning afterwards)

• Fuzzy

• replace standard and probabilistic logic by a fuzzy logic

• easier to translate in neural networks 

39

Consequence : 
faster / convex optimisation 

fuzzy logic differs from traditional logic 
unexpected behaviours can occurLOGIC

PROBABI
LITY



Key Message 2
A different approach 

A true integration T of X and Y should allow to 
reconstruct X and Y as special cases of T 

Thus, Neural Symbolic approaches should have 
both logic and neural networks as special cases

Part 2 of the talk — illustration with DeepProbLog [NeurIPS 2018]

Our approach: “an interface layer (<> pipeline) 
between neural & symbolic components” 

will be illustrated with DeepProbLog 
See also [Manhaeve et al., NeurIPS 18; arXiv: 1907.08194] 

LOGICLOGICLOGICNEURAL

PROBABI
LITY



DeepProbLog
DeepProbLog = Probability + Logic + Neural Network

DeepProbLog = ProbLog + Neural Network

41

Related work in NeSy DeepProbLog

Logic is made less expressive Full expressivity is retained

Logic is pushed into the neural network Maintain both logic and neural network

Fuzzy logic Probabilistic logic programming

Language semantics unclear Clear semantics

LOGICLOGICLOGICNEURAL

PROBABI
LITY



PART 2
LOGICFROM TO LOGIC

PROBABI
LITY

LOGIC
PROBABI

LITYFROM TO
LOGICLOGICLOGICNEURAL

PROBABI
LITY

a logic programming perspective

ProbLog

DeepProbLog



From Prolog to 
ProbLog

LOGICFROM TO LOGIC
PROBABI

LITY

PART 2 A



Logic Programs

burglary. 
hears_alarm(mary). 

earthquake. 
hears_alarm(john). 

alarm :– earthquake. 

alarm :– burglary. 

calls(mary) :– alarm, hears_alarm(mary).

calls(john) :– alarm, hears_alarm(john). 

Propositional logic program Two proofs (by refutation)

:- calls(mary).

:- alarm, hears_alarm(mary).

:- earthquake, hears_alarm(mary).

 []  

:- hears_alarm(mary).

:- burglary, hears_alarm(mary).

:- hears_alarm(mary).

 []  

as in the programming language Prolog

A proof-theoretic view
LOGIC



Probabilistic Logic Programs

0.1 :: burglary. 
0.3 ::hears_alarm(mary). 

0.05 ::earthquake. 
0.6 ::hears_alarm(john). 

alarm :– earthquake. 

alarm :– burglary. 

calls(mary) :– alarm, hears_alarm(mary).

calls(john) :– alarm, hears_alarm(john). 

Propositional logic program

Probabilistic facts

Key Idea (Sato & Poole) 
the distribution semantics:   

 unify the basic concepts in logic 
and probability:  

random variable ~ propositional 
variable  

an interface between logic and 
probability 

as in the probabilistic programming language ProbLog

LOGIC
PROBABI

LITY



0.1 :: burglary. 
0.3 ::hears_alarm(mary). 

0.05 ::earthquake. 
0.6 ::hears_alarm(john). 

alarm :– earthquake. 

alarm :– burglary. 

calls(mary) :– alarm, hears_alarm(mary).

calls(john) :– alarm, hears_alarm(john). 

Propositional logic program Two proofs (by refutation)

:- alarm

 []  

:- burglary. :- earthquake. 

 []  

P=0.1 P=0.05

Probability of one proof : ∏
f:fact∈Proof

Pf

Probabilistic Logic Programs
as in the probabilistic programming language ProbLog

LOGIC
PROBABI

LITY



0.1 :: burglary. 
0.3 ::hears_alarm(mary). 

0.05 ::earthquake. 
0.6 ::hears_alarm(john). 

alarm :– earthquake. 

alarm :– burglary. 

calls(mary) :– alarm, hears_alarm(mary).

calls(john) :– alarm, hears_alarm(john). 

Propositional logic program Disjoint sum problem

:- alarm

 []  

:- burglary. :- earthquake. 

 []  

P=0.1 P=0.05

Probability of one proof : ∏
f:fact∈Proof

Pf

P(alarm) = P(burg OR earth) 
= P(burg) + P(earth) - P(burg AND earth)  

=/= P(burg) + P(earth)

as in the probabilistic programming language ProbLog

Probabilistic Logic Programs

LOGIC
PROBABI

LITY
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[Vennekens et al, ICLP 04]

probabilistic causal laws

earthquake
alarm

alarm alarm

no alarm

no alarm no alarm

burglary burglaryno burglary no burglary

1.0

0.6 0.4

0.050.05
0.95 0.95

0.80.8
0.20.2

P(alarm)=0.6×0.05×0.8+0.6×0.05×0.2+0.6×0.95+0.4×0.05×0.8

earthquake. 

