From Statistical Relational AI to Neural Symbolic Computation

Luc De Raedt luc.deraedt@cs.kuleuven.be

joint work with Robin Manhaeve, Angelika Kimmig, Giuseppe Marra, Sebastijan Dumancic, Thomas De Meester, Thomas Winters

Learning and Reasoning both needed

- System I thinking fast can do things like 2+2 = ? and recognise objects in image
- System 2 thinking slow can reason about solving complex problems - planning a complex task
- alternative terms data-driven vs knowledge-driven, symbolic vs subsymbolic, solvers and learners, neuro-symbolic...

 A lot of work on integrating learning and reasoning, neural symbolic computation to integrate logic / symbols reasoning with neural networks

> see also arguments by Marcus, Darwiche, Levesque, Tenenbaum, Geffner, Bengio, Le Cun, Kautz, ...

THINKING.

FAST and SLOW

DANIEL

KAHNEMAN

CONTRACTOR AND ADDRESS PROVE OF DESCRIPTION

Real-life problems involve two important aspects.

https://www.theorie-blokken.be/nl/gratis-proefexamen

Who can go first?

A. The red car

B. The blue van

C. The white car

Real-life problems involve two important aspects.

https://www.theorie-blokken.be/nl/gratis-proefexamen

Who can go first?

A. The red car

B. The blue van

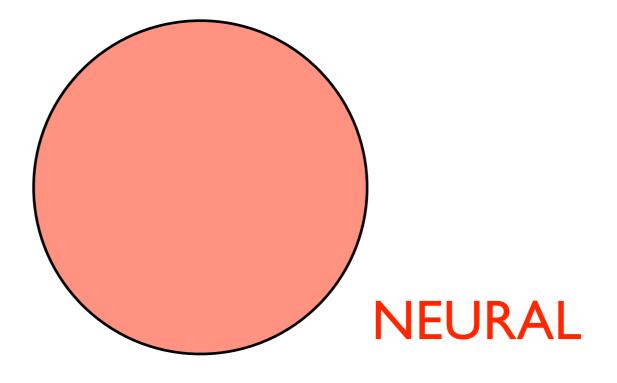
C. The white car

Reasoning

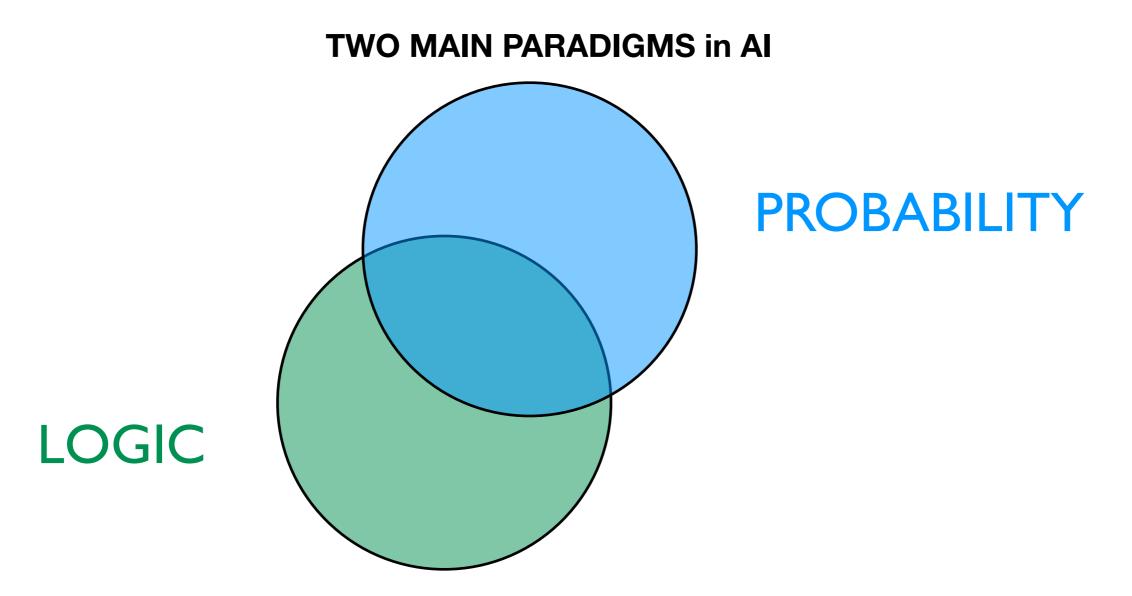
Sub-symbolic perception

Thinking fast

MAIN PARADIGM in Al Focus on Learning

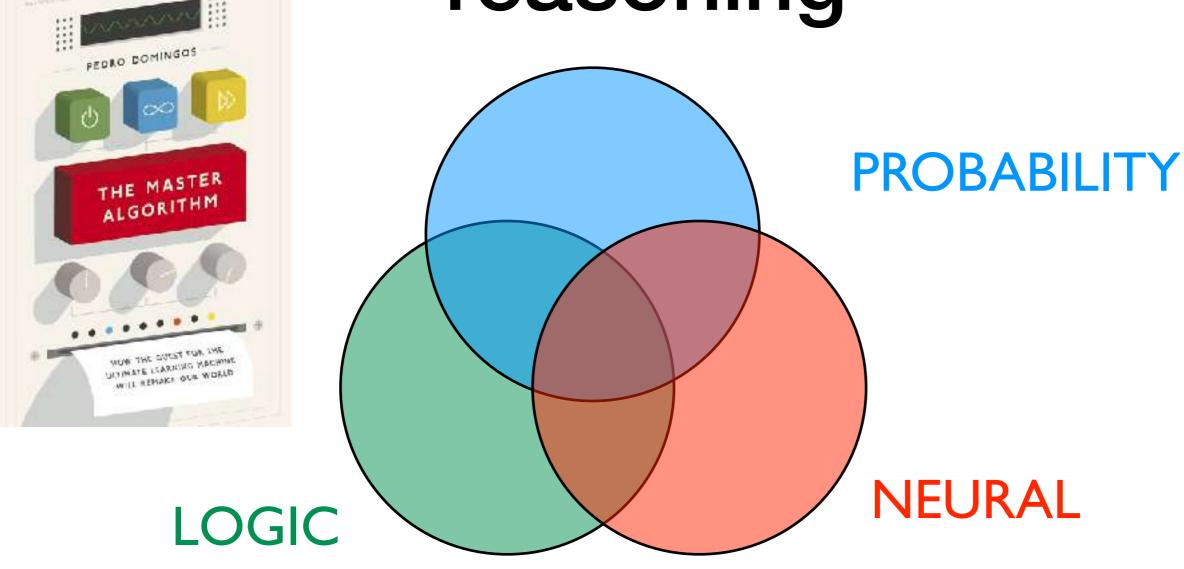


Thinking slow = reasoning



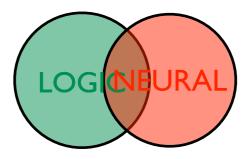
Their integration has been well studied in Probabilistic (Logic) Programming and Statistical Relational AI (StarAI)

Integrating learning and reasoning

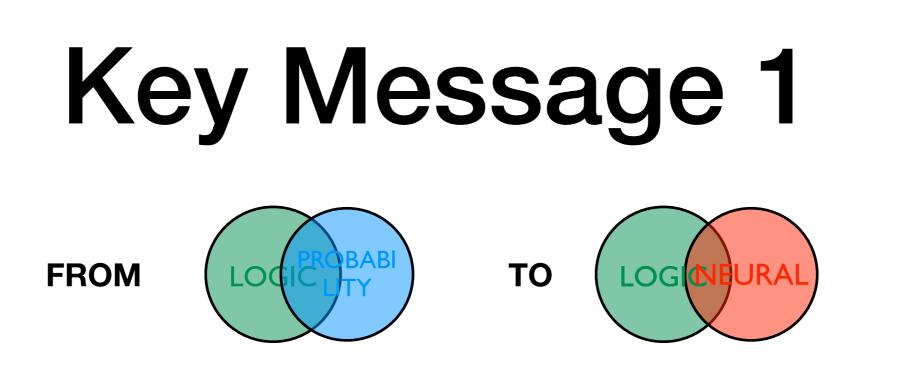


How to integrate these three paradigms in AI ?

Neural Symbolic Computation:



 Neural symbolic computation is the area combining logic / symbolic reasoning and neural networks



StarAl and NeSy share similar problems and thus similar solutions apply

NESY

PART 1 of the talk

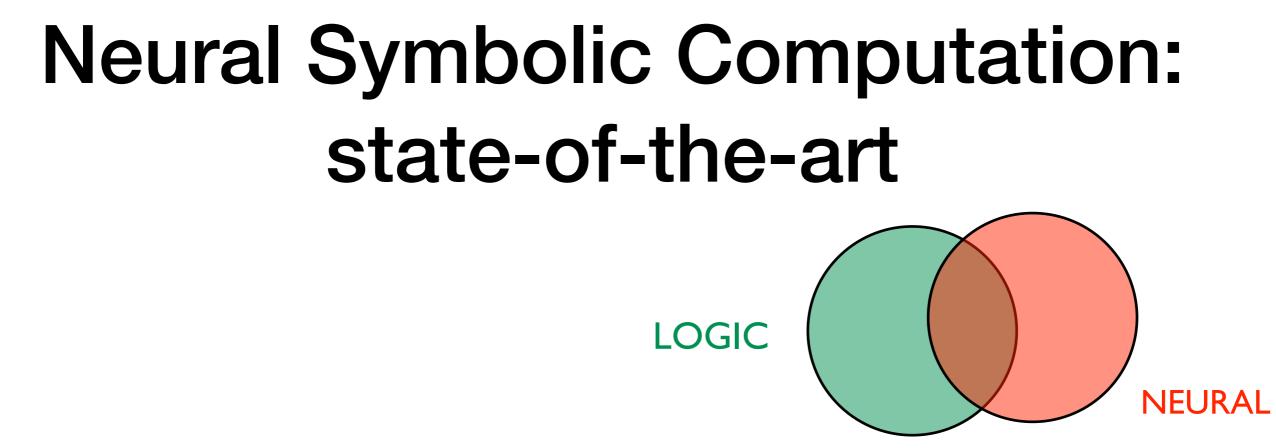
See also [De Raedt et al., IJCAI 20]

Statistical Relational Artificial Intelligence

Without Part Anna and Party Street, St. 1.

Loga . Probability, and Computation

Luo de Raedt Kelaitan Kenntop Seres av Naturojo Devid Poole



- Neural symbolic computation is the area combining logic / symbolic reasoning and neural networks
- Most NeSy approaches : inject the logic/knowledge into neural networks, and let the neural network do the rest
- Downside : relies only on neural networks -> the power of reasoning, explanation and trust is (at least partly) lost

Key Message 2

A different approach

A true integration T of X and Y should allow to reconstruct X and Y as special cases of T

Thus, Neural Symbolic approaches should have both logic and neural networks as special cases

PART 2 of the talk — illustration with DeepProbLog [NeurIPS 2018]

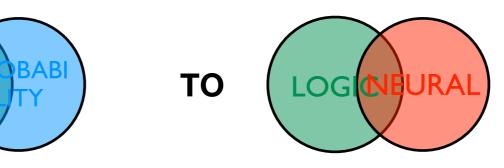
Statistical Relational Artificial Intelligence Logu. Probability, and Computation

Lue de Raeft Kolstan Kenslog Screase Naturge Derid Poole

Anantaras Lorri ano no Antropan Initia minor son Martanas Losanan Initia minor Antropanas Losanan

PART 1

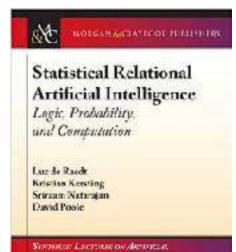
LOC



Key Message 1

StarAl and NeSy share similar problems and thus similar solutions apply

There are two basic types of (uses of) logic, graphical models, and neural symbolic models

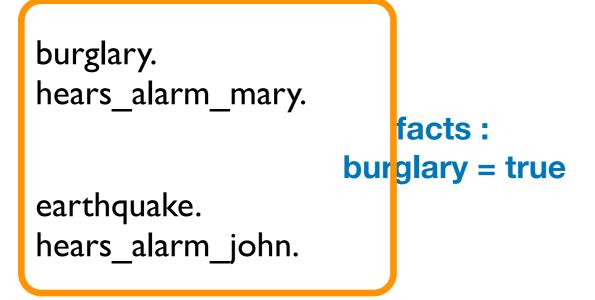


one William W. Collect and Patter Street To.

Logic Programs

as in the programming language Prolog

Propositional logic program



alarm :- earthquake.

alarm :– burglary.

OGIC

calls_mary :- alarm, hears_alarm_mary. calls_john :- alarm, hears_alarm_john.

Logic Programs

as in the programming language Prolog

Propositional logic program

burglary. hears_alarm_mary.

earthquake. hears_alarm_john.

```
alarm :- earthquake.

alarm :- burglary. calls_mary =true IF alarm = true AND hears_alarm_mary = true

calls_mary :- alarm, hears_alarm_mary.

calls_john :- alarm, hears_alarm_john.

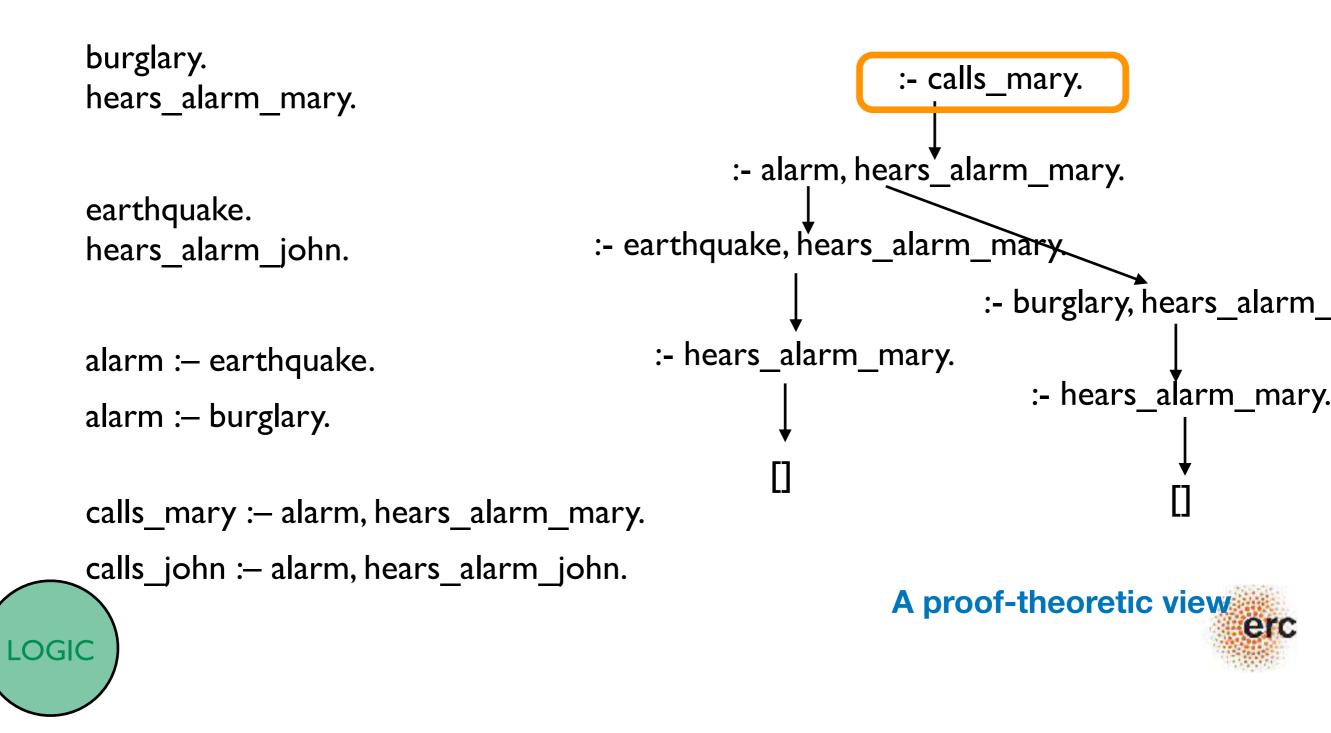
COGIC
```

