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Why don’t we have such robots?

Source: British TV (1969)



So where have robots been successful?

Whenever we adapt tasks to robots!



Analytical Robotics World View

Analytical robotics needs three components:

|. Accurate forward models (=Physics simulators)
* Great prior: Physical principles yield simulators
* “All models are wrong but some are useful!” (Cox)
* Un-modelable nonlinearities (friction, actuator dynamics,
contact, ...)

2. Planning algorithms
Exponential explosions, replanning is hard, optimization bias, ...

3. Fast feedback control
* The error killer!
* Build “best bodies for control’: stiff, power hungry, complex
design...
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Deep Learning World View

End-to-end deep learning needs:

|. A highly flexible representation with suitable algorithms (=Deep net)
* We can learn anything =¥ often physically implausible solutions!
* Small errors = huge optimization bias
* Black-box =¥ often little insight into the solution

2. Loads of data
* Robots live in real-time =» Few episodes, fast state-action stream
* Real-World =» Real damages
* Physics simulators as data generators! Back to square one...

3. Loads of computation
Online learning? Energy storage/communication problems!?
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How should Robot Learning differ?

|. Learn on the real system
2. Adapt online without replanning!
3. Avoid real-time bottle neck

4. Cope with little episodic data problem

5. At least partially explainable?
6. Be physically plausible!
/. Cope with simulation optimization bias

8. Build “best bodies” not “‘best bodies for feedback control”

| obviously don’t have all the solutions ...
but | had to learn some good lessons!



Resulting Reselineh Questions

|. Can we learn on a real system from little data!?

2. How can we learn comprehensible, modular policies!?

3. How can we learn physically plausible deep models?

4. How can we build the best bodies and learn on real systems!?

5. Conclusion & Outlook
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Imitation Learning

- Objective: Policy Similarity Model-Free
Behavioral
Model-Based | Clonlng
Behavioral (Michie & Chambers,
© : Sammut et al.)
Cloning

(Englert et al.)

Dual
Dual Function
Problem PUtermann (1998) implieS: for M|n|ma|
IRL is harder than MBC'! Physics
: Solve for the optimal
Inverse Reinforcement . oP .
Learnin parametric policy class:
5 Motor primitives
(Ziebart et al.; Boularias et al.) ) Schal tI.';,éBef- "

Paraschos et al; Gomez-Gonzalez)
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Learning Perception-adapted Probabilistic Motor Primitives

Learning from human demonstrations




Reinforcement Learning

Dual: RL
by Linear
Programming

Bellman’s

Principle of
Nptimality

“Bellman Equation™:

Dual

Problem Putermann (1998): Primal is

harder than Dual!
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No natural notion of data!



Relative Entropy Policy Search

Dual: RL
by Linear
Programming

Peters (2007). Relative Entropy

Policy Search, Tech. Rep. Further Constraint: L%)‘ﬁk{}y S‘ﬂﬂnﬂ@f{@y Objective
Peters, Muelling, Altun (2010). u'zr (s)7r(a| 8) from
Relative Entropy Policy Search, € > u’"’ (8)7T(G,|S) log LB S R Y R Behavioral
AAA s,a q(s, a,) Cloning

Different g yield analytical solution, mellow/softmax,
entropy regularization...
Natural policy gradients/TRPO are its approximations!
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Outline

|. Can we learn on a real system from little data!?

2. How can we learn comprehensible, modular policies?

3. How can we learn physically plausible deep models?

4. How can we build the best bodies and learn on real systems!?

5. Conclusion & Outlook
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Policy Composition by
Selection, Superposition & Sequencing
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Initialize both supervisor and ﬂ
primitives by imitation

Lioutikov, R.; Neumann, G.; Maeda, G.; Peters, J. (2017). Learning Movement Primitive Libraries through
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Learn both supervisor and
policies by imitation

Rudolf Lioutikov

IHE Lioutikov, R.; Neumann, G.; Maeda, G.; Peters, J. (2017). Learning Movement Primitive §%§ZA TECHNISCHE
Libraries through Probabilistic Segmentation, Ihternational Journal of Robotics Research %)\\.é DARMSTADT



Modular Control Policies

Mulling, K.; Kober, J.; Kroemer, O.; Peters, J. (2013). Learning to Select and Generalize Striking Movements in
IHE Robot Table Tennis, International Journal on RoboticgiReseanatee
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“Naive’ Extension of
REPS

Relative Entropy Policy Search (REPS)

"(s)m(als) Follow system dynamics

p"(8)m(als) Close to training data (no
g(s,a) wild exploration)

Mulling, K.; Kober, J.; Kroemer, O.; Peters, J. (2013). Learning to Select and Generalize Striking Movements in
Robot Table Tennis, International Journal on Robotics Research.

