

So where have robots been successful?

Whenever we adapt tasks to robots!

Analytical Robotics World View

Analytical robotics needs three components:

I. Accurate forward models (=Physics simulators)

- Great prior: Physical principles yield simulators
- "All models are wrong but some are useful!" (Cox)
- Un-modelable nonlinearities (friction, actuator dynamics, contact, ...)

2. Planning algorithms

Exponential explosions, replanning is hard, optimization bias, ...

3. Fast feedback control

- The error killer!
- Build "best bodies for control": stiff, power hungry, complex design...

Deep Learning World View

End-to-end deep learning needs:

- I. A highly flexible representation with suitable algorithms (=Deep net)
 - We can learn anything → often physically implausible solutions!
 - Small errors → huge optimization bias
 - Black-box → often little insight into the solution

2. Loads of data

- Robots live in real-time → Few episodes, fast state-action stream
- Real-World → Real damages
- Physics simulators as data generators? Back to square one...

3. Loads of computation

Online learning? Energy storage/communication problems?

How should Robot Learning differ?

- I. Learn on the real system
- 2. Adapt online without replanning!
- 3. Avoid real-time bottle neck
- 4. Cope with little episodic data problem
- 5. At least partially explainable?
- 6. Be physically plausible!
- 7. Cope with simulation optimization bias
- 8. Build "best bodies" not "best bodies for feedback control"

I obviously don't have all the solutions ... but I had to learn some good lessons!

Resulting Resultineh Questions

- I. Can we learn on a real system from little data?
- 2. How can we learn comprehensible, modular policies?
- 3. How can we learn physically plausible deep models?
- 4. How can we build the best bodies and learn on real systems?
- 5. Conclusion & Outlook

Imitation Learning

Model-Based Behavioral Cloning (Englert et al.) Objective: Policy Similarity

$$\max_{oldsymbol{\pi}, \mu^{oldsymbol{\pi}}} J(oldsymbol{\pi}) = \sum_{oldsymbol{s}, oldsymbol{a}} \mu^{oldsymbol{\pi}}(oldsymbol{s}) \pi(oldsymbol{a} | oldsymbol{s}) \log rac{\mu^{oldsymbol{\pi}}(oldsymbol{s}) \pi(oldsymbol{a} | oldsymbol{s})}{q(oldsymbol{s}, oldsymbol{a})}$$

Model-Free
Behavioral
Cloning
(Michie & Chambers,
Sammut et al.)

Constraints: Assumptions on the Policy

$$\mu^{\pi}(s') = \sum_{s,a} \mathcal{P}_{ss'}^{a} \mu^{\pi}(s) \pi(a|s)$$
$$1 = \sum_{s,a} \mu^{\pi}(s) \pi(a|s)$$

Dual Problem

Putermann (1998) implies: *IRL is harder than MBC!*

Dual Function for Minimal Physics

Inverse Reinforcement Learning

(Ziebart et al.; Boularias et al.)

Solve for the optimal parametric policy class:
Motor primitives

(Schaal et al; Kober et al; Paraschos et al; Gomez-Gonzalez)

Learning Perception-adapted Probabilistic Motor Primitives

Learning from human demonstrations

Reinforcement Learning

Dual: RL by Linear Programming Objective: Expected Returns

$$\max_{\pi,\mu^\pi} J(\pi) = \sum_{\boldsymbol{s},\boldsymbol{a}} \mu^\pi(\boldsymbol{s}) \pi(\boldsymbol{a}|\boldsymbol{s}) \mathcal{R}_{\boldsymbol{s}\boldsymbol{a}}$$

Constraints: Assumptions on the Policy

$$\mu^{\pi}(s') = \sum_{s,a} \mathcal{P}_{ss'}^{a} \mu^{\pi}(s) \pi(a|s)$$
$$1 = \sum_{s,a} \mu^{\pi}(s) \pi(a|s)$$

Dual Problem

Putermann (1998): *Primal is* harder than Dual!

Primal: RL by Linear Programming

"Bellman Equation":

Bellman's

Principle of

Optimality

$$V^*(s) = \max_{a} E_{s'} \{ r(s, a, s') + \gamma V(s') \}$$

No natural notion of data!