Logic Programs

as in the programming language Prolog

Propositional logic program

Two proofs (by refutation)



Logic as constraints as in SAT solvers

Propositional logic

Model / Possible World

 $\begin{array}{ccc} \text{IFF} & \text{AND} \\ \text{calls(mary)} \leftrightarrow & \text{hears_alarm(mary)} \land \text{alarm} \end{array}$

calls(john) ↔ hears_alarm(john) ∧ alarm

 $\begin{array}{c} & \mathbf{OR} \\ alarm \leftrightarrow & earthquake v burglary \end{array}$

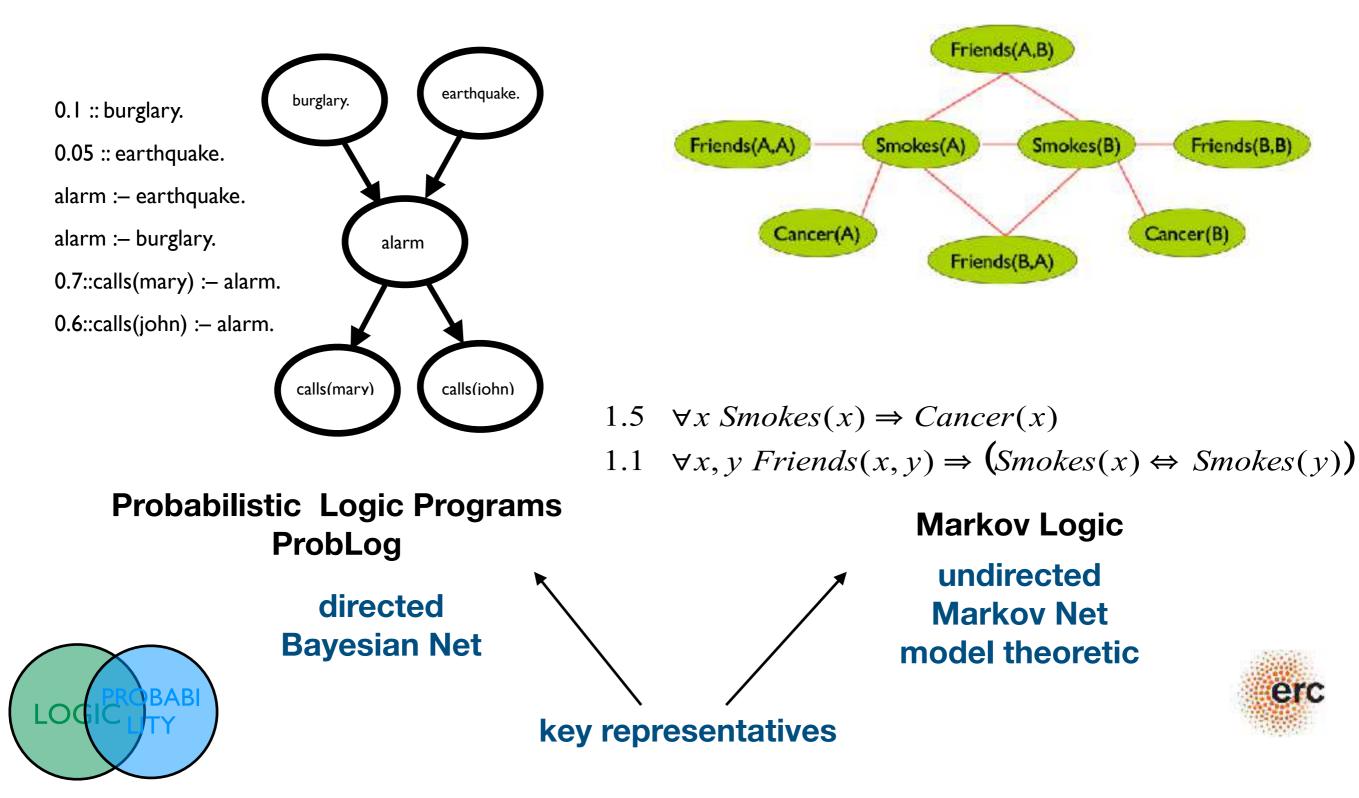
{ burglary, hears_alarm(john),

alarm,

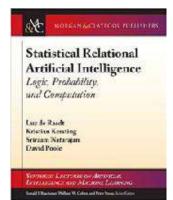
calls(john)}

the facts that are true in this model / possible world

Two types of probabilistic graphic models and StarAl systems



Two types of Neural Symbolic Systems



Just like in StarAl

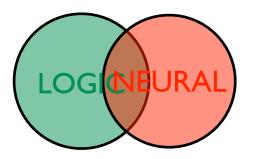
Logic as a kind of *neural program*

directed StarAl approach and logic programs Logic as the *regularizer* (reminiscent of Markov Logic Networks)

undirected StarAl approach and (soft) constraints

Also, many NeSy systems are doing knowledge based model construction KBMC where logic is used as a template

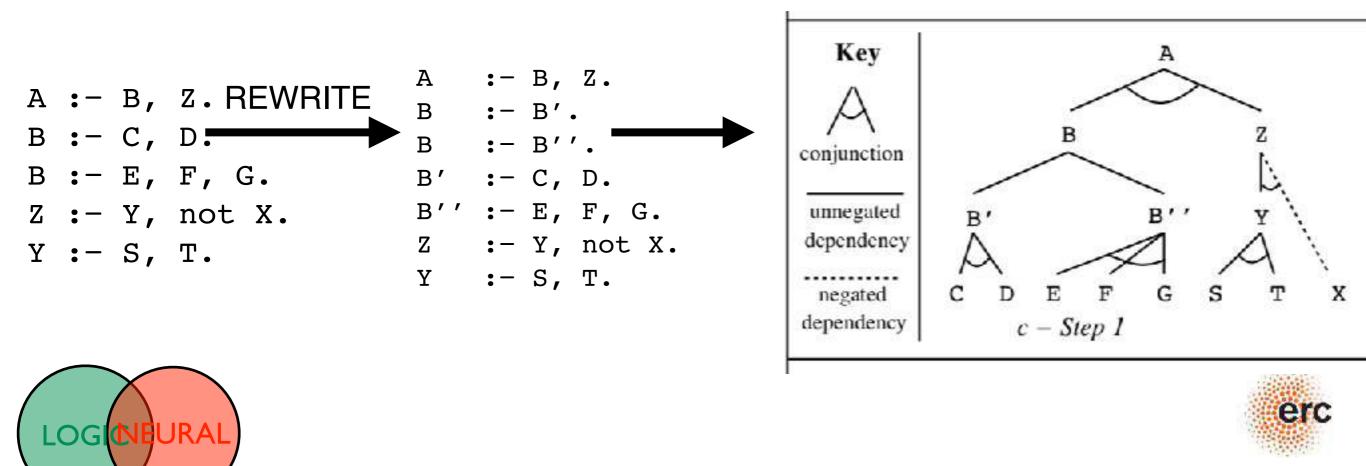
Just like in StarAl



Logic as a neural program

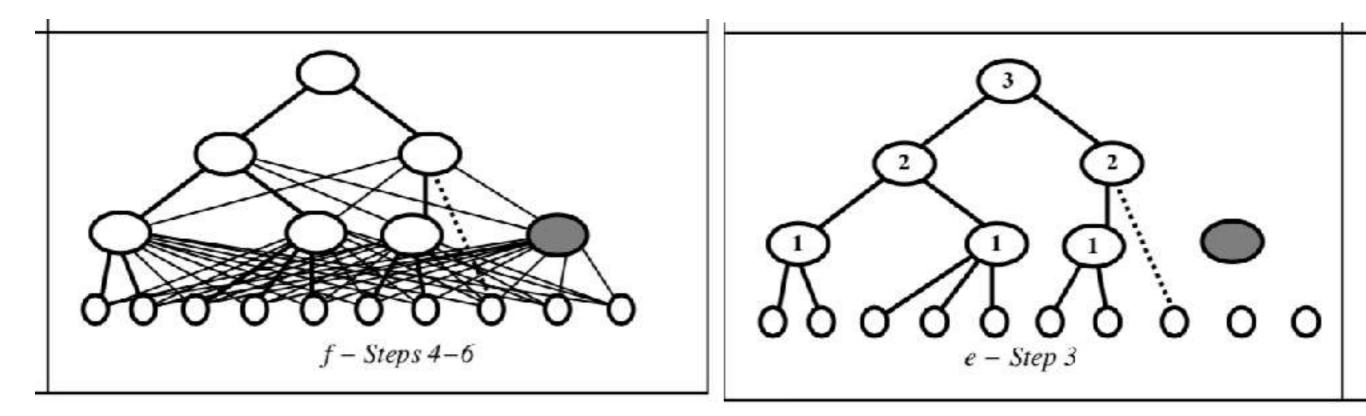
directed StarAI approach and logic programs

- KBANN (Towell and Shavlik AlJ 94)
- Turn a (propositional) Prolog program into a neural network and learn



Logic as a neural program

directed StarAI approach and logic programs



ADD LINKS — ALSO SPURIOUS ONES

HIDDEN UNIT

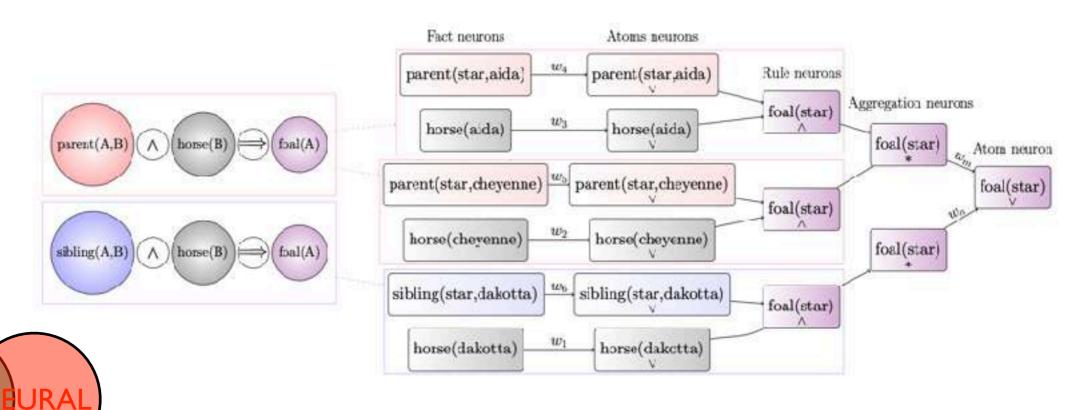
and then learn

OCCUPETAILS of activation & loss functions not mentioned)erc

Lifted Relational Neural Networks

directed StarAI approach and logic programs

- Directed (fuzzy) NeSy
- similar in spirit to the Bayesian Logic Programs and Probabilistic Relational Models
- Of course, other kind of (fuzzy) operations for AND, OR and Aggregation (cf. later)

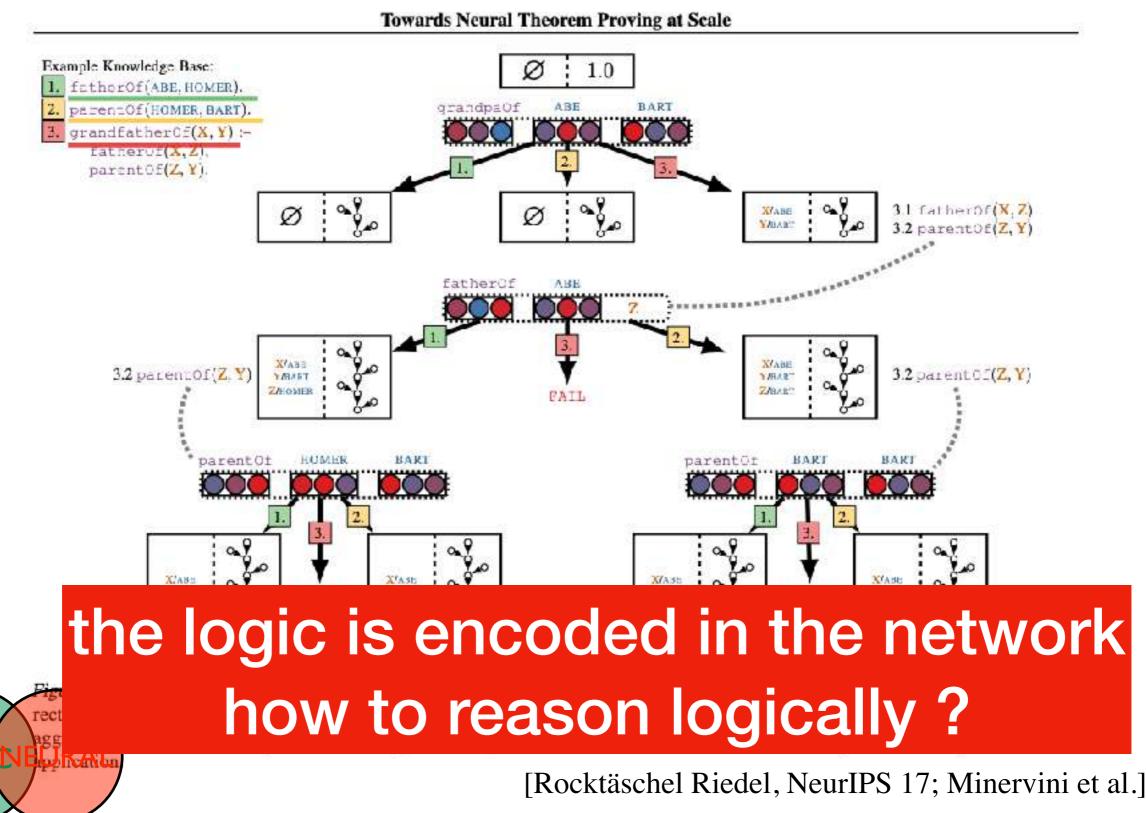


22

[Sourek, Kuzelka, et al JAIR]

directed StarAI approach and logic programs

Neural Theorem Prover



erc

Two types of Neural Symbolic Systems

Just like in StarAl

Statistical Relational Artificial Intelligence Logic, Probability,

und Computation

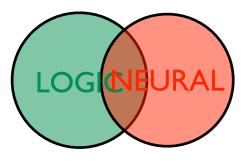
Luc & Rack Kristian Kenting Seiraan Nataraja David Poole