0.05::burglary. 

0.6::alarm :– earthquake. 

0.8::alarm :– burglary. 

Probabilistic Logic Program 
Semantics 



0.1 :: burglary.

0.05 :: earthquake.

alarm :– earthquake. 

alarm :– burglary. 

0.7::calls(mary) :– alarm.

0.6::calls(john) :– alarm. 

Propositional logic program Bayesian Network

alarm

burglary. earthquake. 

calls(mary) calls(john) 

Bayesian net encoded as Probabilistic Logic Program 
PLPs correspond to directed graphical models 

LOGIC
PROBABI

LITY ProbLog has both (directed) probabilistic graphic models,  
the programming language Prolog (and probabilistic databases) as special case 

Probabilistic Logic Program 
Semantics 



De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

Flexible and Compact Relational 
Model for Predicting Grades

“Program” Abstraction: 
• S, C logical variable representing students, courses

• the set of individuals of a type is called a population

• Int(S), Grade(S, C), D(C) are parametrized random variables
Grounding: 
• for every student s, there is a random variable Int(s) 
• for every course c, there is a random variable Di(c) 
• for every s, c pair there is a random variable Grade(s,c) 
• all instances share the same structure and parametersLOGIC

PROBABI
LITY



Probabilistic Logic 
Programs

0.4 :: int(S) :- student(S).
0.5 :: diff(C):- course(C).

student(john).  student(anna).  student(bob).
course(ai).       course(ml).      course(cs).

gr(S,C,a) :- int(S), not diff(C).
0.3::gr(S,C,a); 0.5::gr(S,C,b);0.2::gr(S,C,c) :-   int(S), diff(C).
0.1::gr(S,C,b); 0.2::gr(S,C,c); 0.2::gr(S,C,f) :-  
           student(S), course(C), 
           not int(S), not diff(C).
0.3::gr(S,C,c); 0.2::gr(S,C,f) :- 
           not int(S), diff(C).

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

LOGIC
PROBABI

LITY



0.4 :: int(S) :- student(S).
0.5 :: diff(C):- course(C).

student(john).  student(anna).  student(bob).
course(ai).       course(ml).      course(cs).

gr(S,C,a) :- int(S), not diff(C).
0.3::gr(S,C,a); 0.5::gr(S,C,b);0.2::gr(S,C,c) :-   int(S), diff(C).
0.1::gr(S,C,b); 0.2::gr(S,C,c); 0.2::gr(S,C,f) :-             

student(S), course(C), 
           not int(S), not diff(C).
0.3::gr(S,C,c); 0.2::gr(S,C,f) :-  not int(S), diff(C).

   ProbLog by example: Grading

unsatisfactory(S) :- student(S), grade(S,C,f).

excellent(S):- student(S), not(grade(S,C1,G),below(G,a)), grade(S,C2,a).

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

LOGIC
PROBABI

LITY



G
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ProbLog by example: 
Grading

Shows relational structure 

grounded model: replace variables by constants 

Works for any number of students / classes (for 1000 
students and 100 classes, you get 101100 random 
variables); still only few parameters 

With SRL / PP 

build and learn compact models, 

from one set of individuals - > other sets;

reason also about exchangeability, 

build even more complex models, 

incorporate background knowledge 

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

LOGIC
PROBABI

LITY



ProbLog Inference

LOGIC
PROBABI

LITY



ProbLog Inference
Answering a query in a ProbLog program happens in four steps
1. Grounding the program w.r.t. the query
2. Rewrite the ground logic program into a propositional logic formula
3. Compile the formula into an arithmetic circuit
4. Evaluate the arithmetic circuit

0.1 :: burglary. 
0.5 :: hears_alarm(mary). 

0.2 :: earthquake. 
0.4 :: hears_alarm(john). 

alarm :– earthquake. 

alarm :– burglary. 
calls(X) :– alarm, hears_alarm(X). 

Query  

P(calls(mary))



ProbLog Inference
Answering a query in a ProbLog program happens in four steps
1. Grounding the program w.r.t. the query (only relevant part !)
2. Rewrite the ground logic program into a propositional logic formula
3. Compile the formula into an arithmetic circuit
4. Evaluate the arithmetic circuit

0.1 :: burglary. 
0.5 :: hears_alarm(mary). 

0.2 :: earthquake. 
0.4 :: hears_alarm(john). 

alarm :– earthquake. 

alarm :– burglary. 
calls(mary) :– alarm, hears_alarm(mary).
calls(john) :– alarm, hears_alarm(john). 