Relative Entropy Policy Search

Objective: Expected Returns

$$\max_{\pi,\mu^{\pi}} J(\pi) = \sum_{\boldsymbol{s},\boldsymbol{a}} \mu^{\pi}(\boldsymbol{s}) \pi(\boldsymbol{a}|\boldsymbol{s}) \mathcal{R}_{\boldsymbol{s}\boldsymbol{a}}$$

Dual: RL by Linear Programming

Constraints: Assumptions on the Policy

$$\mu^{\pi}(s') = \sum_{s,a} \mathcal{P}_{ss'}^{a} \mu^{\pi}(s) \pi(a|s)$$
$$1 = \sum_{s,a} \mu^{\pi}(s) \pi(a|s)$$

Peters (2007). Relative Entropy Policy Search, Tech. Rep. Peters, Muelling, Altun (2010). Relative Entropy Policy Search, AAAI

Further Constraint: Policy Similarity

$$\epsilon \geq \sum_{oldsymbol{s},oldsymbol{a}} \mu^{\pi}(oldsymbol{s})\pi(oldsymbol{a}|oldsymbol{s})\log rac{\mu^{\pi}(oldsymbol{s})\pi(oldsymbol{a}|oldsymbol{s})}{q(oldsymbol{s},oldsymbol{a})}$$

Objective from Behavioral Cloning

Different q yield analytical solution, mellow/softmax, entropy regularization...

Natural policy gradients/TRPO are its approximations!

Outline

- I. Can we learn on a real system from little data?
- 2. How can we learn comprehensible, modular policies?
- 3. How can we learn physically plausible deep models?
- 4. How can we build the best bodies and learn on real systems?
- 5. Conclusion & Outlook

Policy Composition by Selection, Superposition & Sequencing

Initialize both supervisor and primitives by imitation

DARMSTADT

Lioutikov, R.; Neumann, G.; Maeda, G.; Peters, J. (2017). Learning Movement Primitive Libraries through Probabilistic Segmentation, International Journal of Robotics Research (IJRR).

Learn both supervisor and subpolicies by imitation

Rudolf Lioutikov

Modular Control Policies

Mülling, K.; Kober, J.; Kroemer, O.; Peters, J. (2013). Learning to Select and Generalize Striking Movements in Robot Table Tennis, International Journal on Robotic Research LINIVERSITÄT

Relative Entropy Policy Search (REPS)

$$\max_{\pi,\mu^{\pi}} J(\pi) = \sum_{s,a} \mu^{\pi}(s) \pi(a|s) \mathcal{R}_{sa} \quad \text{Maximize reward}$$

$$1 = \sum_{s,a} \mu^{\pi}(s) \pi(a|s) \quad \text{Probability distribution}$$

$$\mu^{\pi}(s') = \sum_{s,a} \mathcal{P}^{a}_{ss'} \mu^{\pi}(s) \pi(a|s) \quad \text{Follow system dynamics}$$

$$\epsilon \geq \sum_{s,a} \mu^{\pi}(s) \pi(a|s) \log \frac{\mu^{\pi}(s) \pi(a|s)}{q(s,a)} \quad \text{Close to training data (no wild exploration)}$$

Mülling, K.; Kober, J.; Kroemer, O.; Peters, J. (2013). Learning to Select and Generalize Striking Movements in Robot Table Tennis, International Journal on Robotics Research.

Problems with Naïvety

Christian Daniel

Localized behavior can be learned efficiently!

Christian Daniel

 $\kappa \geq \mathbb{E}_{s,a}\Big[\sum_o -p(o|s,a)\log p(o|s,a)\Big]$ Force the primitives to limited responsibility

Localized behavior can be learned efficiently!

Good performance

Fast reduction in the number of primitives

Daniel, Neumann & Peters (2016). Hierarchical Relative Entropy Policy Search, JMLR

Sequencing in Manipulation

Phase: I

Policy Composition by Selection, Superposition & Sequencing

Outline

- I. Can we learn on a real system from little data?
- 2. How can we learn comprehensible, modular policies?
- 3. How can we learn physically plausible deep models?
- 4. How can we build the best bodies and learn on real systems?
- 5. Conclusion & Outlook

Models are important for Execution

Michael Lutter

Inverse Model

Energy Model

Forward Model

Engineers prefer engineering to model learning due to plausibility

Michael Lutter

Model Engineering¹

Identify the parameters by taking apart and measuring,

Center of Gravity, Mass, Inertia, etc.