Logic as a kind of *neural program*

directed StarAI approach and logic programs Logic as the *regularizer* (*reminiscent of Markov Logic Networks*)

undirected StarAl approach and (soft) constraints

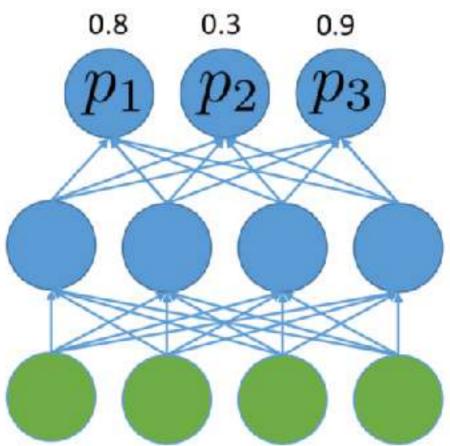
Also, many NeSy systems are doing knowledge based model construction KBMC where logic is used as a template



Logic as constraints

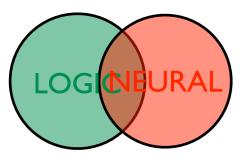
undirected StarAI approach and (soft) constraints

multi-class classification



This constraint should be satisfied

$$(\neg x_1 \land \neg x_2 \land x_3) \lor (\neg x_1 \land x_2 \land \neg x_3) \lor (x_1 \land \neg x_2 \land \neg x_3)$$

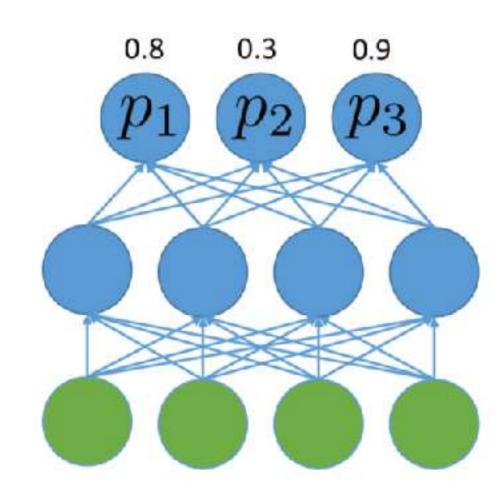


figures and example from Xu et al., ICML 2018

Logic as constraints

undirected StarAl approach and (soft) constraints

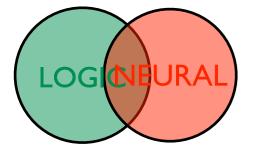
multi-class classification



Probability that constraint is satisfied

$$(1 - x_1)(1 - x_2)x_3 + (1 - x_1)x_2(1 - x_3) + x_1(1 - x_2)(1 - x_3)$$

basis for SEMANTIC LOSS (weighted model counting)



Logic as a regularizer

undirected StarAl approach and (soft) constraints Semantic Loss:

- Use logic as constraints (very much like "propositional MLNs)
- Semantic loss

$$SLoss(T) \propto -\log \sum_{X \models T} \prod_{x \in X} p_i \prod_{\neg x \in X} (1 - p_i)$$

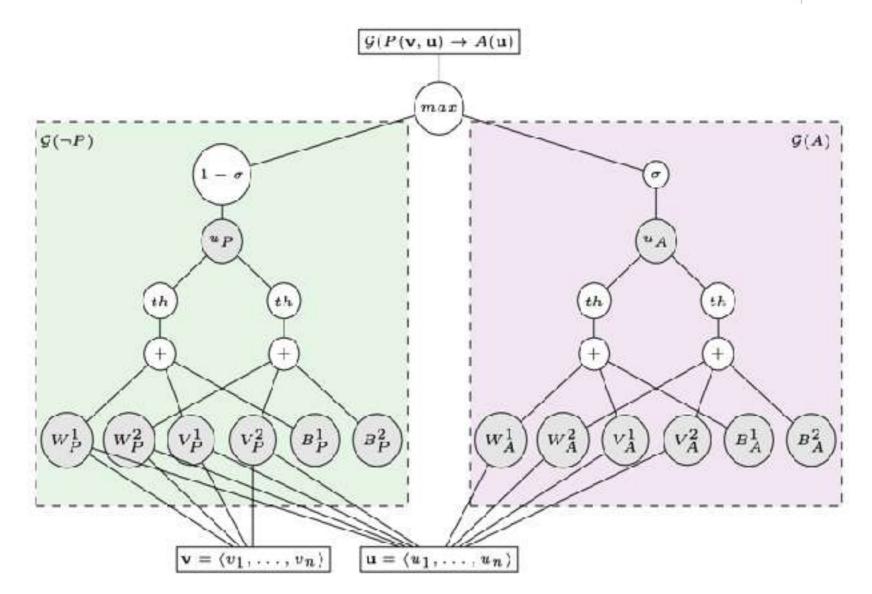
• Used as regulariser

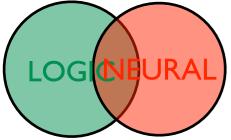
Loss = TraditionalLoss + w.SLoss

Logic Tensor Networks

undirected StarAI approach and (soft) constraints

 $P(x,y) \rightarrow A(y)$, with $\mathcal{G}(x) = \mathbf{v}$ and $\mathcal{G}(y) = \mathbf{u}$





erc

Serafini & Garcez

Semantic Based Regularization undirected StarAl approach and (soft) constraints

 $F = := \forall d \ P_A(d) \Rightarrow A(d)$ Evidence Predicate $F_R := \forall d \; \forall d' \; R(d, d') \Rightarrow \left((A(d) \land A(d')) \lor (\neg A(d) \land \neg A(d')) \right)$ Groundings $C = \{d_1, d_2\}$ $P_A(d_1) = 1$ $R(d_1, d_2) = 1$ Output Output Layer Σ Φ_{F_R} Φ_F 0.20 avg Quantifier Layers $t_{F_{\mathcal{P}}}\left(R(d_1, d_2), f_A(\mathbf{d}_1), f_A(\mathbf{d}_2)\right)$ $t_F(P_A(d_1), f_A(\mathbf{d}_1))$ Propositional Layer

the logic is encoded in the network how to reason logically ?

Diligenti et al. AlJ

Two types of Neural Symbolic Systems

Just like in StarAl

Lue & Racht Kristins Kenting Scircan Natarajar David Popie

Statistical Relational Artificial Intelligence Logic, Probability, and Computation

Logic as a kind of *neural program*

directed StarAl approach and logic programs

OGINEURAL

Logic as the *regularizer* (reminiscent of Markov Logic Networks)

undirected StarAl approach and (soft) constraints

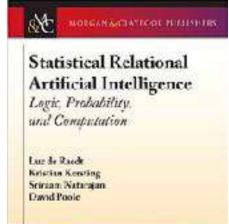
Consequence : the logic is encoded in the network the ability to logically reason is lost logic is not a special case

Key Message 1

StarAl and NeSy share similar problems and thus similar solutions apply What do the numbers mean ?

Three possible choices: Logic, Probability & Fuzzy

Just like in StarAl



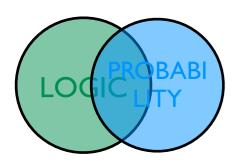
Versionant and Lawrences and American American Exception and and American Lawrences And Human William V. Color, and Proc. Society and

Logic, Probability and Fuzzy

Just like in StarAl

Three types of approaches to NeSy:

- Purely Logic keep everything logical (e.g., Dai et al, NeurIPS 19)
 - difficult to optimise
- Probabilistic
 - use e.g. arithmetic circuits and knowledge compilation
- Fuzzy
 - easy to translate in neural networks and optimise (but not really logical)



Logic as constraints

Propositional logic

Model / Possible World

calls(mary) <- hears_alarm(mary) \land alarm

calls(john) <- hears_alarm(john) ^ alarm

alarm <- earthquake v burglary

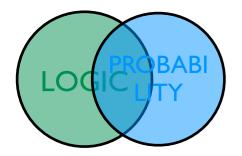
0.1 { burglary,
0.4 hears_alarm(john),
... alarm,
... calls(john)}

probability of world \sim 0.1 x 0.4 x ...

SEMANTIC LOSS =

probability that a random possible world satisfies the formula

using weighted model counting (WMC) weights/probabilities are on the literals



Logic as soft constraints Markov Logic

Propositional logic

Model / Possible World

e^10 { f |,

e^20 f2.

10:f1 <-> calls(mary) <- hears_alarm(mary) \land alarm

20:f2 <-> calls(john) <- hears_alarm(john) ^ alarm

e³⁰ f3, burglary, hears alarm(john),

30 : f3 <-> alarm <- earthquake v burglary

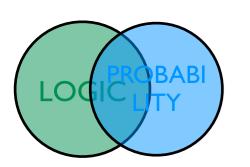
alarm, calls(john),}

probability of world $\sim e^{10} x e^{20} x e^{30}$

using weighted model counting (WMC) weights/probabilities are on the formulae (soft constraints) the higher the weight, the harder or more logical the constraint

 $w(f1) = e^{10}$ $w(not f1) = e^{0} = 1$ $w(f2) = e^{20}$ $w(not f2) = e^{0} = 1$ $w(f3) = e^{30}$ $w(not f3) = e^{0} = 1$

(need to normalise to get probability distribution)



Logic as soft constraints

Probabilistic Soft Logic [Bach & Getoor]

Propositional logic

Model / Possible World

10: calls(mary) <- hears_alarm(mary) \land alarm

20: calls(john) <- hears alarm(john) \land alarm

{0.7 burglary,

0.8 hears_alarm(john),

0.5 alarm,

0.3 calls(john), alarm <- earthquake v burglary 30: atoms are no longer true or false in worlds

logic : a constraint is satisfied (1) or not (0) by a world fuzzy logic : the distance to satisfaction Lukasiewicz T-norm the higher the distance, the less likely the world

calls(john) <- hears_alarm(john) \land alarm

 ≥ 0.5 0.7 0.8

 $A \wedge B = min(1, 1.5 - 1) = 0.5$

Rule evaluates to min(1, 1 - 0.5 + 0.3) = 0.8 when calls(john) =0.3

For 0 and 1 we get boolean logic

 $A \lor B = min(1, A + B)$

 $A \wedge B = min(1, A + B - 1)$

 $A \leftarrow B = min(1, 1 + A - B)$ (residuum)

evaluates to 1 when rule is satisfied

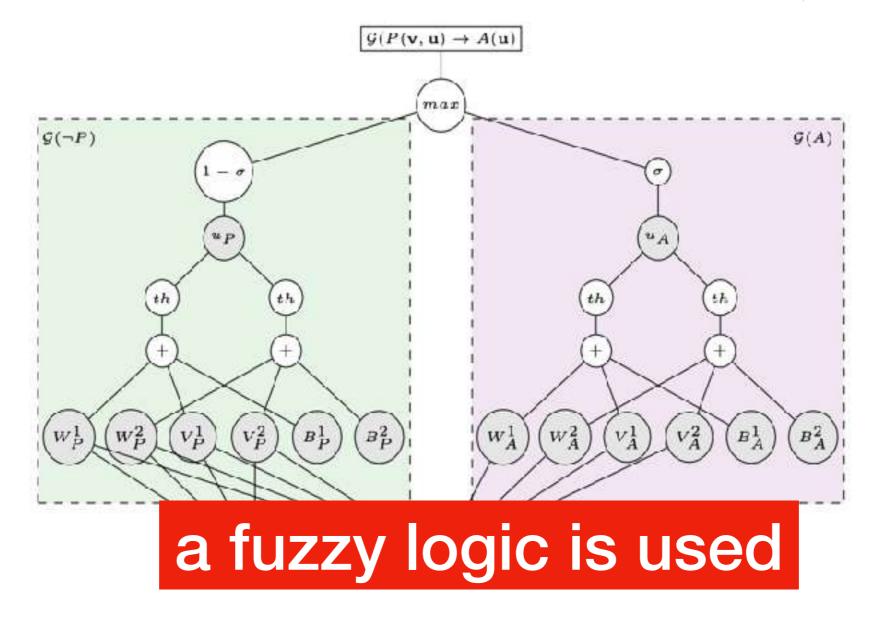
when $B \leq A$

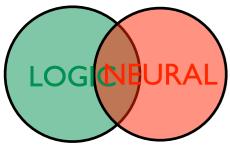
w= e^ [-20 x (1-0.8)]

Logic Tensor Networks

undirected StarAI approach and (soft) constraints

 $P(x,y) \rightarrow A(y)$, with $\mathcal{G}(x) = \mathbf{v}$ and $\mathcal{G}(y) = \mathbf{u}$





Serafini & Garcez

Semantic Based Regularization undirected StarAl approach and (soft) constraints

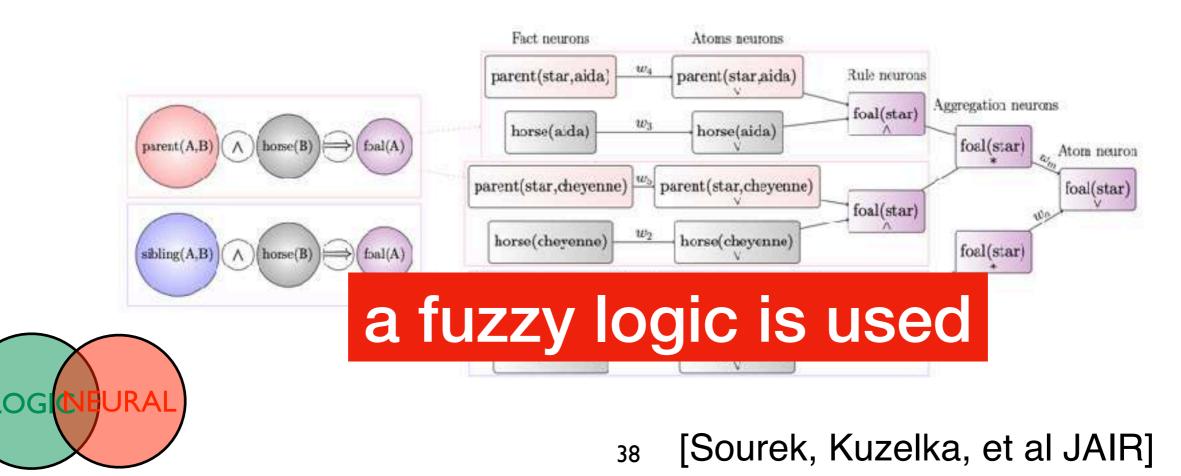
 $F = := \forall d \ P_A(d) \Rightarrow A(d)$ Evidence Predicate $F_R \quad := \quad \forall d \; \forall d' \; R(d,d') \Rightarrow \big((A(d) \wedge A(d')) \vee (\neg A(d) \wedge \neg A(d')) \big)$ Groundings $C = \{d_1, d_2\}$ $P_A(d_1) = 1$ $R(d_1, d_2) = 1$ Output Output Layer Σ Φ_{F_R} Φ_F 0.200 avqQuantifier Layers $t_{F_E}(R(d_1, d_2), f_A(\mathbf{d}_1), f_A(\mathbf{d}_2))$ $t_F(P_A(d_1), f_A(\mathbf{d}_1))$ Propositional Layer $R(d_1, d_2)$ JA(d2) $f_A(\mathbf{d}_1)$ Input Layer P.(d.) a fuzzy logic is used d, repr EURAL