Daniel, Neumann & Peters (2016). Hierarchical Relative Entropy Policy Search, JMLR 19



Opponent Predictiom
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Daniel, Neumann & Peters (2016). Hierarchical Relative Entropy Policy Search, JMLR
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Localized behavior can
be learned efficiently!

Christian Daniel
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Localized behavior can
be learned efficiently!

Christian Daniel

Good performance

Fast reduction in
the number of
primitives

Daniel, Neumann & Peters (2016).
Hierarchical Relative Entropy
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_ Sequencing
Oliver Kroérﬁer in Manipu Iation

Rudolf Lioutikov
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Policy Composition by
Selection, Superposition & Sequencing

Task
Teach
»  Adaptation Desired
lI Behavior ’
Primitives

" Learmng

Signal
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Outline

|. Can we learn on a real system from little data!?

2. How can we learn comprehensible, modular policies!?

3. How can we learn physically plausible deep models!?

4. How can we build the best bodies and learn on real systems!?

5. Conclusion & Outlook
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Michael Lutter

Inverse Model

Energy Model

Xt+3

Forward Model
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Engineers prefer engineering to
model learning due to plausibility

Model Engineering?

|Identify the parameters by taking
apart and measuring,

|-||- Center of Gravity,
||-. Mass, Inertia, etc.

Model can be used as to compute
forward, inverse and energy model

System ldentification'

Learn parameters by minimizing the
MSE with handcrafted features,

N
6* = arggninillfi — A(qi, 4, 4) 015
i=1

Model can be used as to compute
forward, inverse and energy model

IMass-matrix, Coriolis-, centrifugal- & gravitational force can be computed using the Featherstone algorithm.

Michael Lutter

Black-box Model Learning

q;

#

Learn parameters by minimizing the
naive MSE,

N
0* = arg;ninleti — Y403
=

Model can only be used to either
compute forward OR inverse model

Lutter, M. et al. (2019). HJB Optimal Feedback Control with Deep Differential Value Functions and Action Constraints, CoRL
Lutter, M. et al. (2019). Deep Lagrangian Networks for end-to-end learning of energy-based control for under-actuated systems, IROS
Lutter, M. et al. (2019). Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning, ICLR

Lutter, M. et al. (2019). Deep Optimal Control: Using the Euler-Lagrange Equation to learn an Optimal Feedback Control Law, Multi-disciplinary
Conference on Reinforcement Learning and Decision Making (RLDM). A
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Deep Lagrangian Networks (DelLaN)

Michael Lutter

Model Representation Physics Prior

Deep Lagrangian Networks (DeLaN)
Guarantee physically-plausible models by

constraining the model with priors.
U m

Physical plausibility means that every

possible parameter configuration is a
|:| [7] mechanical system.

The structured models enables the usage
as forward, inverse & energy model

B Lagrangian Mechanics Bl Conservation of Energy

, 1,0 av
f(H)=H"1 (r— Hq +—<— qTHq) — —) with H being p.d.

2\0q aq
. 1/0 oV
-1 _ . - - T .
F) = Hi+ - 55247 H) + 5

E()=T+V
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DelLaN enables the simultaneous
learning of forward, inverse & energy

Model Representation Physics Prior

. Conservation of Energy

B Lagrangian Mechanics

f()—H‘l(t—H'+1(a 'TH’)—aV) ith H being p.d

L) = q > aqq q 3q Wi eing p.d.
. 1,8 v

_1 _ .o o___-T . -

fY()=Hg+Hqg 2<6qq Hq)+aq

E()=T+V
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Energies are learned by minimising the ﬁ
residual of the differential equations

Michael Lutter

Model Representation Physics Prior Parameter Optimization

B Conservation of Energy

B Lagrangian Mechanics

£()=H- (r Hq+1Q;

()= Hi+ H 1(0 ) 7)4
f~(.)=Hq+ Hq aqq Hq 3q

12) = 22) it being
q"Hq 3q Wi eing p.d.

E()=T+V
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DelaN can learn the force
decomposition unsupervised

BN DelaN
Il Ground Truth
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Energy Control of the Furuta
Pendulum
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Non-linear feed-forward control of
the Barrett VWAM

Michael Lutter
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Outline

|. Can we learn on a real system from little data!?