Query  

P(calls(mary))



ProbLog Inference
Answering a query in a ProbLog program happens in four steps
1. Grounding the program w.r.t. the query 
2. Rewrite the ground logic program into a propositional logic formula
3. Compile the formula into an arithmetic circuit
4. Evaluate the arithmetic circuit

0.1 :: burglary. 
0.5 :: hears_alarm(mary). 

0.2 :: earthquake. 
0.4 :: hears_alarm(john). 

alarm :– earthquake. 

alarm :– burglary. 
calls(mary) :– alarm, hears_alarm(mary).

calls(john) :– alarm, hears_alarm(john). 

calls(mary) 

↔ 

hears_alarm(mary) ∧ (burglary ∨ earthquake) 



ProbLog Inference
Answering a query in a ProbLog program happens in four steps
1. Grounding the program w.r.t. the query 
2. Rewrite the ground logic program into a propositional logic formula
3. Compile the formula into an arithmetic circuit (knowledge compilation)
4. Evaluate the arithmetic circuit

calls(mary) 

↔ 

hears_alarm(mary) ∧ (burglary ∨ earthquake) 
AND AND

AND

OR

calls(mary)

￢earthquake

0.8

earthquake

0.2

burglary

0.1

hears_alarm(mary)

0.5

0.08 0.1

0.04

0.14

LOGIC
PROBABI
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ProbLog Inference
Answering a query in a ProbLog program happens in four steps
1. Grounding the program w.r.t. the query 
2. Rewrite the ground logic program into a propositional logic formula
3. Compile the formula into an arithmetic circuit (knowledge compilation)
4. Evaluate the arithmetic circuit - replace AND by X and OR by +

calls(mary) 

↔ 

hears_alarm(mary) ∧ (burglary ∨ earthquake) 
AND AND

AND

OR

calls(mary)

￢earthquake

0.8

earthquake

0.2

burglary

0.1

hears_alarm(mary)
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0.08 0.1

0.04

0.14
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The AC deals with the disjoint sum problem
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Dynamic networks
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[Thon et al, MLJ 11]

Travian:  A massively multiplayer 
real-time strategy game

Can we build a model
of this world ? 

Can we use it for playing
better ?
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Activity analysis 
and tracking 

• Track people or objects over 
time? Even if temporarily 
hidden?

• Recognize activities?

• Infer object properties?

Fig. 4. Tracking results from experiment 2. In frame 5, two groups are
present. In frame 15, the tracker has correctly split group 1 into 1-0 and 1-1
(see Fig. 3). Between frames 15 and 29, group 1-0 has split up into groups
1-0-0 and 1-0-1, and split up again. New groups, labeled 2 and 3, enter the
field of view in frames 21 and 42 respectively.

Six frames of the current best hypothesis from experiment
2 are shown in Fig. 4, the corresponding hypothesis tree is
shown in Fig. 3. The sequence exemplifies movement and
formation of several groups.

A. Clustering Error

Given the ground truth information on a per-beam basis we
can compute the clustering error of the tracker. This is done
by counting how often a track’s set of points P contains too
many or wrong points (undersegmentation) and how often P
is missing points (oversegmentation) compared to the ground
truth. Two examples for oversegmentation errors can be seen
in Fig. 4, where group 0 and group 1-0 are temporarily
oversegmented. However, from the history of group splits
and merges stored in the group labels, the correct group
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Fig. 5. Left: clustering error of the group tracker compared to a memory-
less single linkage clustering (without tracking). The smallest error is
achieved for a cluster distance of 1.3 m which is very close to the border of
personal and social space according to the proxemics theory, marked at 1.2
m by the vertical line. Right: average cycle time for the group tracker versus
a tracker for individual people plotted against the ground truth number of
people.

relations can be determined in such cases.
For experiment 1, the resulting percentages of incorrectly

clustered tracks for the cases undersegmentation, overseg-
mentation and the sum of both are shown in Fig. 5 (left),
plotted against the clustering distance dP . The figure also
shows the error of a single-linkage clustering of the range
data as described in section II. This implements a memory-
less group clustering approach against which we compare
the clustering performance of our group tracker.

The minimum clustering error of 3.1% is achieved by the
tracker at dP = 1.3 m. The minimum error for the memory-
less clustering is 7.0%, more than twice as high. In the
more complex experiment 2, the minimum clustering error
of the tracker rises to 9.6% while the error of the memory-
less clustering reaches 20.2%. The result shows that the
group tracking problem is a recursive clustering problem that
requires integration of information over time. This occurs
when two groups approach each other and pass from opposite
directions. The memory-less approach would merge them
immediately while the tracking approach, accounting for the
velocity information, correctly keeps the groups apart.