OG

Lifted Relational Neural Networks

directed StarAI approach and logic programs

- Directed (fuzzy) NeSy
- similar in spirit to the Bayesian Logic Programs and Probabilistic Relational Models
- Of course, other kind of (fuzzy) operations for AND, OR and Aggregation (cf. later)



erc

Logic, Probability and Fuzzy

Three types of approaches to NeSy:

- Purely Logic keep everything logical (e.g., Dai et al, NeurIPS)
 - difficult to optimise
- Probabilistic with e.g. arithmetic circuits and knowledge compilation
 - knowledge compilation (hard to compile, fast inference and learning afterwards)

• Fuzzy

Consequence : faster / convex optimisation fuzzy logic differs from traditional logic unexpected behaviours can occur

Key Message 2 A different approach

A true integration T of X and Y should allow to reconstruct X and Y as special cases of T

Thus, Neural Symbolic approaches should have both logic and neural networks as special cases

Our approach: "an interface layer (<> pipeline) between neural & symbolic components" will be illustrated with DeepProbLog See also [Manhaeve et al., NeurIPS 18; arXiv: 1907.08194]

ROBAE

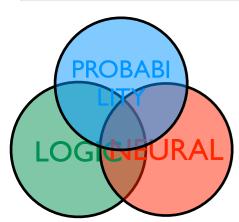
Part 2 of the talk — illustration with DeepProbLog [NeurIPS 2018]

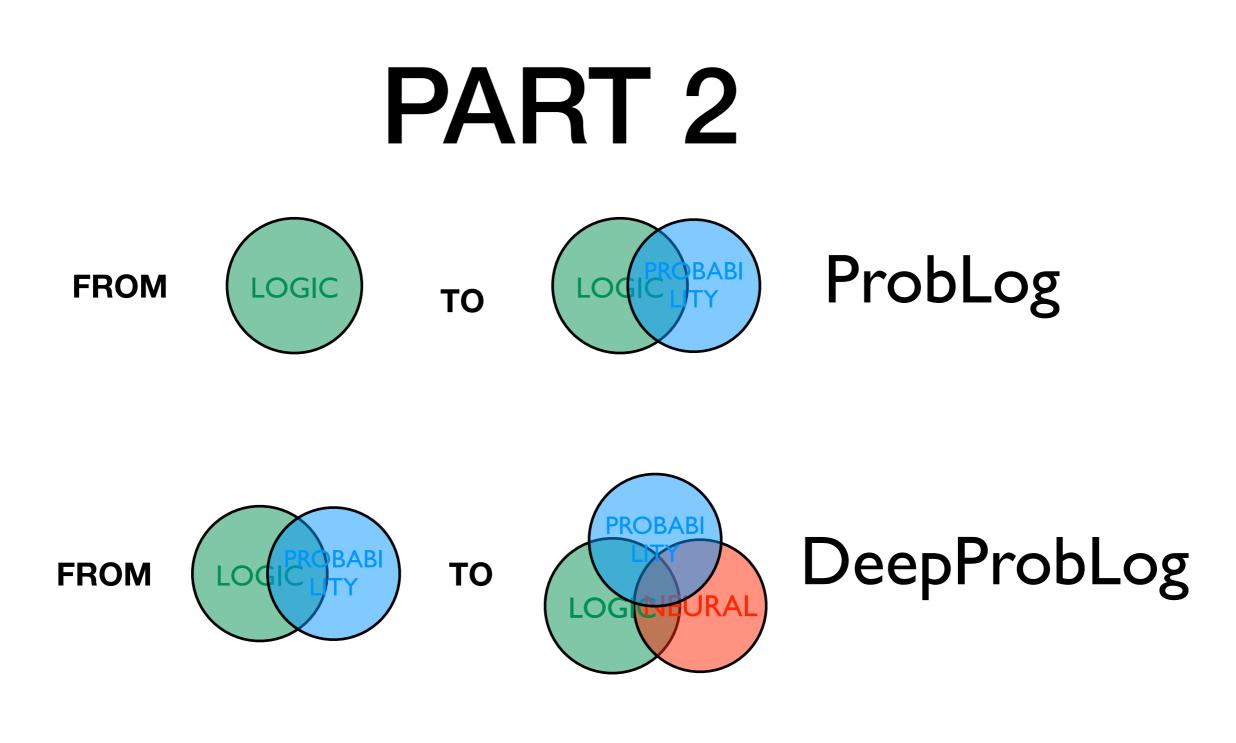
DeepProbLog

DeepProbLog = Probability + Logic + Neural Network

DeepProbLog = ProbLog + Neural Network

Related work in NeSy	DeepProbLog
Logic is made less expressive	Full expressivity is retained
Logic is pushed into the neural network	Maintain both logic and neural network
Fuzzy logic	Probabilistic logic programming
Language semantics unclear	Clear semantics





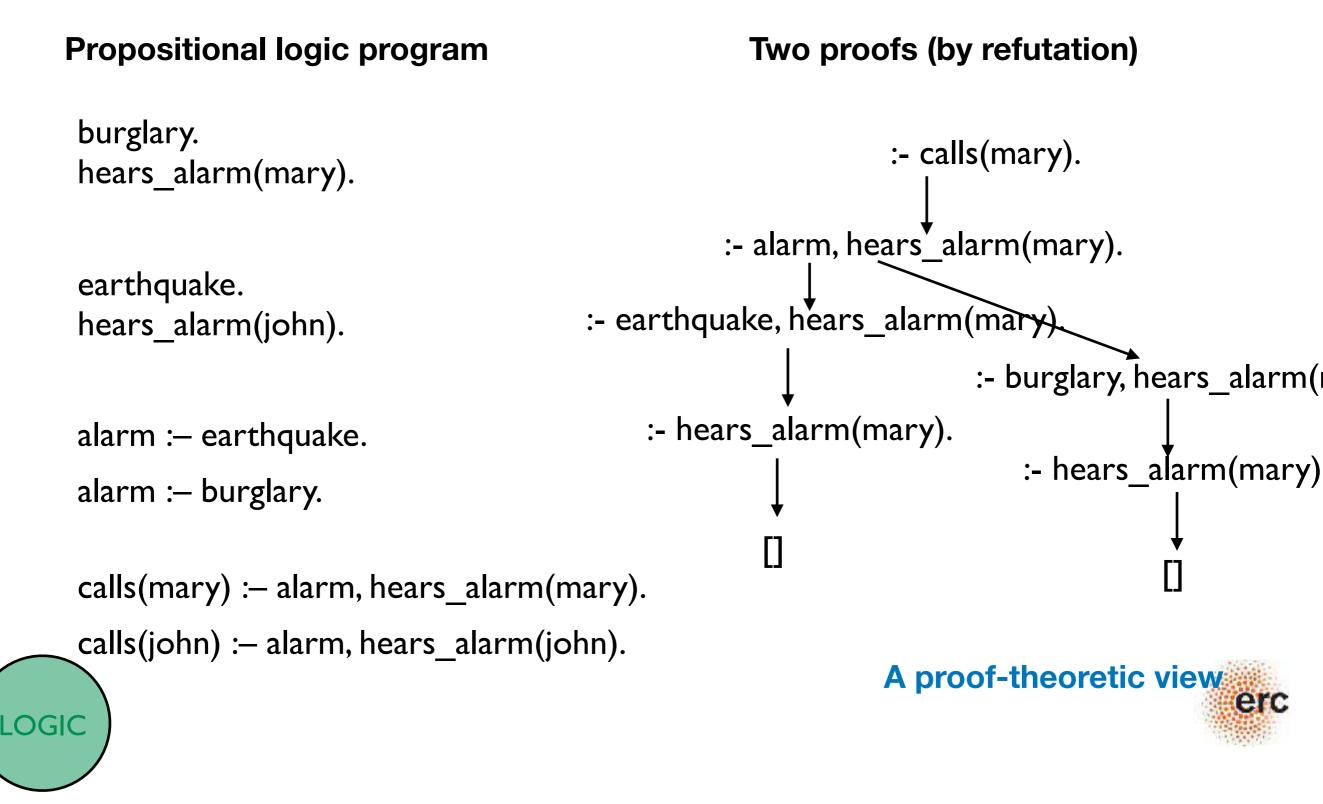
a logic programming perspective

PART 2 A

From Prolog to ProbLog

Logic Programs

as in the programming language Prolog



Probabilistic Logic Programs

as in the probabilistic programming language ProbLog

Propositional logic program

0.1 :: burglary. 0.3 ::hears_alarm(mary). Probabilistic facts

0.05 ::earthquake. 0.6 ::hears_alarm(john).

alarm :- earthquake.

alarm :– burglary.

calls(mary) :-- alarm, hears_alarm(mary). calls(john) :-- alarm, hears_alarm(john). Key Idea (Sato & Poole) the distribution semantics:

unify the basic concepts in logic and probability:

random variable ~ propositional variable

an interface between logic and probability

Probabilistic Logic Programs

as in the probabilistic programming language ProbLog

Propositional logic program

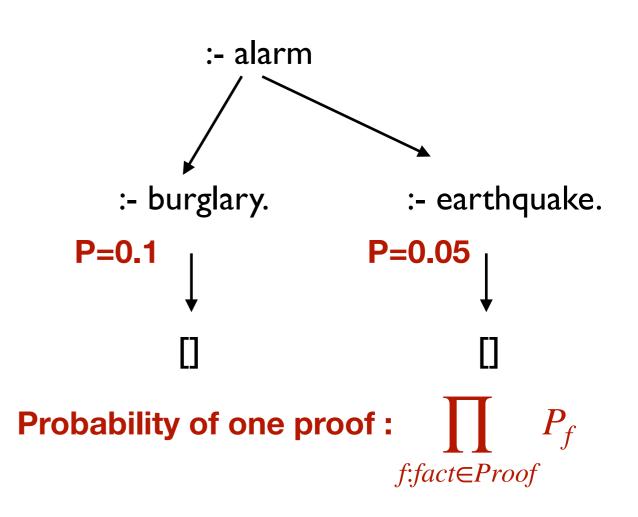
0.1 :: burglary.0.3 ::hears_alarm(mary).

0.05 ::earthquake. 0.6 ::hears_alarm(john).

alarm :– earthquake.

alarm :– burglary.

calls(mary) :-- alarm, hears_alarm(mary). calls(john) :-- alarm, hears_alarm(john).



Two proofs (by refutation)

Probabilistic Logic Programs

as in the probabilistic programming language ProbLog

Propositional logic program

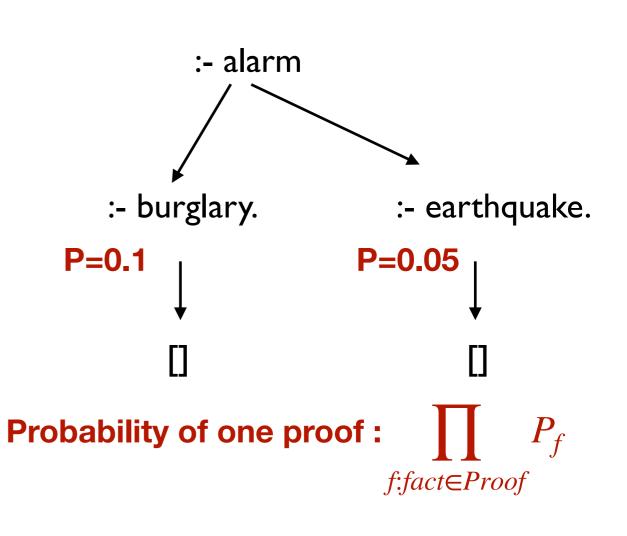
0.1 :: burglary.0.3 ::hears_alarm(mary).

0.05 ::earthquake. 0.6 ::hears_alarm(john).

alarm :– earthquake.

alarm :– burglary.

calls(mary) :-- alarm, hears_alarm(mary). calls(john) :-- alarm, hears_alarm(john).



Disjoint sum problem

P(alarm) = P(burg OR earth) = P(burg) + P(earth) - P(burg AND earth) =/= P(burg) + P(earth)

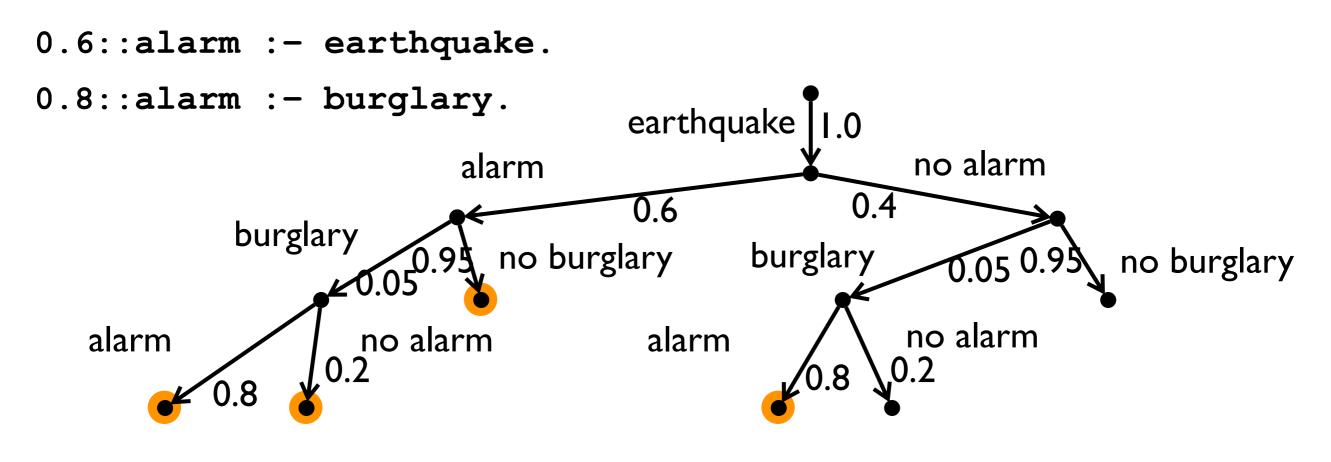
Probabilistic Logic Program Semantics

earthquake.

0.05::burglary.