Model can be used as to compute forward, inverse and energy model

System Identification¹

Learn parameters by minimizing the MSE with handcrafted features,

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{N} \|\boldsymbol{\tau}_i - A(\boldsymbol{q}_i, \dot{\boldsymbol{q}}_i, \ddot{\boldsymbol{q}}_i) \theta\|_2^2$$

Model can be used as to compute forward, inverse and energy model

Black-box Model Learning

Learn parameters by minimizing the naïve MSE,

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{N} \|\boldsymbol{\tau_i} - f^{-1}(\boldsymbol{\ddot{q}_i}; \theta)\|_2^2$$

Model can only be used to either compute forward OR inverse model

¹Mass-matrix, Coriolis-, centrifugal- & gravitational force can be computed using the Featherstone algorithm.

Lutter, M. et al. (2019). Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning, ICLR

Lutter, M. et al. (2019). Deep Optimal Control: Using the Euler-Lagrange Equation to learn an Optimal Feedback Control Law, Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM).

Deep Lagrangian Networks (DeLaN)

Michael Lutter

$$\begin{split} f(\,.\,) &= \textit{\textbf{H}}^{-1}\left(\pmb{\tau} - \dot{\pmb{H}}\dot{\pmb{q}} + \frac{1}{2}\Big(\frac{\partial}{\partial \pmb{q}}\,\dot{\pmb{q}}^T \pmb{H}\dot{\pmb{q}}\Big) - \frac{\partial V}{\partial \pmb{q}}\Big) \quad \text{with } \pmb{H} \text{ being p.d.} \\ f^{-1}(\,.\,) &= \pmb{H}\ddot{\pmb{q}} + \dot{\pmb{H}}\dot{\pmb{q}} - \frac{1}{2}\Big(\frac{\partial}{\partial \pmb{q}}\,\dot{\pmb{q}}^T \pmb{H}\dot{\pmb{q}}\Big) + \frac{\partial V}{\partial \pmb{q}} \\ E(\,.\,) &= T + V \end{split}$$

Deep Lagrangian Networks (DeLaN)Guarantee physically-plausible models by constraining the model with priors.

Physical plausibility means that every possible parameter configuration is a mechanical system.

The structured models enables the usage as forward, inverse & energy model

DeLaN enables the simultaneous learning of forward, inverse & energy

Michael Lutter

$$\begin{split} f(\,.\,) &= \textbf{\textit{H}}^{-1}\left(\boldsymbol{\tau} - \dot{\textbf{\textit{H}}}\dot{\textbf{\textit{q}}} + \frac{1}{2}\Big(\frac{\partial}{\partial\textbf{\textit{q}}}\dot{\textbf{\textit{q}}}^T\textbf{\textit{H}}\dot{\textbf{\textit{q}}}\Big) - \frac{\partial V}{\partial\textbf{\textit{q}}}\Big) \quad \text{with } \textbf{\textit{H}} \text{ being p.d.} \\ f^{-1}(\,.\,) &= \textbf{\textit{H}}\ddot{\textbf{\textit{q}}} + \dot{\textbf{\textit{H}}}\dot{\textbf{\textit{q}}} - \frac{1}{2}\Big(\frac{\partial}{\partial\textbf{\textit{q}}}\dot{\textbf{\textit{q}}}^T\textbf{\textit{H}}\dot{\textbf{\textit{q}}}\Big) + \frac{\partial V}{\partial\textbf{\textit{q}}} \\ E(\,.\,) &= T + V \end{split}$$

