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>

State-of-Affairs

Representation learning is heavily biased towards training conditions

Brittle under real-world situations that differ from those perceived
during learning in terms of data, labels, objectives and fairness

Supervision dependence
>

Low

>

Closed-world Societal impact Real-world



>

State-of-Affairs

Simply scaling-up along all dimensions at training time seems a dead end

Not only because of the compute, storage and ethical expenses
but especially as humans generalize robustly in a data-efficient fashion

Supervision dependence
>

Low

>

Closed-world Societal impact Real-world
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Distribution gap

Art-painting Cartoon
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>

State-of-Affairs

Distribution gap
No learning methodology exists that
dynamically generalizes and adapts
across domains, labels, tasks and
fairness simultaneously and does
so in a data-efficient fashion.

Label gap

Objective gap

Fairness gap

Supervision dependence
>

Real-World
Learning
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This talk

We question common representation learning assumptions
i. Learning without label assumption
ii. Learning without task assumption

jii. Learning without domain assumption



I. Learning without label assumption

Pengwan Yang Pascal Mettes Cees Snoek
University of Amsterdam University of Amsterdam University of Amsterdam

Few-Shot Transformation of Common Actions into Time and Space. In CVPR 2021.



Canonical Paradigm: few-shot classification

Network

Support images
w/ label

Query image

Figure credit: Vinyals et al. NeurlPS 2016



Canonical Paradigm: few-shot detection

Support images
w/ label + box

Query image

Network

w/ Tao Hu et al. AAAI 2019



w/ Tao Hu et al. ICCV 2019

Few-shot common object localization

Localize the common object in the query image without any label and box annotation



w/ Tao Hu et al. ICCV 2019

Few-shot common object localization

—

Spatial similarity

2R

Feature reweighting

Localize the common object in the query image without any box annotation



Few-shot common action in video

Trimmed support videos

Untrimmed query video

No need for action class label or any temporal and/or spatial annotation



Example

support videos
. 7 TER P

one-shot prediction

five-shot prediction



Carion et al. ECCV 2020

Inspiration: object detection transformers

encoder-
decoder

e — \| transformer

set of image features

Benefits of transformers:
i) it avoids the needle-in-the-haystack problem with proposals
ii) it provides powerful relation modeling capability



Untrimmed query video

Feature extractor
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SxCxTxWxH
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Query feature

Few-shot transformer

L

Key frame

S : number of support videos
N : number of query clips

T : temporal length of support video feature
T': temporal length of query clip feature

H : feature height
C : feature dimension

W : feature width
P : number of predictions

Common
attention block




Feature extractor E : Few-shot transformer E ; Prediction
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Feature extractor Few-shot transformer
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Support videos

Results

one-shot (blue )
five-shot (red )

Common action localization in time and space



Ablations on Common-AVA
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Influence of length and number of support videos.
We obtain a more precise common localization
with more and longer support videos.



Ablations on Common-AVA

Influence of length and number of support videos.

T 26
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We obtain a more precise common localization

with more and longer support videos.

No noise

281

Video-level noise

1 noisy support video of other class

1 noisy support video without action

2 noisy support videos of different class
2 noisy support videos of same class

26.8
26.3
255
243

Frame-level noise

2 noisy frames in each support video
4 noisy frames in each support video
6 noisy frames in each support video
8 noisy frames in each support video

219
274
26.1
24.5

Effect of noisy support videos for the five-shot

setting. The result shows our robustness.



Yang et al. submitted

Self-support video instance segmentation

Query video

Find support videos using the query

Unlabelled videos ] ]
Pool from unlabelled video in self-

supervised fashion

A

9 4 Self-support _

Common transformer

|
--- No labels, no masks.

Video instance segmentation

/

Transformer enables instance
segmentation



Video instance segmentation results

F____________________1

Self-support examples

Query video



Video instance segmentation results

F____________________1

Self-support examples

Query video



Scalable video instance segmentation?
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Il. Learning without task assumption
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Yingjun Du Xiantong Zhen Ling Shao Cees Snoek
University of Amsterdam  University of Amsterdam  Inception Institute of Al University of Amsterdam

MetaNorm: Learning to Normalize Few-Shot Batches Across Domains. In /CLR 2021.