[Vennekens et al, ICLP 04]

probabilistic causal laws



P(alarm)=0.6×0.05×0.8+0.6×0.05×0.2+0.6×0.95+0.4×0.05×0.8

Probabilistic Logic Program Semantics

Propositional logic program

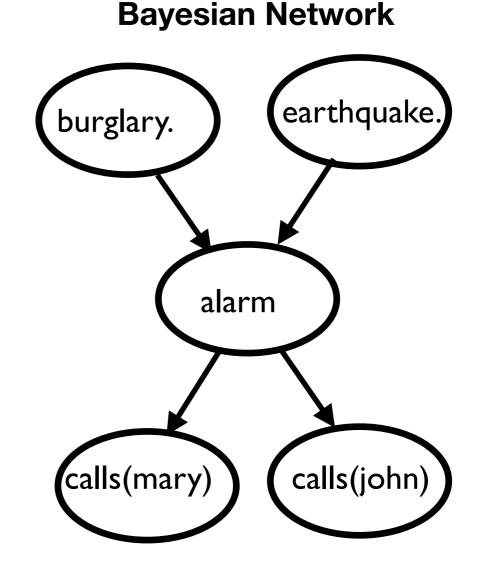
0.1 :: burglary.

0.05 :: earthquake.

alarm :- earthquake.

alarm :– burglary.

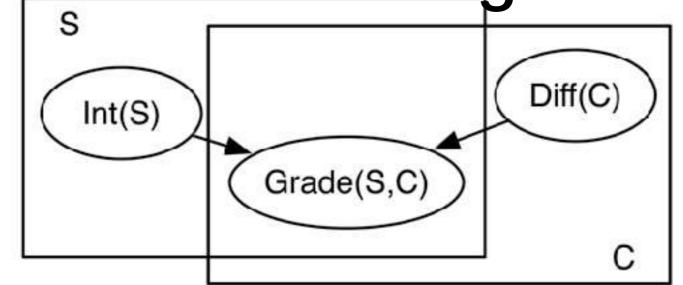
0.7::calls(mary) :- alarm. 0.6::calls(john) :- alarm.



Bayesian net encoded as Probabilistic Logic Program PLPs correspond to directed graphical models

ProbLog has both (directed) probabilistic graphic models, the programming language Prolog (and probabilistic databases) as special case

Flexible and Compact Relational Model for Predicting Grades



"Program" Abstraction:

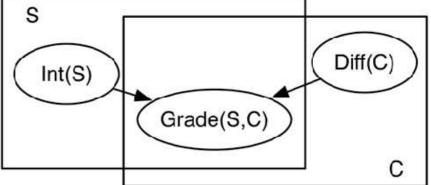
- S, C logical variable representing students, courses
- the set of individuals of a type is called a population
- Int(S), Grade(S, C), D(C) are parametrized random variables

Grounding:

- for every student s, there is a random variable Int(s)
 - for every course c, there is a random variable Di(c) for every s, c pair there is a random variable Grade(s,c) all instances share the same structure and parameters

Probabilistic Logic Programs

0.4 :: int(S) :- student(S). 0.5 :: diff(C):- course(C).



student(john). student(anna). student(bob).
course(ai). course(ml). course(cs).

gr(S,C,a) :- int(S), not diff(C). 0.3::gr(S,C,a); 0.5::gr(S,C,b); 0.2::gr(S,C,c) :- int(S), diff(C). 0.1::gr(S,C,b); 0.2::gr(S,C,c); 0.2::gr(S,C,f) :student(S), course(C), not int(S), not diff(C). 0.3::gr(S,C,c); 0.2::gr(S,C,f) :not int(S), diff(C).

ersting, Natarajan, Poole: Statistical Relational AI

ProbLog by example: Grading

unsatisfactory(S) :- student(S), grade(S,C,f).

excellent(S):- student(S), not(grade(S,CI,G),below(G,a)), grade(S,C2,a).

0.4 :: int(S) :- student(S). 0.5 :: diff(C):- course(C).

student(john). student(anna). student(bob). course(ai). course(ml). course(cs).

```
gr(S,C,a) :- int(S), not diff(C).

0.3::gr(S,C,a); 0.5::gr(S,C,b); 0.2::gr(S,C,c) :- int(S), diff(C).

0.1::gr(S,C,b); 0.2::gr(S,C,c); 0.2::gr(S,C,f) :- student(S), course(C),

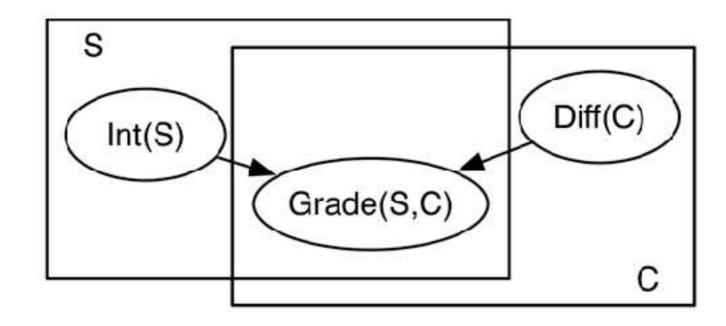
not int(S), not diff(C).

0.3::gr(S,C,c); 0.2::gr(S,C,f) :- not int(S), diff(C).
```

ersting, Natarajan, Poole: Statistical Relational AI

BAB

ProbLog by example: Grading



Shows relational structure

grounded model: replace variables by constants

Works for any number of students / classes (for 1000 students and 100 classes, you get 101100 random variables); still only few parameters

With SRL / PP

build and learn compact models,

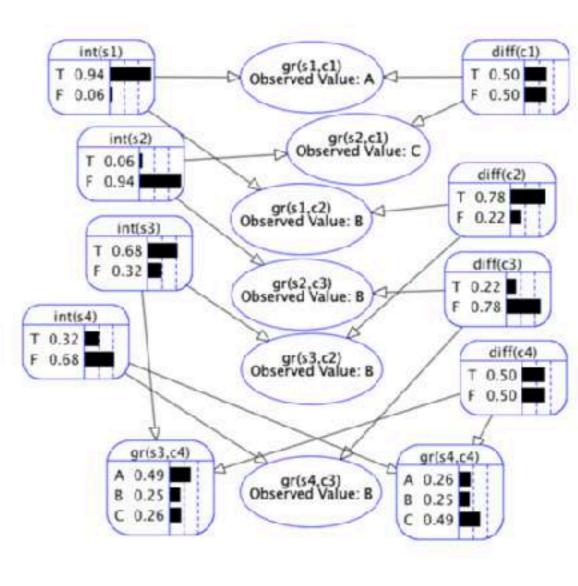
from one set of individuals - > other sets;

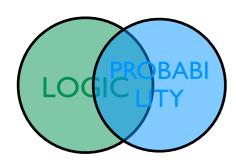
reason also about exchangeability,

build even more complex models,

incorporate background knowledge

ersting, Natarajan, Poole: Statistical Relation 3 AI





Answering a query in a ProbLog program happens in four steps

- 1. Grounding the program w.r.t. the query
- 2. Rewrite the ground logic program into a propositional logic formula
- 3. Compile the formula into an arithmetic circuit
- 4. Evaluate the arithmetic circuit

0.1 :: burglary.0.5 :: hears_alarm(mary).

0.2 :: earthquake.

0.4 :: hears_alarm(john).

alarm :- earthquake.

alarm :- burglary. calls(X) :- alarm, hears_alarm(X). Query

P(calls(mary))

Answering a query in a ProbLog program happens in four steps

- 1. Grounding the program w.r.t. the query (only relevant part !)
- 2. Rewrite the ground logic program into a propositional logic formula
- 3. Compile the formula into an arithmetic circuit
- 4. Evaluate the arithmetic circuit
- 0.1 :: burglary.0.5 :: hears_alarm(mary).
- 0.2 :: earthquake.
- 0.4 :: hears_alarm(john).
- alarm :- earthquake.

```
alarm := burglary.
calls(mary) := alarm, hears_alarm(mary).
calls(john) := alarm, hears_alarm(john).
```

Query

P(calls(mary))

Answering a query in a ProbLog program happens in four steps

- 1. Grounding the program w.r.t. the query
- 2. Rewrite the ground logic program into a propositional logic formula
- 3. Compile the formula into an arithmetic circuit
- 4. Evaluate the arithmetic circuit
- 0.1 :: burglary.0.5 :: hears_alarm(mary).
- 0.2 :: earthquake.
- 0.4 :: hears_alarm(john).
- alarm :- earthquake.

alarm :– burglary. calls(mary) :– alarm, hears_alarm(mary).

calls(john) :- alarm, hears_alarm(john).

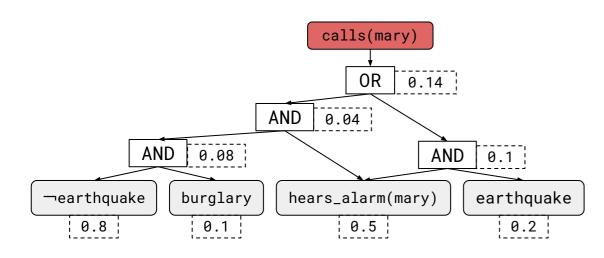
calls(mary)

hears_alarm(mary) < (burglary < earthquake)

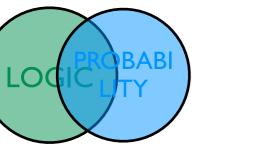
 \Leftrightarrow

Answering a query in a ProbLog program happens in four steps

- 1. Grounding the program w.r.t. the query
- 2. Rewrite the ground logic program into a propositional logic formula
- 3. Compile the formula into an arithmetic circuit (knowledge compilation)
- 4. Evaluate the arithmetic circuit

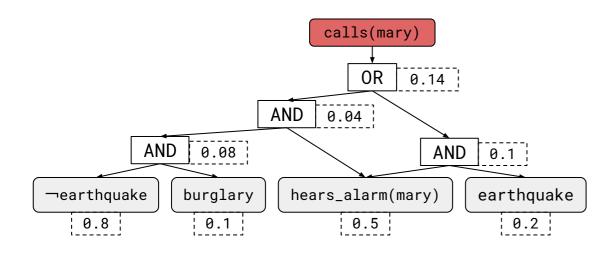


calls(mary) ↔ hears_alarm(mary) ∧ (burglary ∨ earthquake)



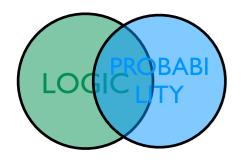
Answering a query in a ProbLog program happens in four steps

- 1. Grounding the program w.r.t. the query
- 2. Rewrite the ground logic program into a propositional logic formula
- 3. Compile the formula into an arithmetic circuit (knowledge compilation)
- 4. Evaluate the arithmetic circuit replace AND by X and OR by +

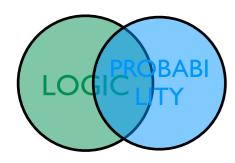


calls(mary) ↔ hears_alarm(mary) ∧ (burglary ∨ earthquake)

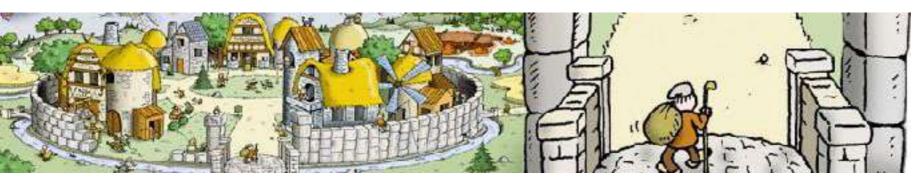
The AC deals with the disjoint sum problem



ProbLog applications

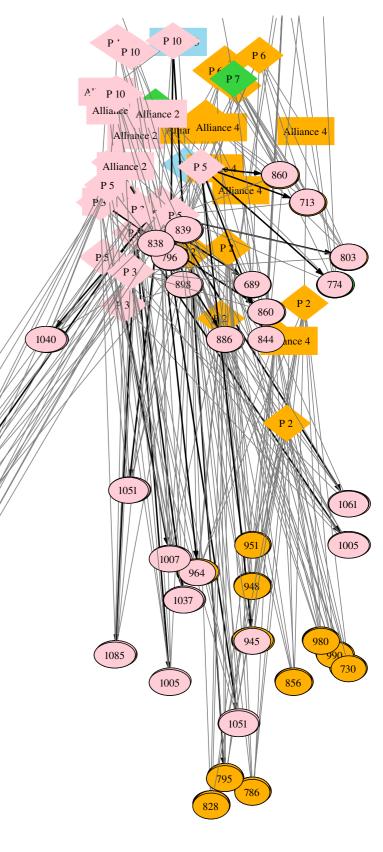


Dynamic networks



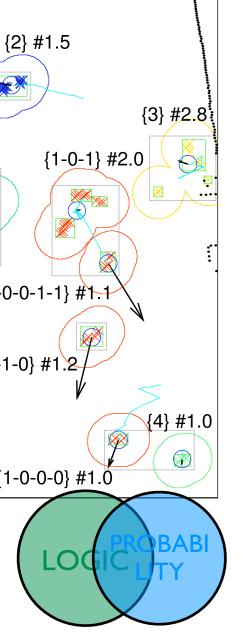
Travian: A massively multiplayer real-time strategy game

Can we build a model of this world ? Can we use it for playing better ?



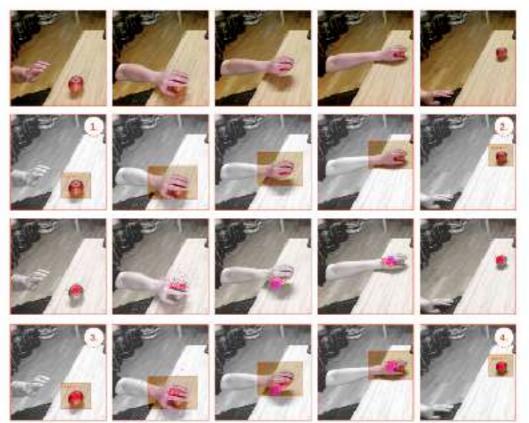
[Thon et al, MLJ II]

Activity analysis and tracking



- Track people or objects over time? Even if temporarily hidden?
- Recognize activities?
- Infer object properties?