In the light of the proxemics theory the result of a minimal
clustering error at 1.3 m is noteworthy. The theory predicts
that when people interact with friends, they maintain a range
of distances between 45 to 120 cm called personal space.
When engaged in interaction with strangers, this distance is
larger. As our data contains students who tend to know each
other well, the result appears consistent with Hall’s findings.

B. Tracking Efficiency

When tracking groups of people rather than individuals,
the assignment problems in the data association stage are
of course smaller. On the other hand, the introduction of
an additional tree level on which different models hypoth-
esize over different group formation processes comes with
additional computational costs. We therefore compare our
system with a person-only tracker which is implemented by
inhibiting all split and merge operations and reducing the
cluster distance dP to the very value that yields the lowest
error for clustering single people given the ground truth. For
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[Skarlatidis et al, TPLP 14; 
Nitti et al, IROS 13, ICRA 14, 
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Learning relational affordances

Learn probabilistic model 

From two object interactions 
Generalize to N  

  Shelf

   
 

  

push

Shelf
   

 

  tap

Shelf
   

 
  grasp

Moldovan et al.  ICRA 12, 13, 14; Auton. Robots 18
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(a) Disparity image (b) Segmented image with landmark points

Clip 7: Illustration of the object size computation. Left-hand image shows the disparity map

of the example shown in Figure 5. The orange points in the right-hand image show the points

that intersect with the ellipse’s major axis. The orange points are mapped onto 3D using their

associated disparity value, and the 3D distance between each pair is defined as the object size.

To learn an a↵ordance model, the robot first performs a behavioural babbling
stage, in which it explores the e↵ect of its actions on the environment. For
this behavioural babbling stage, for the single-arm actions the robot uses its
right-arm only. For these actions a model of the left-arm will be later built by
exploiting symmetry as in [3]. We include the simultaneous two-arm push on
the same object in the babbling phase, allowing for a more accurate modelling
of action e↵ects for the iCub.4

The babbling phase consists of placing pairs of objects in front of the robot
at various positions. The robot executes one of its actions A described above on
one object (named: main object, OMain). OMain may interact with the other
object (secondary object, OSec) causing it to also move. Figure 8 shows such
a setting, with the objects’ position before (l) and after (r) a right-arm action
(tap(10)) execution.

Clip 8: Relational O before (l), and E after the action execution (r).

4
As opposed to the two-arm a↵ordance modelling in [3], we also include in the babbling

phase the two-arm simultaneous actions whose e↵ects might not always be well modelled by

the sum of the individual single-arm actions.

15

similar to probabilistic Strips  
(with continuous distributions)



! Causes: Mutations 
! All related to similar 

phenotype 
! Effects: Differentially expressed 
genes 
! 27 000 cause effect pairs

! Interaction network: 
! 3063 nodes 

! Genes 
! Proteins 

! 16794 edges 
! Molecular interactions 
! Uncertain

! Goal: connect causes to effects 
through common subnetwork 

! = Find mechanism 
! Techniques: 

! DTProbLog 
! Approximate inference

[De Maeyer et al., Molecular Biosystems 13, NAR 15] [Gross et al. Communications Biology, 19]
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From ProbLog to 
DeepProbLog
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PART 2 B



Neural predicate

• Neural networks have uncertainty 
in their predictions

• A normalized output can be 
interpreted as a probability 
distribution

• Neural predicate models the 
output as probabilistic facts

• No changes needed in the 
probabilistic host language

67

Neural 
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Key Idea DeepProbLog  

 unify the basic concepts in logic 
and neural networks:  

neural predicate ~ neural net 

an interface between logic and 
neural nets 



DTAI research group

The neural predicate
The output of the neural network is probabilistic facts in 
DeepProbLog


Example: 

nn(mnist_net, [X], Y, [0 ... 9] ) :: digit(X,Y).

Instantiated into a (neural) Annotated Disjunction:

0.04::digit(  ,0) ; 0.35::digit(  ,1) ; ... ; 
0.53::digit(  ,7) ; ... ; 0.014::digit(  ,9).

PROBABI
LITY
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DTAI research group

DeepProbLog exemplified: 
MNIST addition

Task:  Classify pairs of MNIST digits with their sum


Benefit of DeepProbLog:


• Encode addition in logic


• Separate addition from digit classification

8
4
11

nn(mnist_net, [X], Y, [0 ... 9] ) :: digit(X,Y).

addition(X,Y,Z) :- digit(X,N1), digit(Y,N2), Z is N1+N2.