Few-shot meta-learning

5-way, 1-shot

Meta-
Train
7

meta—tram

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In ICLR 2017.



Deep learning work horse: batch normalization

Stabilize the distribution of internal activations during training
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Challenge I: batch statistics become unstable with small batch sizes
Challenge Il: distribution shift between source and target domains



Transductive Batch Normalization

Compute batch statistics by using all available query data

REIET

support query

Transductive

Requirement to have test set samples available limits real-world use



TaskNorm

ldentified the limiting assumption of the transductive setting

Leverages statistics from both layer and instance normalization

Better than batch norm, sometimes better than transductive.



Our proposal: MetaNorm

Leverage the meta-learning setting

Infer statistics from the support set that better match the query set

Dxr [q(m|S)||p(m|Q))]

e N

Distribution inferred from support set Distribution inferred from query set

Achieve adaptive batch normalization



Meta-training optimization

Support Query
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Hypernetworks f,f, £.f, generate (us, 05) and (,uQ, JQ) from the support and
query sets, for calculating the KL term during meta-training optimization.



Meta-testing

Given a test task, the learned hypernetworks f,f, ff take the support set as
input to generate normalization statistics directly for the query set.
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Effect of the KL term

Label gap Distribution gap
Few-shot classification Domain generalization
MetaNorm 5-way, 1-shot 5-way, 5-shot| Photo Art Cartoon Sketch Mean
w/o KL 343 +15 50.7 +08 | 88.96 7125 6537 69.28 73.72
w/ KL 46.8 + 1.6 60.1 +08 | 9599 85.01 78.63 83.17 85.70

Effective for both few-shot classification and many-shot domain generalization



Comparison with other batch norms

ProtoNets MAML
5-way, 1-shot 5-way, 5-shot 5-way, 1-shot 5-way, 5-shot
TBN 45.9 + 0.6 65.5 +09 45.5 +1.8 59.7 + 0.9
CBN 47.8 +06 66.7 05 20.1 + 0.0 20.2 +0.2
TaskNorm 47.5 + 0.6 65.3 +05 42.0 +1.7 58.1 +£09
MetaNorm 48.1 + 1.6 65.9 +o0.9 46.8 + 1.6 60.1 +o.8

MetaNorm outperforms transductive and non-transductive normalizations



Real-world learning: few-shot domain generalization
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Few-shot domain generalization

MAML
5-way, 1-shot 5-way, 5-shot
TBN 28.7 +1.8 49.3 +0.8
CBN 20.0 £ 0.0 20.1 +02
TaskNNorm 26.9 +1.7 474 +038
MetaNorm 32.7 +1.7 51.9 + 0.9

MetaNorm allows for batch normalization of small batches across domains.



Ill. Learning without domain assumption
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Zehao Xiao Xiantong Zhen Ling Shao Cees Snoek
University of Amsterdam  University of Amsterdam  Inception Institute of Al University of Amsterdam

Learning to Generalize across Domains on Single Test Samples. Submitted.



Distribution gaps are a fact of life
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Test-time training

Update model parameters by self-supervision before prediction

training ~ ?(/;
: gm(xay;eeagm)
min ]Ep[ -
99;0579111 +£S(x7 ys;96703) 0 <
> 180°
testing
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— 0(x): make prediction on - 0., bird

Needs additional self-supervised model, plus fine-tuning



Test-time adaptation

Normalize test-batch predictions by entropy minimization

normalization u < E[x,], 0° + E[(p — iIJt)Q]