[Skarlatidis et al,TPLP 14; Nitti et al, IROS 13, ICRA 14, MLJ 16]



[Persson et al, IEEE Trans on Cogn. & Dev. Sys. 19; IJCAI 20]

Learning relational affordances

Learn probabilistic model

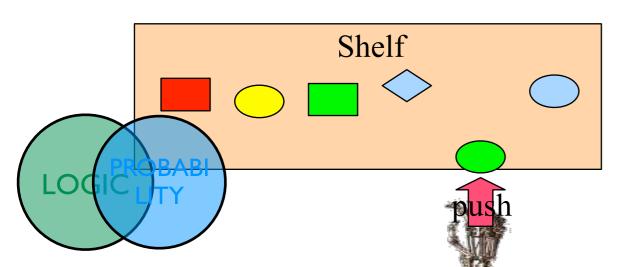
similar to probabilistic Strips (with continuous distributions)

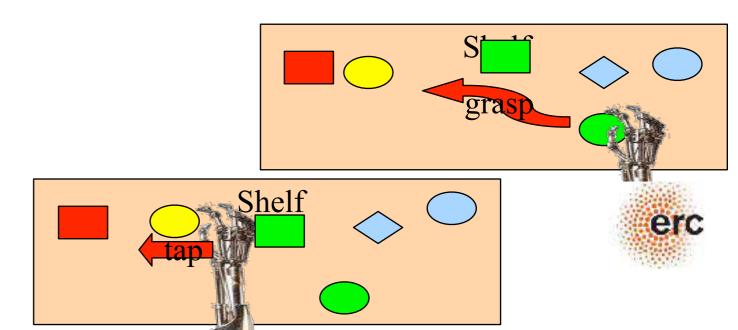
From two object interactions

Learning relational affordances between two objects (learnt by experience)

Moldovan et al. ICRA 12, 13, 14; Auton. Robots 18

Generalize to N





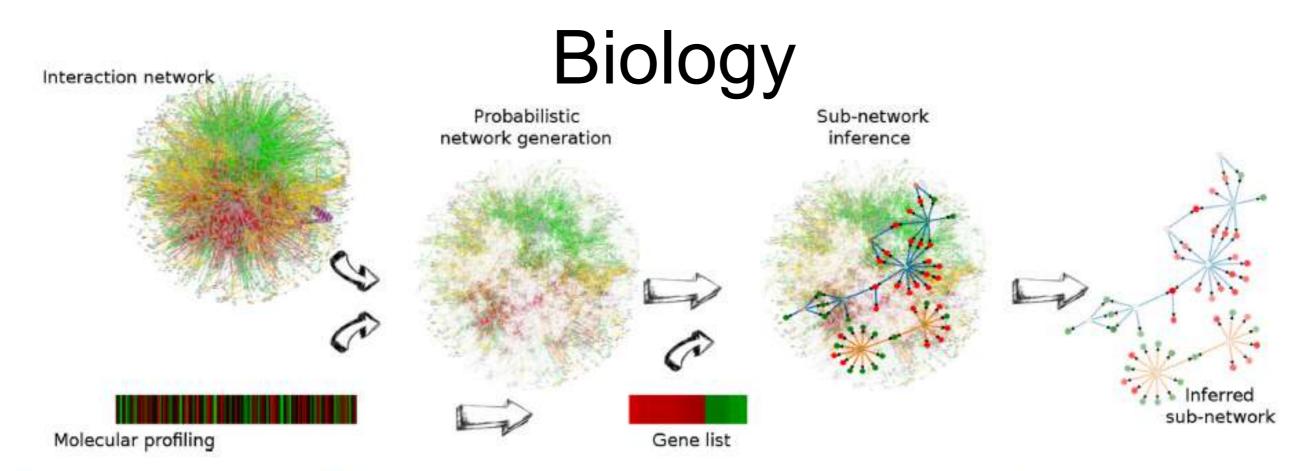


Figure 1. Overview of PheNetic, a web service for network-based interpretation of 'omics' data. The web service uses as input a genome wide interaction network for the organism of interest, a user generated molecular profiling data set and a gene list derived from these data. Interaction networks for a wide variety of organisms are readily available from the web server. Using the uploaded user-generated molecular data the interaction network is converted into a probabilistic network: edges receive a probability proportional to the levels measured for the terminal nodes in the molecular profiling data set. This probabilistic interaction network is used to infer the sub-network that best links the genes from the gene list. The inferred sub-network provides a trade-off between linking as many genes as possible from the gene list and selecting the least number of edges.

- Causes: Mutations
 - All related to similar phenotype
- Effects: Differentially expressed genes •
- 27 000 cause effect pairs

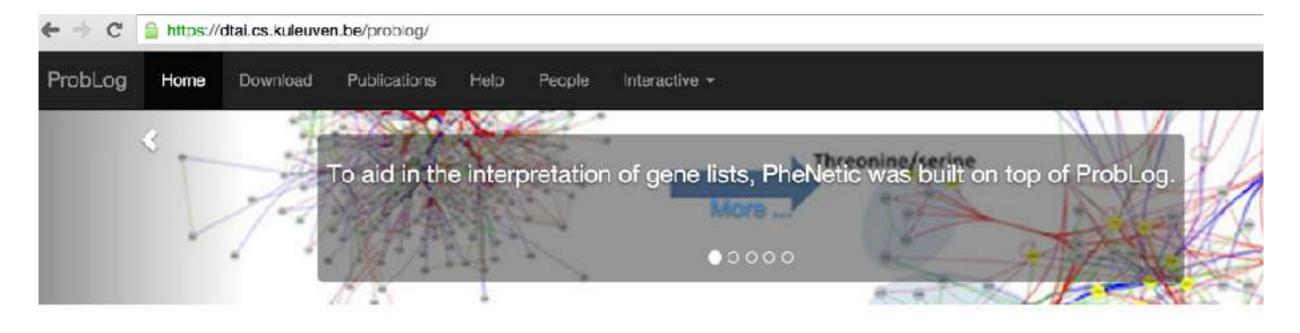
- Interaction network:
 - 3063 nodes
 - Genes
 - Proteins
 - 16794 edges
 - Molecular interactions
 - Uncertain

• Goal: connect causes to effects through common subnetwork

64

- = Find mechanism
- Techniques:
 - DTProbLog
 - Approximate inference

e Mayer et al., Molecular Biosystems 13, NAR 15] [Gross et al. Communications Biology, 19]



Introduction.

Probabilistic logic programs are logic programs in which some of the facts are annotated with probabilities.

ProbLog is a tool that allows you to intuitively build programs that do not only encode complex interactions between a large sets of heterogenous components build programs that do not only encode complex interactions between a large sets of heterogenous components build programs that do not only encode complex interactions between a large sets of heterogenous components build programs that do not only encode complex interactions between a large sets of heterogenous components build programs that do not only encode complex interactions between a large sets of heterogenous components build programs that do not only encode complex interactions between a large sets of heterogenous components build programs that do not only encode complex interactions between a large sets of heterogenous components build programs that do not only encode complex interactions between a large sets of heterogenous components build programs that do not only encode complex interactions between a large sets of heterogenous components build programs that do not only encode complex interactions between a large sets of heterogenous components build programs that do not only encode complex interactions between a large sets of heterogenous components build programs that do not only encode complex interactions between a large sets of heterogenous components build programs that do not only encode complex interactions between a large sets of heterogenous components build programs that do not only encode complex interactions between a large sets of heterogenous components build programs that do not only encode complex interactions between a large sets of heterogenous components build programs that do not only encode complex interactions between a large sets of heterogenous complex interactions interactions between a large sets of heterogenous complex interactions interacting se

The engine tackles several tasks such as computing the marginals given evidence and learning from (partial) interpretations. ProbLog is a suite of efficient algorithms tasks. It is based on a conversion of the program and the queries and evidence to a weighted Boolean formula. This allows us to reduce the inference tasks to well-s weighted model counting, which can be solved using state-of-the-art methods known from the graphical model and knowledge compilation literature.

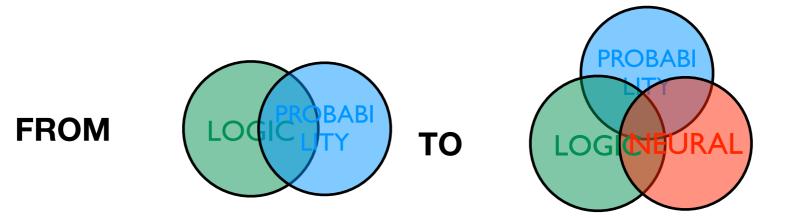
The Language. Probabilistic Logic Programming.

ProbLog makes it easy to express complex, probabilistic models.

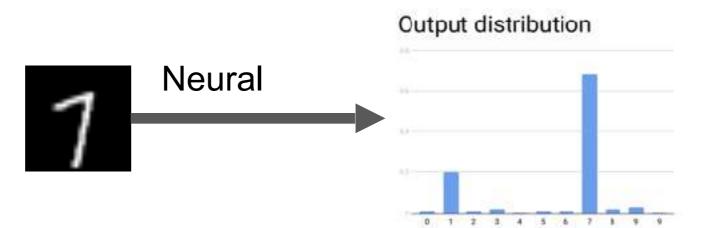
```
0.3::stress(X) :- person(X).
0.2::influences(X,Y) :- person(X), person(Y).
smokes(X) :- stress(X).
smokes(X) :- friend(X,Y), influences(Y,X), smokes(Y).
```

PART 2 B

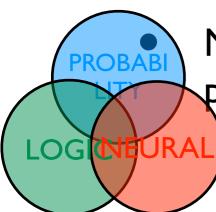
From ProbLog to DeepProbLog



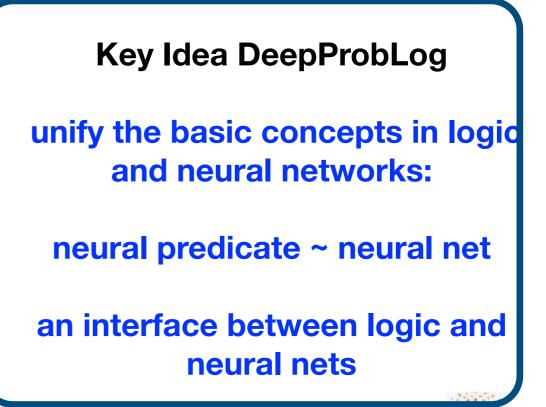
Neural predicate



- Neural networks have uncertainty in their predictions
- A normalized output can be interpreted as a probability distribution
- Neural predicate models the output as probabilistic facts



No changes needed in the probabilistic host language



The neural predicate

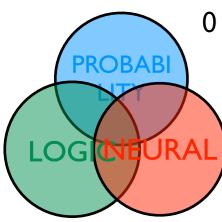
The output of the neural network is probabilistic facts in DeepProbLog

Example:

nn(mnist_net, [X], Y, [0 ... 9]) :: digit(X,Y).

Instantiated into a (neural) Annotated Disjunction:

0.04::digit(1,0) ; 0.35::digit(1,1) ; ... ; 0.53::digit(1,7) ; ... ; 0.014::digit(1,9).



DeepProbLog exemplified: MNIST addition

Task: Classify pairs of MNIST digits with their sum

Benefit of DeepProbLog:

- Encode addition in logic
- Separate addition from digit classification

```
nn(mnist_net, [X], Y, [0 ... 9] ) :: digit(X,Y).
```

addition(X,Y,Z) :- digit(X,N1), digit(Y,N2), Z is N1+N2.

addition(3,5,8), addition(0,4), addition(1,2,11), ...

DeepProbLog exemplified: MNIST addition

Task: Classify pairs of MNIST digits with their sum

Benefit of DeepProbLog:

- Encode addition in logic
- Separate addition from digit classification

nn(mnist_net, [X], Y, [0 ... 9]) :: digit(X,Y).

addition(X,Y,Z) :- digit(X,N1), digit(Y,N2), Z is N1+N2.

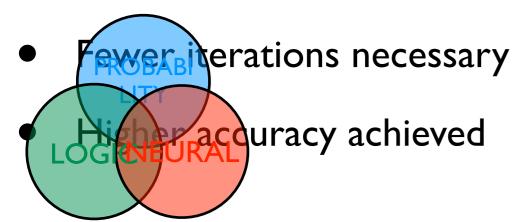
addition(3,5,8) :- digit(3,N1), digit(5,N2), 8 is N1 + N2.

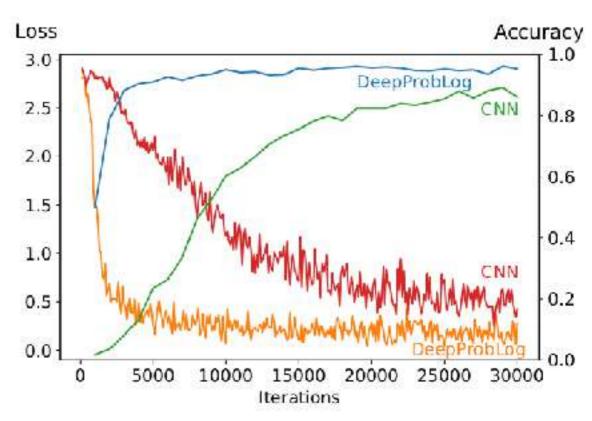
Examples:

addition(3,5,8), addition(0,4,4), addition(9,2,11), ...

MNIST Addition

- Pairs of MNIST images, labeled with sum
- Baseline: CNN
 - Classifies concatenation of both images into classes 0 ... 18
- DeepProbLog:
 - CNN that classifies images into 0 ... 9
 - Two lines of DeepProblog code
- Result:





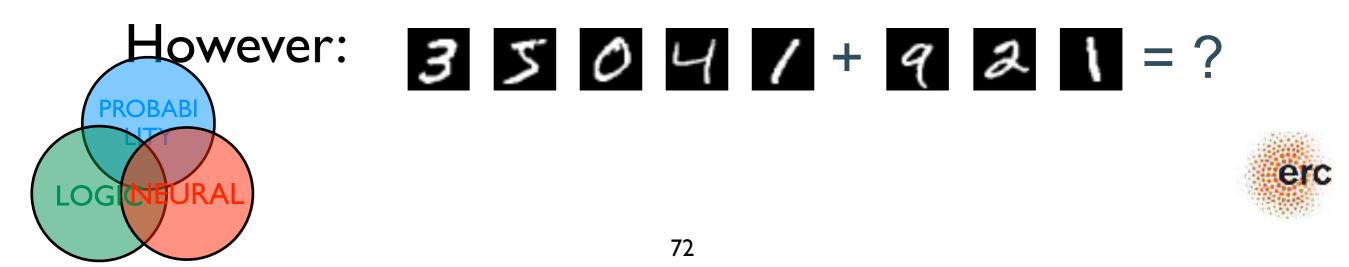
Example

Learn to classify the sum of pairs of MNIST digits

Individual digits are not labeled!