Examples: 
addition(  ,  ,8), addition(  ,  ,4), addition(  ,  ,11), … 



DTAI research group

DeepProbLog exemplified: 
MNIST addition

Task:  Classify pairs of MNIST digits with their sum


Benefit of DeepProbLog:


• Encode addition in logic


• Separate addition from digit classification

8
4
11

nn(mnist_net, [X], Y, [0 ... 9] ) :: digit(X,Y).

addition(X,Y,Z) :- digit(X,N1), digit(Y,N2), Z is N1+N2.

addition(  ,  ,8) :- digit( ,N1), digit(  ,N2), 8 is N1 + N2.

Examples: 
addition(  ,  ,8), addition(  ,  ,4), addition(  ,  ,11), … 



MNIST Addition
• Pairs of MNIST images, labeled with sum

• Baseline: CNN

• Classifies concatenation of both images 
into classes 0 ...18

• DeepProbLog:

• CNN that classifies images into 0 … 9

• Two lines of DeepProblog code

• Result:

• Fewer iterations necessary

• Higher accuracy achieved
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Example
Learn to classify the sum of pairs of MNIST digits

Individual digits are not labeled!

E.g.  (      ,     , 8)

Could be done by a CNN: classify the 
concatenation of both images into 19 classes

However:

72

                           +                 = ?
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Multi-digit MNIST 
addition with MNIST

Result

73

number ( [ ] , Result , Result ) .
number ( [H | T ] , Acc , Result) :− 

digit(H, Nr ), Acc2 is Nr +10*Acc , 
number ( T , Acc2 , Result ) . 

number (X,Y) :− number (X, 0 ,Y ) . 

multiaddition(X, Y, Z ) :− 
   number (X, X2 ) , 

number (Y, Y2 ) , 
Z is X2+Y2 .
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Inference & Learning

PROBABI
LITY

LOGICLOGICLOGICNEURAL



Gradient Semiring

⨂

addition( , ,1)

0.8,
[1,0,0,0]

0.6,
[0,0,0,1]

⨂

⨁

0.1,
[0,1,0,0]

0.2,
[0,0,1,0]

0.48,
[0.6,0,0,0.8]

0.02,
[0,0.2,0.1,0]

0.5,
[0.6,0.2,0.1,0.8]

digit( ,0) digit( ,1) digit( ,1) digit( ,0)

nn(mnist_net, [X], Y, [0 ... 9] ) :: 
  digit(X,Y).

addition(X,Y,Z) :- 
digit(X,N1), 
digit(Y,N2), 
Z is N1+N2.

PROBABI
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The ACs are differentiable

and there is an interface 


with the neural nets


(Pretty elegant in ProbLog

we use the “gradient” semi-ring)




Experiments
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Program Induction/Sketching
In Neural Symbolic methods 

• Rule Induction — work with templates

P(X) :- R(X,Y), Q(Y) 

• and have the “predicate” variables / slots P,Q, R determined by the NN

• Simpler form, fill just a few slots / holes

Approach similar to ‘Programming with a Differentiable Forth Interpreter’ [1]  ∂4

• Partially defined Forth program with slots / holes

• Slots are filled by neural network (encoder / decoder)

• Fully differentiable interpreter: NNs are trained with input / output 
examples

77

[1]: Matko Bosnjak, Tim Rocktäschel, Jason Naradowsky, Sebastian Riedel: Programming with a Differentiable Forth Interpreter. 
ICML 2017: 547-556 
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● Sorting 
○ Sort lists of numbers using Bubble sort 
○ Hole: Swap or don’t swap when comparing two numbers 

● Addition 
○ Add two numbers and a carry 
○ Hole: What is the resulting digit and carry on each step 
○ (Note: not MNIST digits, but actual numbers) 

● Word Algebra Problems 
○ E.g. “Ann has 8 apples. She buys 4 more. She distributes them equally 

among her 3 kids. How many apples does each child receive? 
○ Hole: Sequence of permuting, swapping and performing operations on 

the three numbers

[1]: Matko Bosnjak, Tim Rocktäschel, Jason Naradowsky, Sebastian Riedel: Programming with a Differentiable Forth Interpreter. 
ICML 2017: 547-556 
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hole(X,Y,X,Y):-
    swap(X,Y,0).

hole(X,Y,Y,X):-
    swap(X,Y,1).

bubble([X],[],X).
bubble([H1,H2|T],[X1|T1],X):-
    hole(H1,H2,X1,X2),
    bubble([X2|T],T1,X).

bubblesort([],L,L).

bubblesort(L,L3,Sorted) :-
    bubble(L,L2,X),
    bubblesort(L2,[X|L3],Sorted).

sort(L,L2) :- bubblesort(L,[],L2).

bubble sort

Example DeepProbLog

PROBABI
LITY

LOGICLOGICLOGICNEURAL

neural predicate



Noisy Addition
nn(classifier, [X], Y, [0 .. 9]) :: digit(X,Y).
t(0.2) :: noisy.