Energies are learned by minimising the residual of the differential equations

Michael Lutter

$$\begin{split} f(\,.\,) &= \textit{\textbf{H}}^{-1}\left(\pmb{\tau} - \dot{\pmb{H}}\dot{\pmb{q}} + \frac{1}{2}\Big(\frac{\partial}{\partial \pmb{q}}\,\dot{\pmb{q}}^T \pmb{H}\dot{\pmb{q}}\Big) - \frac{\partial V}{\partial \pmb{q}}\Big) \quad \text{with \pmb{H} being p.d.} \\ f^{-1}(\,.\,) &= \pmb{H}\ddot{\pmb{q}} + \dot{\pmb{H}}\dot{\pmb{q}} - \frac{1}{2}\Big(\frac{\partial}{\partial \pmb{q}}\,\dot{\pmb{q}}^T \pmb{H}\dot{\pmb{q}}\Big) + \frac{\partial V}{\partial \pmb{q}} \\ E(\,.\,) &= T + V \end{split}$$

DeLaN can learn the force decomposition unsupervised

Michael Lutter

Energy Control of the Furuta Pendulum

Non-linear feed-forward control of the Barrett WAM

Michael Lutter

Outline

- I. Can we learn on a real system from little data?
- 2. How can we learn comprehensible, modular policies?
- 3. How can we learn physically plausible deep models?
- 4. How can we build the best bodies and learn on real systems?
- 5. Conclusion & Outlook

Robot Bodies for Learning?

Dieter Büchler

Human bodies would defy such an approach but generate high accelerations in order to

- reach high velocities
- perform skillful motions

Humans learn (typically) without breaking!

Human performance robot learning needs better bodies!

Learning Robot Table Tennis from Scratch

Learning Robot Table Tennis from Scratch

Training to hit

TSP Europa-SK 19 light

a real ball!

Outline

- I. Can we learn on a real system from little data?
- 2. How can we learn comprehensible, modular policies?
- 3. How can we learn physically plausible deep models?
- 4. How can we build the best bodies and learn on real systems?
- 5. Conclusion & Outlook

Lessons for Robot Learning

- I. Learn on the real system →
 - (i) Start with imitation, then RL
 - (ii) Find safe model-learning methods for model-based RL
 - (iii) Build bodies for learning from scratch
- 2. Adapt online without replanning! → Use perception modulated movement primitives (DMPs, ProMPs, ...)
- 3. Avoid real-time bottle neck -> modularity & parametrized policies
- 4. Cope with little episodic data problem → modularity, smart data re-use
- 5. At least partially explainable? -> read (Lioutikov et al., IJRR 2019)
- 6. Be physically plausible! → Use DeLaN
- 7. Cope with simulation optimization bias -> Use SPOTA / Entropic Gradients
- 8. Build "best bodies" not "best bodies for feedback control" → small moving masses, antagonistic variable stiffness actuation, robot learning

Outlook

Learning

Learning State Representations for Robotics

Robot

Engineering

(Julia Vinogradska @ JMLR 2017)

Input

Learned Controller

Dynamics GP

Automated Stability Proofs

Introduced Approach

Stability

Analysis Tool

Output

Stability

Region

Self-Paced Robot Reinforcement Learning

SELF-PACED CONTEXTUAL REINFORCEMENT LEARNING (SPRL)

Pascal Klink, Hany Abdulsamad, Boris Belousov, Jan Peters Intelligent Autonomous Systems, TU Darmstadt

SPARSE BALL IN A CUP TASK

(Pascal Klink @ CoRL 2019)

Inferring

Tactile Skill Libraries

(Learning) Control for Table Tennis

Sample Efficient Off-Policy Gradients

Generalized Mean Estimation with MCTS

(Tuan Dam @ IJCAI 2020)

Learning Abstract Strategies independent of the Task Domain

Stochastic Optimal Control by Approximate Input Inference

Machine Learning

Multi-Objective Reinforcement Learning

Human-like Experience Reuse

Human Ball Catching

(Boris Belousov @ NeurlPS 2016)

Spiking Neural Models

Human
Motor Control
& Cognitive
Science

(Daniel Tanneberg @ Neural Networks, 2019)

Human Intent Prediction

(Dorothea Koert @ R-AL/IROS 2019)

Trajectory Similarity Measures

Veiga, F. F.; Edin B.B; Peters, J. (submitted). Grip Stabilization through Independent Tactile Feedback Control, Submitted to Advanced Robotics.

Robot Beer Pong

Demonstration of Pouring

Robot Pouring

Robot Beer Pong

Demonstration of Pouring

Robot Pouring