E.g. (3, 5, 8)

Could be done by a CNN: classify the concatenation of both images into 19 classes

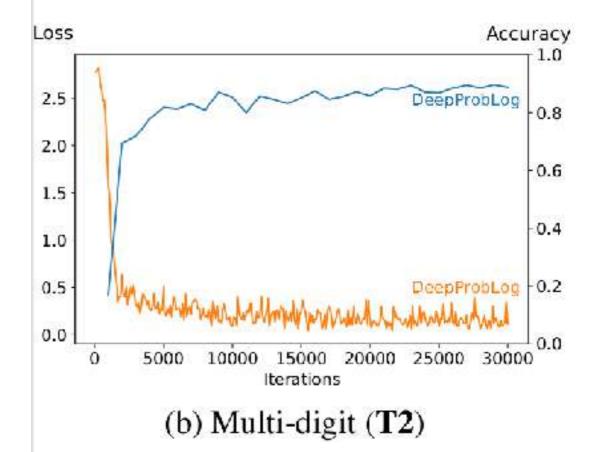


Multi-digit MNIST addition with MNIST

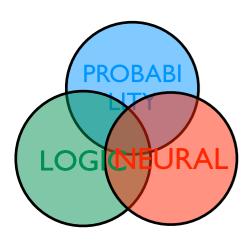
number ([], Result, Result).
number ([H|T], Acc, Result): digit(H, Nr), Acc2 is Nr +10*Acc,
 number (T, Acc2, Result).
number (X,Y):- number (X, 0, Y).

```
multiaddition(X, Y, Z ) :-
number (X, X2 ),
number (Y, Y2 ),
Z is X2+Y2.
```

PROBAB



Inference & Learning



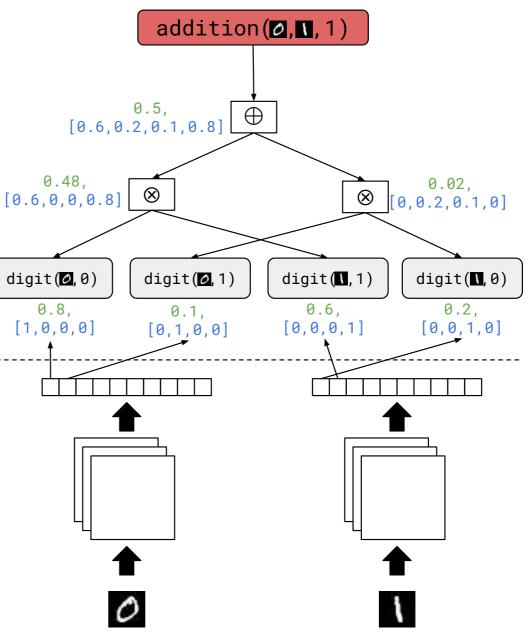
Gradient Semiring

```
nn(mnist_net, [X], Y, [0 ... 9] ) ::
    digit(X,Y).
```

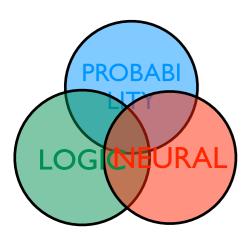
```
addition(X,Y,Z) :-
    digit(X,N1),
    digit(Y,N2),
    Z is N1+N2.
```

The ACs are differentiable and there is an interface with the neural nets

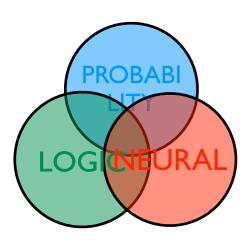
(Pretty elegant in ProbLog we use the "gradient" semi-ring)



erc



Experiments



Program Induction/Sketching

In Neural Symbolic methods

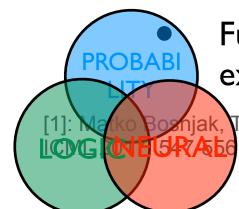
• Rule Induction — work with templates

P(X) := R(X,Y), Q(Y)

- and have the "predicate" variables / slots P,Q, R determined by the NN
- Simpler form, fill just a few slots / holes

Approach similar to 'Programming with a Differentiable Forth Interpreter' [1] $\partial 4$

- Partially defined Forth program with slots / holes
- Slots are filled by neural network (encoder / decoder)



Fully differentiable interpreter: NNs are trained with input / output examples

Tim Rocktäschel, Jason Naradowsky, Sebastian Riedel: Programming with a Differentiable Forth Interpreter erc

Tasks^[1]

- Sorting
 - Sort lists of numbers using Bubble sort
 - Hole: Swap or don't swap when comparing two numbers

Addition

ROBAF

G

- Add two numbers and a carry
- Hole: What is the resulting digit and carry on each step
- (Note: not MNIST digits, but actual numbers)

Word Algebra Problems

- E.g. "Ann has 8 apples. She buys 4 more. She distributes them equally among her 3 kids. How many apples does each child receive?
- Hole: Sequence of permuting, swapping and performing operations on the three numbers

ak, Tim Rocktäschel, Jason Naradowsky, Sebastian Riedel: Programming with a Differentiable Forth Interpreter,

Example DeepProbLog

neural predicate

hole(X,Y,X,Y):- swap(X,Y,0).		2	Sorting: Training length Addition: training length					g length		
		Test Length	2	3	4	5	6	2	4	8
hole(X,Y,Y,X):- swap(X,Y,1).	∂4 [Bošnjak et al., 2017]	8	100.0	100.0	49.22			100.0	100.0	100.0
		64	100.0	100.0	20.65	-	-	100.0	100.0	100.0
	DeepProbLog 6	8	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
		64	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

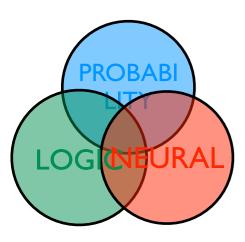
bubble sort

bubble([X],[],X). bubble([H1,H2IT],[X1IT1],X):hole(H1,H2,X1,X2), bubble([X2IT],T1,X).

bubblesort([],L,L).

bubblesort(L,L3,Sorted) :bubble(L,L2,X), bubblesort(L2,[XIL3],Sorted).

sort(L,L2) :- bubblesort(L,[],L2).



(a) Accuracy on the sorting and addition problems (results for $\partial 4$ reported by Bošnjak et al. [2017]).

Training length	2	3	4	5	6
$\partial 4$ on GPU	42 s	160 s	÷.	(1 11)	8 .23
∂4 on CPU	61 s	390 s	-	-	-
DeepProbLog on CPU	11 s	14 s	32 s	114 s	245 s

(b) Time until 100% accurate on test length 8 for the sorting problem.

Table 1: Results on the Differentiable Forth experiments

Noisy Addition

nn(classifier, [X], Y, [0 .. 9]) :: digit(X,Y).
t(0.2) :: noisy.

1/19 :: uniform(X,Y,0) ; ... ; 1/19 :: uniform(X,Y,18).

addition(X,Y,Z) :- noisy, uniform(X,Y,Z).
addition(X,Y,Z) :- \+noisy, digit(X,N1), digit(Y,N2), Z is N1+N2.

(a) The DeepFronLog program.							
	Fraction of noise						
	0.0	0.2	0.4	0.6	0.8	1.0	
Baseline DeepProbLog	$93.46 \\ 97.20$	$87.85 \\ 95.78$	$82.49 \\ 94.50$	$52.67 \\ 92.90$	$8.79 \\ 46.42$	5.87 0.88	
DeepProbLog w/ explicit noise Learned fraction of noise	$96.64 \\ 0.000$	$95.96 \\ 0.212$	$\begin{array}{c} 95.58\\ 0.415\end{array}$	$\begin{array}{c} 94.12\\ 0.618\end{array}$	$73.22 \\ 0.803$	$\begin{array}{c} 2.92 \\ 0.985 \end{array}$	

(a) The DeepProbLog program

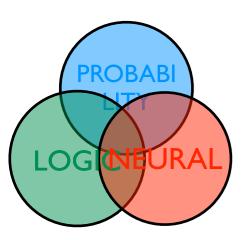


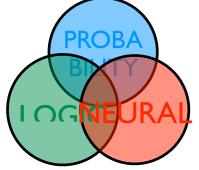
Table 3: The accuracy on the test set for $\mathbf{T4}$.

Simplified Poker

- dealing with uncertainty
- ignore suits and just with A, J, Q and K
- two players, two cards, and one community card
 - train the neural network to recognize the four cards
 - reason probabilistically about the non-observed card
 - learn the distribution of the unlabeled community card
- $\mathbf{0.8} :: \mathsf{poker}([\mathbf{Q}\heartsuit, \mathbf{Q}\diamondsuit, \mathbf{A}\diamondsuit, \mathbf{K}\clubsuit], \mathsf{loss})$

 $poker([Q\heartsuit, Q\diamondsuit, A\diamondsuit, K\clubsuit], A\diamondsuit, loss).$

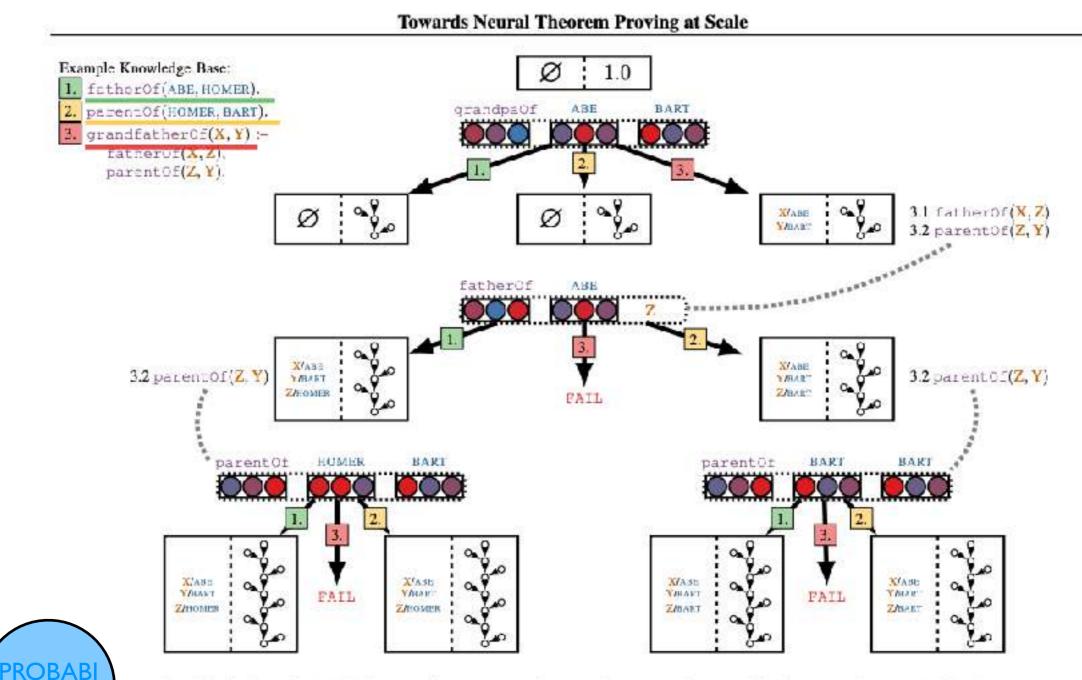
in 6/10 experiments



Distribution	Jack	Queen	King	Ace
Actual	0.2	0.4	0.15	0.25
Learned	0.203 ± 0.002	0.396 ± 0.002	0.155 ± 0.003	0.246 ± 0.002

Table 8: The results for the Poker experiment $(\mathbf{T9})$.

Neural Theorem Prover



A visual depiction of the NTP' recursive computation graph construction, applied to a toy KB (top left). Dash-separated is less henote proof states (left: substitutions, right: proof score -generating neural network). All the non-FAIL proof states are gated to obtain the final proof success (depicted in Figure 2). Colours and indices on arrows correspond to the respective KB rule

Minervini Bosnjak Rocktäschel Riedel

Soft Unification

- NTP : "grandpa" **softly unifies** with "grandfather", as embeddings are close
- DeepProblog : define

softunification(X,Y) :- embed(X,EX), embed(Y,EY), rbf(EX,EY).

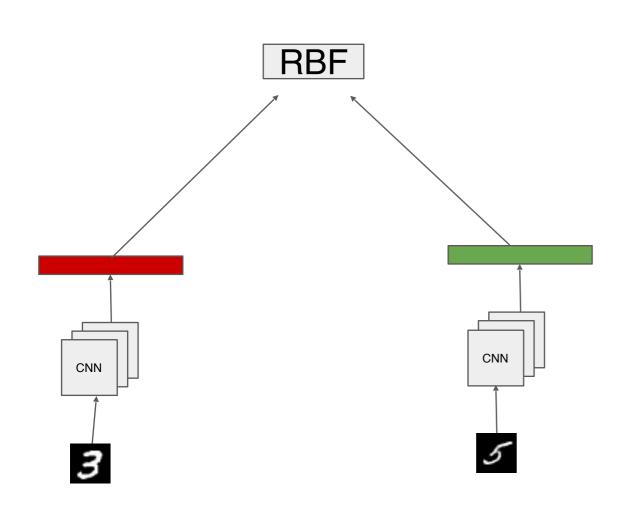
softunification(X,Y) returns I if X and Y unify

otherwise returns
$$exp(\frac{-||e_X - e_Y||_2}{2\mu^2})$$

grandPaOf(X,Y) :- softunification(grandPaOf,R), R(X,Y).

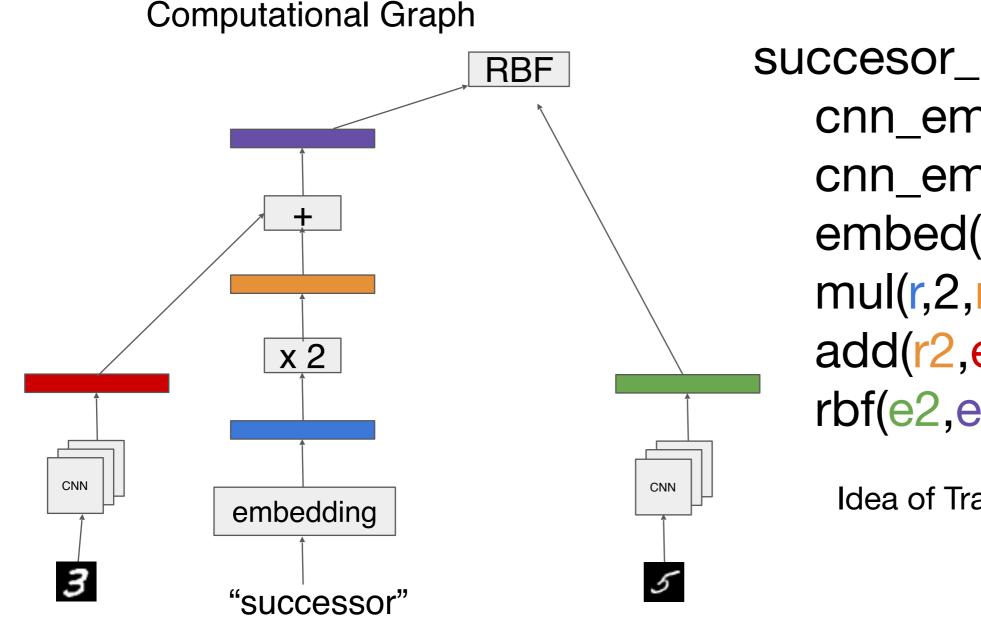
Embeddings in MNIST

Computational Graph



soft(3,3):cnn_embed(3,e1), cnn_embed(3,e2), rbf(e2,e3).