7 o il B
IN _’ 9 @ 9 OUT transformation v < v+ 0H /0v,B + B+ 0H /0B

Needs a batch to be from the same domain, plus fine-tuning

Outperforms test-time training



Key idea

Adapt source domain classifiers to each individual target sample

Without adaptation With adaptation

O single Targetsample @ Classifiers () ()  Source domain samples



Meta-learning framework

Mimic shift between source and target by shift among source domains

Source domains Target domain

— L

Domain shift




Meta-learning framework

Mimic shift between source and target by shift among source domains

Source domains

Veta-source domains
i R

— L

Meta-target domain
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7

Target domain

N

|

Domain shift



Adaptation as variational inference

Incorporate the test sample as a conditional for generating model parameters

log p(y % ,[TY) = log / p(ye (X, 01 )p(0y [T75)dO,,

Meta-target



Adaptation as variational inference

Incorporate the test sample as a conditional for generating model parameters

logp(Yt’lxt':T,) — log/P(Yt'|Xt',Ot')P(Ht'|T’)d9t',

Meta-target

Intractable during inference, so we approximate by source domain similarity

> ]Eq(et,)[logp(}’t’ %4240, )] — Dxr [q(0 |42, S/)Hp(ot"T')]-

Meta-source



Adaptation as variational inference

Incorporate the test sample as a conditional for generating model parameters

log p(y v |%¢ () = log / p(ye [Xe, 0 )p(0y [T5)d6,,

Meta-target

Intractable during inference, so we approximate by source domain similarity

= E(l(gt,)[logp(y,/ X7, 01 )] — Dkr[q(0 [ 5/)||P(9t’|7-’)]-

Meta-source

Our model learns the ability to adapt the meta-source model to each
meta-target instance across different domain shifts



Computational feasability

We divide the model O into a feature extractor ¢ and a classifier w.
¢ is shared across domains, while w is trained to be adapted

Meta-source & — MLP _,"p(wsl)‘iampling
T 0, _’{Q(Wt') Jl_’ vy
=i i Posterior
Single sample [Xg—>] CNN ¢
Prior

\

Meta-target / s » 0, —4P(Wt’)}_" Y




Generalization at test-time

S’ S i Xt
& C) O @
(a) Training on meta-source (S’) and meta-target (7') domains  (b) Testing on the unseen domain (7

Adaptation is achieved by generating w, for each target sample with only
one forward pass using an amortization inference network



Comparison with test-time adaptation (Tent)

Domain 0°

Domain 90°

Results on Rotated-MNIST
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Comparison with test-time adaptation (Tent)

Tent works well with a large batch of samples from a single target domain

Single target domain Results on Rotated-MNIST

A Domain 0° 0 q

o 96.0
i
S Domain 15°
< 955
—— Base Model
—— Single-sample adaptation :
95.0 {  Tent (1 step)
¢ Tent (10 steps)
4B Tent (100 steps) Domain 90° D \4 v -l

1 16 32 64 128
Number of samples



Comparison with test-time adaptation (Tent)

Tent works well with a large batch of samples from a single target domain

We outperform with a single sample, especially for multiple target domains

Single target domain Multiple target domains
97.0- 97.0
96.5- 96.5
S 96.0 S 96.0
i i T
= =
S 3 ’ @ — e iy
&) 95.5 &) 95.5 t *§‘._ ----- —
—— Base Model i
- Single-sample adaptation
95.0- + Tent (1 step) 95.0
¢ Tent (10 steps)
94.5 Tent (100 steps) 945
1 16 32 64 128 1 16 32 64 128

Number of samples Number of samples



More comparisons

The better the base network, the more we gain.

PACS benchmark Office-Home benchmark
ResNet-18 ResNet-50 ResNet-18 ResNet-50
Wang et al. ICLR 2021 83.09 86.23 64.13 67.99
Dubey et al. CVPR 2021 - 84.50 68.90 } Test-time adaptation
Zhou et al. ECCV 2020 83.70 84.90 65.63 67.66 Domain generation
Seo et al. ECCV 2020 85.11 86.64 62.90 -- Normalization

Ours 84.15 87.51 66.02 71.07




Label: Guitar
Prediction: Person

Label: Dog
Prediction: Giraffe

Classifiers: ® Elephant

Failure cases

m
A
Label: Horse
Prediction: House
&
* A
&

Label: Elephant
Prediction: Horse

® Giraffe

B Guitar ® Horse ¥ House

A Person




Conclusions

Need for real-world learning across domains, labels, tasks and with fairness.
Need to question common learning assumptions.

Label, task and domain assumptions can be relaxed during learning.

Thank you

https://ivi.fnwi.uva.nl/vislab/
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