2. How can we learn comprehensible, modular policies!?

3. How can we learn physically plausible deep models?

4. How can we build the best bodies and learn on real systems!?

5. Conclusion & Outlook
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Dieter Buchler

Classical robotics builds the best body that can be
controlled with classical approaches!

Human bodies would defy such an approach but
generate high accelerations in order to

® reach high velocities

® perform skillful motions

~ Humans learn (typically) without breaking!

(&:_ | B Human performance robot learning needs
| ] better bodies!
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Learning Robot Table Tennis 515
from Scratch ‘

Dieter Simon
Buchler Guist

Training to hit a simulated ball!




Learning Robot Table Tennis |

from Scratch

Training to hit
a real ball!

Dieter
Buchler Guist

/ = ==
/
B

i — g b
| ' Al
¢
74
\" -
l/ '
4
& il

-—

~ 1

Sy 54'“— It t iiii
ol sy e .
i R ‘t;f{fﬂ’ ¢ “
_— 3




Outline

|. Can we learn on a real system from little data!?

2. How can we learn comprehensible, modular policies!?

3. How can we learn physically plausible deep models?

4. How can we build the best bodies and learn on real systems!?

5. Conclusion & Outlook
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Lessons for Robot Learning

|. Learn on the real system =¥
(i) Start with imitation, then RL
(i) Find safe model-learning methods for model-based RL
(iii) Build bodies for learning from scratch

2. Adapt online without replanning! =» Use perception modulated movement
primitives (DMPs, ProMPs, ...)

3. Avoid real-time bottle neck =¥ modularity & parametrized policies

4. Cope with little episodic data problem =» modularity, smart data re-use

5. At least partially explainable? =¥ read (Lioutikov et al., [|[RR 2019)

6. Be physically plausible! =% Use DelLaN

/. Cope with simulation optimization bias =¥ Use SPOTA / Entropic Gradients

8. Build “best bodies” not “best bodies for feedback control” =» small moving
masses, antagonistic variable stiffness actuation, robot learning



Outlook

Human
Motor Control
& Cognitive
Science

Robot
Engineering

Robot
Learning

Machine
Learning
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Learning State Automated Stability Proofs
Representations for Robotics T .

. 1 7 . IU.:HM'.‘( ontroller j—# Sl.lhlllljn S[.:!‘l]!l}
| ' » Analysis Tool Region
i1 Dynamics GP - =

(JuliaVinogradska @ JMLR 2017)

Self-Paced Robot Reinforcement Learning

(Simone Parisi
@ ML 2019)

SELF-PACED CONTEXTUAL
RO bOt REINFORCEMENT LEARNING (SPRL)
Engineering

Pascal Klink, Hany Abdulsamad, Boris Belousov, Jan Peters

Inzell gent Attoncr icus Systems, TU Danrstacil

SPARS= BALL IN A CUP TASK

Inferring
Hybrid Control
From Data

Tactile Skill Libraries

(Hany Abdulsamad
@ Under Review) §

(Boris Belousov ‘
@ Humanoids 2019) %, 42

(Okan Ko¢ @ R-AL/

ICRA 2019)



Sample Eff‘uent Off-Pollc Gradlents

Generalized
Mean

Estimation
with MCTS

(Tuan Dam @ 1JCAl 2020)

(Samuele Tosatto @ AlStats 2020)

L Learning Abstract Strategies independent of the Task Domain
Imitation of

Race Car Drivers

wwwww

(Daniel Tanneberg
@ Under Review)
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5000 10000 ( S000
terations (0O for training) iterations (0 for training)

Stochastic Optimal Control
by Approximate Input Inference

Multi-Objective
Reinforcement Learning

Machine
Learning

(Simone Parisi @ NECO 2017)



Human-like Experience Reuse Spiking Neural Models
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(Daniel

Tanneberg
@ Neural
Networks, 2019
Human Ball seworks, 2019)
Catching

| turn | g (BOI‘IS Be|OUSOV

@ NeurlPS 2016)

Human Intent Prediction

Trajectory Similarity Measures

(Dorothea Koert
@ R-AL/IROS 2019)
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Filipe
Veiga, F. F; Edin B.B; Peters, J. (submitted). Grip Stabilization through Veiga
Independent Tactile Feedback Control, Submitted to Advanced Robotics.





















Demonstration of Pouring






















Demonstration of Pouring