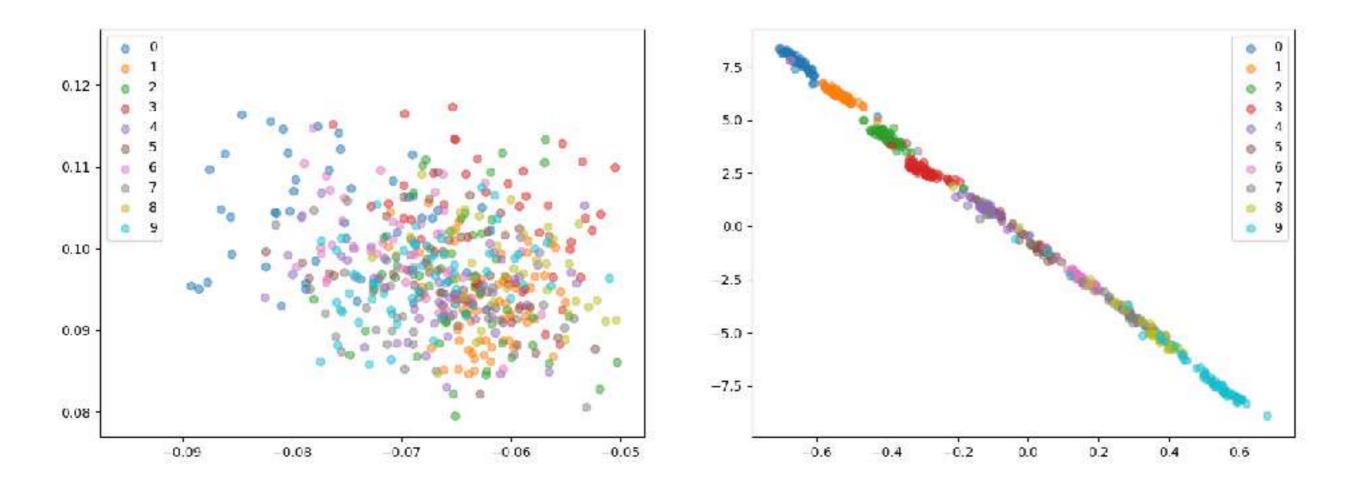
Embeddings in MNIST



succesor_n(3, 4, 2) : cnn_embed(3, e1),
 cnn_embed(4, e2),
 embed("successor",r),
 mul(r,2,r2),
 add(r2,e1,e3),
 rbf(e2,e3).

Idea of TransE [Bordes et al]

2D MNIST image embeddings



The CLUTRR Dataset

Goal of the dataset [Sinha et al. EMNLP 19]:

Predict relations between named entities in the text that are not explicitly mentioned, but can be deduced using other mentioned relations.

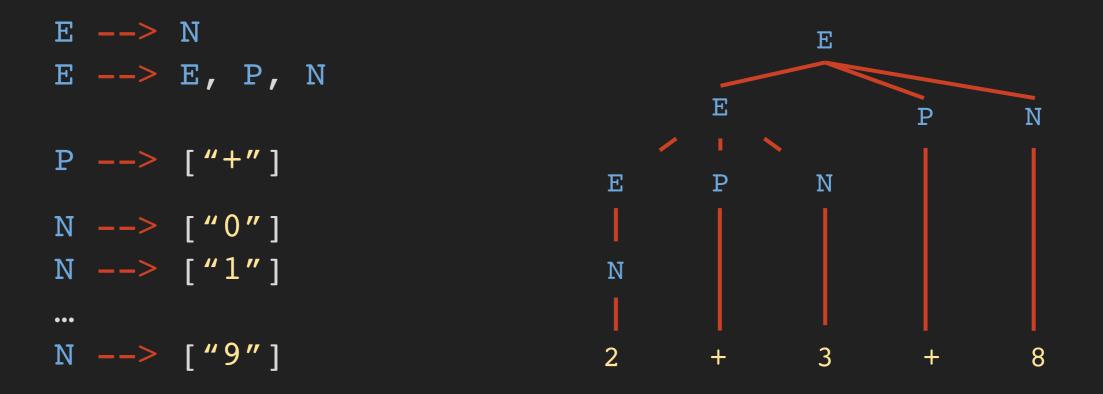
E.g.

"Alice has a son called Bob. Bob has a brother called Charlie. Yesterday, Charlie and Bob went to visit Alice."

INFER son(alice, charlie)

FROM son(alice,bob) and brother(bob,charlie).

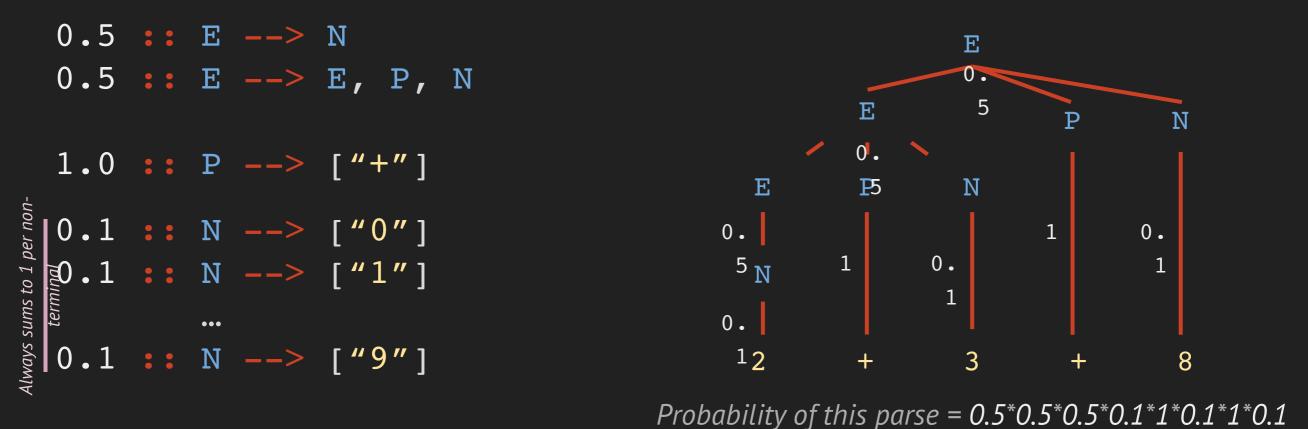
CFG: Context-Free Grammar



Useful for:

- Is sequence an **element of** the specified language?
- What is the *"part of speech"*-tag of a terminal
- Generate all elements of language

PCFG: Probabilistic Context-Free Grammar

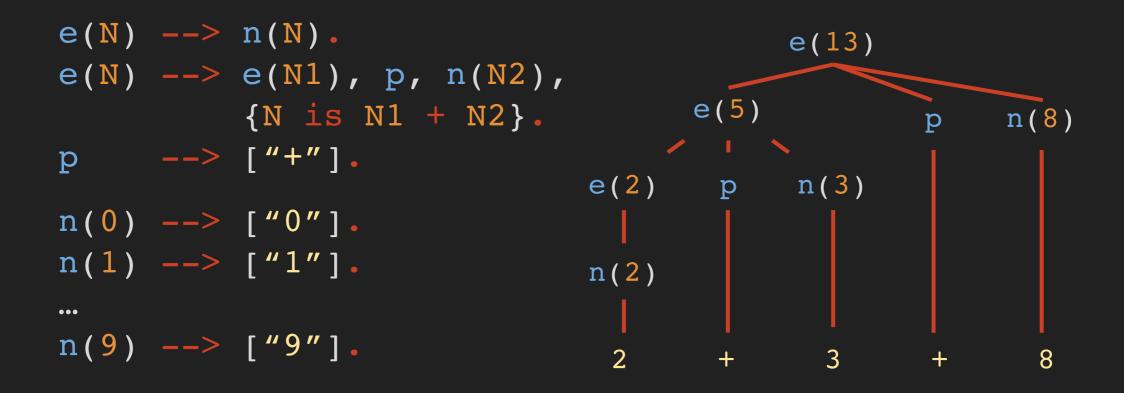


Useful for:

= 0.000125

- What is the most likely parse for this sequence of terminals? (useful for ambiguous grammars)
- What is the probability of generating this string?

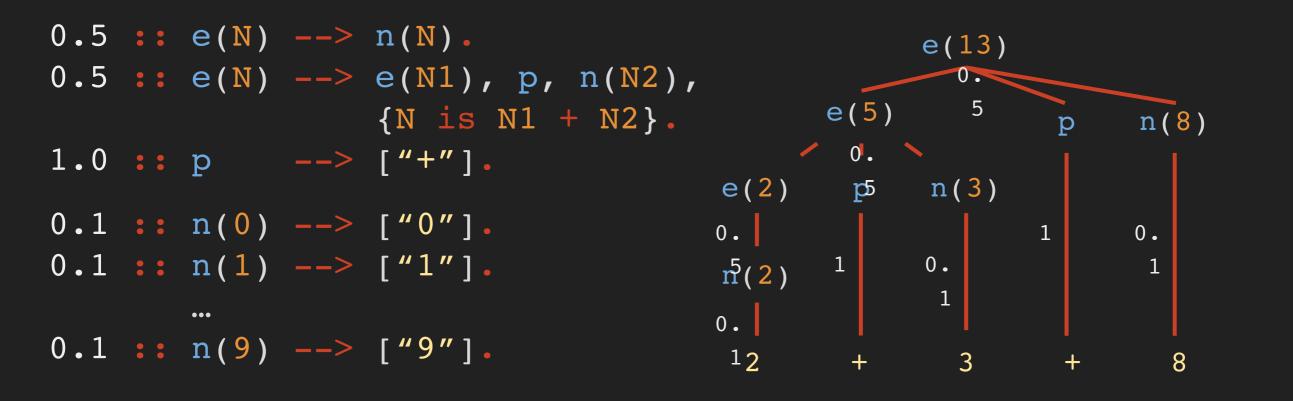
DCG: Definite Clause Grammar



Useful for:

- Modelling more complex languages (e.g. context-sensitive)
- Adding constraints between non-terminals thanks to Prolog power (e.g. through unification)
- Extra inputs & outputs aside from terminal sequence (through unification of input variables)

SDCG: Stochastic Definite Clause Grammar



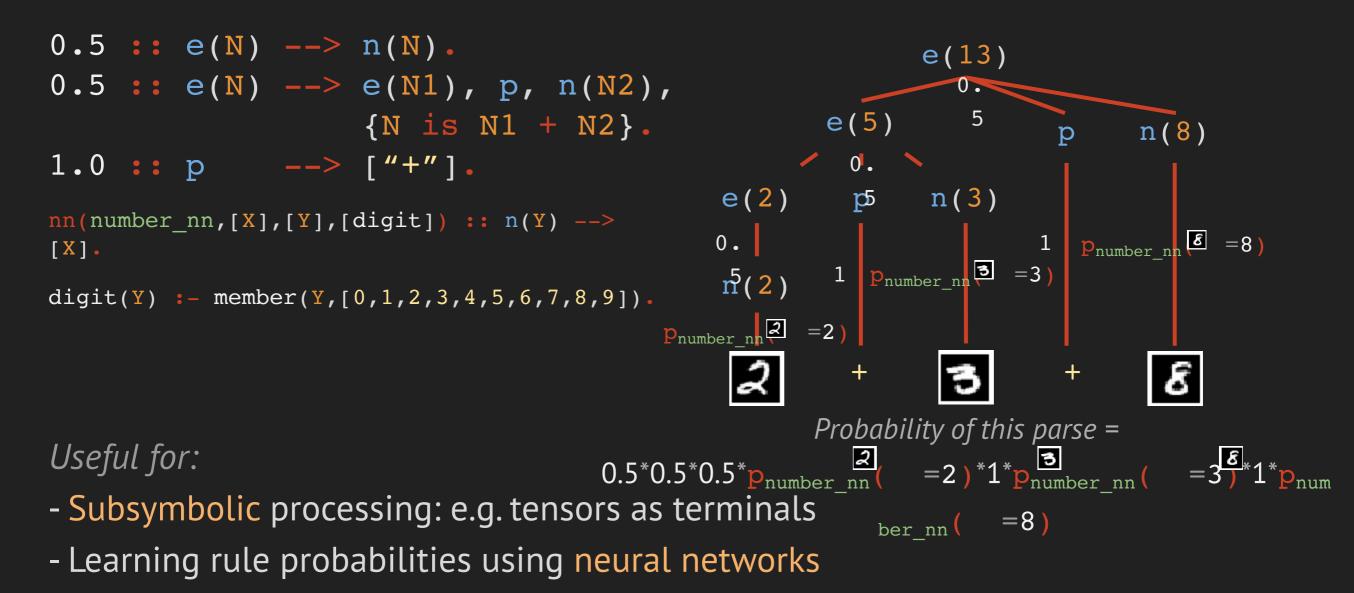
Useful for:

= 0.000125

*Probability of this parse = 0.5*0.5*0.5*0.1*1*0.1*1*0.1*

- Same benefits as PCFGs give to CFG (e.g. most likely parse)
- But: loss of probability mass possible due to failing derivations

NDCG: Neural Definite Clause Grammar (= DeepStochLog)



DeepStochLog

- Little sibling of DeepProbLog [Winters, Marra, et al AAAI 22]
- Based on a different semantics
 - probabilistic graphical models vs grammars
 - random graphs vs random walks
- Underlying StarAl representation is Stochastic Logic Programs (Muggleton, Cussens)
 - close to Probabilistic Definite Clause Grammars, ako probabilistic unification based grammar formalism
 - again the idea of neural predicates
- Scales better, is faster than DeepProbLog

DeepStochLog

Examples of the form


```
digit(Y) :- member(Y [0,1,2,3,4,5,6,7,8,9]).
op(Y) :- member(Y, [+,-]).
```

```
nn(mnist,[I],[N],[digit]) :: n(N) --> [I].
nn(operator,[I],[N],[op]) :: o(N) --> [I].
```

```
0.33::e(N) --> n(N).
0.33::e(S) --> e(E1), o(+), n(E2), {S is E1 + E2}.
0.33::e(S) --> e(E1), o(-), n(E2), {S is E1 - E2}.
```


Challenges

- For NeSy, DeepProbLog and others
 - scaling up (in DeepProbLog now has both approximate and exact inference — an A* like algorithm to find the best proofs)
 - which models to use
 - real life applications
 - peculiarities of neural nets
 - need to have a signal (cf. addition of images only, and Poker ...); aka curriculum learning + regularization
- This is an excellent area for starting researchers / PhDs



StarAl and NeSy share similar problems and thus similar solutions apply

Part 1 of the talk

See also [De Raedt et al., IJCAI 20]

Key Message 2 A different approach

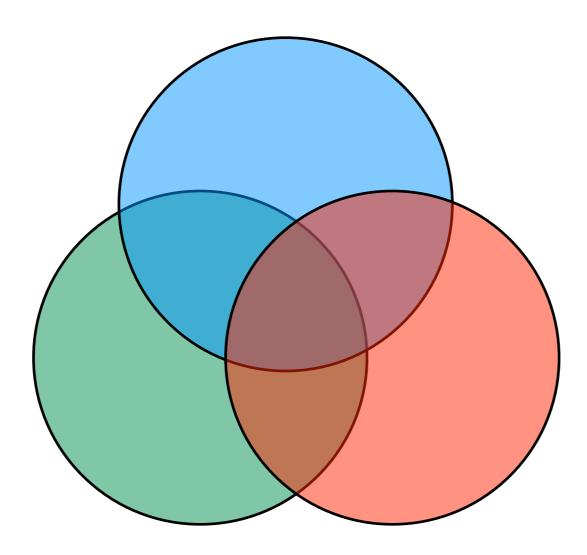
A true integration T of X and Y should allow to reconstruct X and Y as special cases of T

Thus, Neural Symbolic approaches should have both logic and neural networks as special cases

Our approach: "an interface layer (<> pipeline) between neural & symbolic components" will be illustrated with DeepProbLog See also [Manhaeve et al., NeurIPS 18; arXiv: 1907.08194]

ROBAE

Part 2 of the talk — illustration with DeepProbLog [NeurIPS 2018]



THANKS