1/19 :: uniform(X,Y,0) ; ... ; 1/19 :: uniform(X,Y,18).

addition(X,Y,Z) :- noisy, uniform(X,Y,Z).
addition(X,Y,Z) :- \+noisy, digit(X,N1), digit(Y,N2), Z is N1+N2.

(a) The DeepProbLog program.

nn(classifier,[a],0) :: digit(a,0); nn(classifier,[a],1) :: digit(a,1).
nn(classifier,[b],0) :: digit(b,0); nn(classifier,[b],1) :: digit(b,1).
t(0.2)::noisy.

1/19::uniform(a,b,1).
addition(a,b,1) :- noisy, uniform(a,b,1).

addition(a,b,1) :- \+noisy, digit(a,0), digit(b,1).
addition(a,b,1) :- \+noisy, digit(a,1), digit(b,0).

(b) The ground DeepProbLog program.

(c) The AC for query addition(a,b,1).

Figure 4: Parameter learning in DeepProbLog. (Example 5)

Figure 5: The learning pipeline.
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Figure 8: The accuracy on the MNIST test set for individual digits while training on (T3).

Fraction of noise
0.0 0.2 0.4 0.6 0.8 1.0

Baseline 93.46 87.85 82.49 52.67 8.79 5.87
DeepProbLog 97.20 95.78 94.50 92.90 46.42 0.88

DeepProbLog w/ explicit noise 96.64 95.96 95.58 94.12 73.22 2.92
Learned fraction of noise 0.000 0.212 0.415 0.618 0.803 0.985

Table 3: The accuracy on the test set for T4.

.

noise tolerant, even retaining an accuracy of 73.2% with 80% noisy labels.
As shown in the last row, it is also able to learn the fraction of noisy labels
in the data. This shows that the model is able to recognize which examples
have noisy labels.

6.2. Program Induction

The second set of problems demonstrates that DeepProbLog can perform
program induction. We follow the program sketching [25] setting of differentiable
Forth (@4) [8], where holes in given programs need to be filled by neural networks
trained on input-output examples for the entire program. As in their work, we
consider three tasks: addition, sorting [26] and word algebra problems (WAPs)
[27].

T5: forth_addition([4], [8], 1, [1, 3])
The input consists of two numbers, represented as lists of digits, and a
carry. The output is the sum of the numbers and the carry. The program
specifies the basic addition algorithm in which we go from right to left over
all digits, calculating the sum of two digits and taking the carry over to
the next pair. The hole in this program corresponds to calculating the
resulting digit (result/4) and carry (carry/4), given two digits and the
previous carry.

23



Simplified Poker
• dealing with uncertainty


• ignore suits and just with A, J, Q and K


• two players, two cards, and one community card


• train the neural network to recognize the four cards


• reason probabilistically about the non-observed card


• learn the distribution of the unlabeled community card


•

nn(m_swap, [X]) :: swap(X,Y,).

hole(X,Y,X,Y):-\+swap(X,Y).

hole(X,Y,Y,X):-swap(X,Y).

bubble([X],[],X).
bubble([H1,H2|T],[X1|T1],X):-

hole(H1,H2,X1,X2),
bubble([X2|T],T1,X).

bubblesort([],L,L).

bubblesort(L,L3,Sorted) :-
bubble(L,L2,X),
bubblesort(L2,[X|L3],Sorted).

forth_sort(L,L2) :- bubblesort(L,[],L2).

Listing 6: Forth sorting sketch (T6)

Figure A.10: Examples of cards used as input for the Poker without perturbations(T9) ex-

periment.

calculate the result.

In Listing 8, there are two neural predicates: coin1/2 and coin2/2. Their
input is the image of the two coins (e.g. Figure 9). The output is heads or tails.
The coins/2 classifies both coins using these two predicates and then performs
the comparison of the classes with the compare/3 predicate.

In Listing 9, there’s a single neural predicate rank/2 that takes as input the
image of a card and classifies it as either a jack, queen, king or ace. There’s also
an AD with learnable parameters that represents the distribution of the unseen
community card (house_rank/1). The hand/2 predicate’s first argument is a
list of 3 cards. It unifies the output with any of the valid hands that these cards
contain. The valid hands are: high card, pair (two cards have the same rank),
three of a kind (three cards have the same rank), low straight (jack, queen king)
and high straight(queen, king, ace). Each hand is assigned a rank with the
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Distribution Jack Queen King Ace

Actual 0.2 0.4 0.15 0.25
Learned 0.203± 0.002 0.396± 0.002 0.155± 0.003 0.246± 0.002

Table 8: The results for the Poker experiment (T9).

two cards and the community card.
For simplicity, we only use the jack, queen, king and ace. We also do not
consider the suits of the cards.
The input consists of 4 images that show the cards dealt to the two players.
Additionally, every example is labeled with the chance that the game is
won, lost or ended in a draw, e.g.:

0.8 :: poker([Q~, Q}, A}, K|], loss)

We expect DeepProbLog to:

• train the neural network to recognize the four cards
• reason probabilistically about the non-observed card
• learn the distribution of the unlabeled community card

To make DeepProbLog converge more reliably, we add some examples with
additional supervision. Namely, in 10% of the examples we additionally
specify the community card, i.e.

poker([Q~, Q}, A}, K|], A}, loss).

This also showcases one of the strengths of DeepProbLog, namely, it can
make use of examples that have different levels of observability. The loss
function used in this experiment is the MSE between the predicted and
target probabilities.

Results. We ran the experiment 10 times. Out of these 10 runs, 4 didn’t
converge on the correct solution. The average values of the learned pa-
rameters for the remaining 6 runs are shown Table 8. As can be seen,
DeepProbLog is able to correctly learn the probabilistic parameters. In
these 6 runs, the neural network also correctly learned to classify all card
types, achieving a 100% accuracy. The other runs did not converge because
some of the classes were permuted (i.e., queens predicted as aces and vice
versa) or multiple classes mapped onto the same one (queens and kings
were both predicted as kings).
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specify the community card, i.e.

poker([Q~, Q}, A}, K|], A}, loss).

This also showcases one of the strengths of DeepProbLog, namely, it can
make use of examples that have different levels of observability. The loss
function used in this experiment is the MSE between the predicted and
target probabilities.

Results. We ran the experiment 10 times. Out of these 10 runs, 4 didn’t
converge on the correct solution. The average values of the learned pa-
rameters for the remaining 6 runs are shown Table 8. As can be seen,
DeepProbLog is able to correctly learn the probabilistic parameters. In
these 6 runs, the neural network also correctly learned to classify all card
types, achieving a 100% accuracy. The other runs did not converge because
some of the classes were permuted (i.e., queens predicted as aces and vice
versa) or multiple classes mapped onto the same one (queens and kings
were both predicted as kings).
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Soft Unification
• NTP : “grandpa” softly unifies with “grandfather”, as embeddings are close

• DeepProblog  :  define 

softunification(X,Y) :- embed(X,EX), embed(Y,EY), rbf(EX,EY).

softunification(X,Y) returns 1 if X and Y unify

otherwise returns  

grandPaOf(X,Y) :- softunification(grandPaOf,R), R(X,Y).

exp(
− | |eX − eY | |2

2μ2
)

83



Embeddings in MNIST

soft(    ,      ) :- 
	 cnn_embed(    ,e1), 
	 cnn_embed(    ,e2), 
	 rbf(e2,e3).

CNN
CNN

RBF

Computational Graph



Embeddings in MNIST
succesor_n(   ,    ,2) :- 
	 cnn_embed(    ,e1), 
	 cnn_embed(    ,e2), 
	 embed(“successor”,r), 
	 mul(r,2,r2), 
	 add(r2,e1,e3), 
	 rbf(e2,e3).

CNN CNN

“successor”

embedding

x 2

+

RBF
Computational Graph

Idea of TransE [Bordes et al] 



2D MNIST image 
embeddings



The CLUTRR Dataset
Goal of the dataset [Sinha et al. EMNLP 19]: 


Predict relations between named entities in the text that are 
not explicitly mentioned, but can be deduced using other 
mentioned relations.


E.g.


“Alice has a son called Bob. Bob has a brother called Charlie. 
Yesterday, Charlie and Bob went to visit Alice.” 

INFER son(alice,charlie) 


FROM son(alice,bob) and brother(bob,charlie) .



CFG: Context-Free Grammar

       E --> N  
       E --> E, P, N  
 
       P --> [“+”]

       N --> [“0”]  
       N --> [“1”]  
       …  
       N --> [“9”] 2     +     3     +     8

N 

E     

E     

P     N     

E     

P     N     

Useful for: 
- Is sequence an element of the specified language? 
- What is the “part of speech”-tag of a terminal 
- Generate all elements of language



PCFG: Probabilistic Context-Free Grammar

0.5 :: E --> N  
0.5 :: E --> E, P, N  
 
1.0 :: P --> [“+”]

0.1 :: N --> [“0”]  
0.1 :: N --> [“1”]  
       …  
0.1 :: N --> [“9”] 2     +     3     +     8

N 

E     

E     

P     N     

E     

P     N     

Useful for: 
- What is the most likely parse for this sequence of terminals? (useful for ambiguous grammars) 

- What is the probability of generating this string?
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DCG: Definite Clause Grammar

       e(N) --> n(N).  
       e(N) --> e(N1), p, n(N2),  
                {N is N1 + N2}.  
       p    --> [“+”].

       n(0) --> [“0”].  
       n(1) --> [“1”].  
       …  
       n(9) --> [“9”]. 2     +     3     +     8

n(2) 

e(2)     

e(5)     

p     n(3)     

e(13)     

p     n(8)     

Useful for: 
- Modelling more complex languages (e.g. context-sensitive) 

- Adding constraints between non-terminals thanks to Prolog power (e.g. through unification) 

- Extra inputs & outputs aside from terminal sequence (through unification of input variables)



SDCG: Stochastic Definite Clause Grammar

0.5 :: e(N) --> n(N).  
0.5 :: e(N) --> e(N1), p, n(N2),  
                {N is N1 + N2}.  
1.0 :: p    --> [“+”].

0.1 :: n(0) --> [“0”].  
0.1 :: n(1) --> [“1”].  
       …  
0.1 :: n(9) --> [“9”]. 2     +     3     +     8

n(2) 

e(2)     

e(5)     

p     n(3)     

e(13)     

p     n(8)     

Useful for: 
- Same benefits as PCFGs give to CFG (e.g. most likely parse) 

- But: loss of probability mass possible due to failing derivations
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= 0.000125



NDCG: Neural Definite Clause Grammar (= DeepStochLog)

Useful for: 
- Subsymbolic processing: e.g. tensors as terminals 
- Learning rule probabilities using neural networks

0.5 :: e(N) --> n(N).  
0.5 :: e(N) --> e(N1), p, n(N2),  
                {N is N1 + N2}.  
1.0 :: p    --> [“+”].

nn(number_nn,[X],[Y],[digit]) :: n(Y) --> 
[X].

digit(Y) :- member(Y,[0,1,2,3,4,5,6,7,8,9]).

2     +     3     +     8

n(2) 

e(2)     

e(5)     

p     n(3)     

e(13)     

p     n(8)     
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Probability of this parse =  
0.5*0.5*0.5*pnumber_nn(  =2)*1*pnumber_nn(  =3)*1*pnum

ber_nn(  =8)



DeepStochLog
• Little sibling of DeepProbLog [Winters, Marra, et al AAAI 22]


• Based on a different semantics 


• probabilistic graphical models vs grammars


• random graphs vs random walks


• Underlying StarAI representation is Stochastic Logic Programs (Muggleton, 
Cussens)


• close to Probabilistic Definite Clause Grammars, ako probabilistic unification 
based grammar formalism 


• again the idea of neural predicates 


• Scales better, is faster than DeepProbLog



DeepStochLog
Examples of the form 

digit(Y) :- member(Y [0,1,2,3,4,5,6,7,8,9]).
op(Y) :- member(Y, [+,-]).

nn(mnist,[I],[N],[digit]) :: n(N) --> [I].
nn(operator,[I],[N],[op]) :: o(N) --> [I].

0.33::e(N) --> n(N).
0.33::e(S) --> e(E1), o(+), n(E2), {S is E1 + E2}.
0.33::e(S) --> e(E1), o(-), n(E2), {S is E1 - E2}.

12



Challenges 
• For NeSy, DeepProbLog and others


• scaling up (in DeepProbLog — now has both approximate and exact 
inference — an A* like algorithm to find the best proofs)


• which models to use  


• real life applications 


• peculiarities of neural nets 


• need to have a signal (cf. addition of images only, and Poker … ); aka 
curriculum learning + regularization


• This is an excellent area for starting researchers / PhDs



StarAI and NeSy share similar problems 
and thus similar solutions apply 

See also [De Raedt et al., IJCAI 20] 
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Key Message 2
A different approach 

A true integration T of X and Y should allow to 
reconstruct X and Y as special cases of T 

Thus, Neural Symbolic approaches should have 
both logic and neural networks as special cases

Part 2 of the talk — illustration with DeepProbLog [NeurIPS 2018]

Our approach: “an interface layer (<> pipeline) 
between neural & symbolic components” 

will be illustrated with DeepProbLog 
See also [Manhaeve et al., NeurIPS 18; arXiv: 1907.08194] 
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