

Real-World Learning

Prof. dr. Cees Snoek

Video & Image Sense Lab

UNIVERSITY OF AMSTERDAM

https://ivi.fnwi.uva.nl/vislab/

Awesome learning

SONGBIRDS

À LA CARTE

State-of-Affairs

Representation learning is heavily biased towards training conditions

Brittle under real-world situations that differ from those perceived during learning in terms of data, labels, objectives and fairness

Low

Closed-world

Societal impact

Real-world

High

Simply scaling-up along all dimensions at training time seems a dead end

Not only because of the compute, storage and ethical expenses but especially as humans generalize robustly in a data-efficient fashion

Low

Closed-world

Societal impact

w/ Zehao Xiao *et al.*, ICML 2021

w/ Zehao Xiao *et al.*, ICML 2021

Label gap

w/ Kirill Gavrilyuk *et al.*, ICCV 2021

w/ Zehao Xiao et al., ICML 2021

Objectives gap

w/ Mohammad Mahdi Derakhshani *et al.*, ICML 2021

Label gap

w/ Kirill Gavrilyuk *et al.*, ICCV 2021

w/ Zehao Xiao *et al.*, ICML 2021

Objectives gap

w/ Mohammad Mahdi Derakhshani *et al.*, ICML 2021

Label gap

w/ Kirill Gavrilyuk *et al.*, ICCV 2021

Fairness gap

w/ William Thong, BMVC 2021

High

State-of-Affairs

Dead end

No learning methodology exists that dynamically generalizes and adapts across domains, labels, tasks and fairness simultaneously and does so in a data-efficient fashion.

Low

Supervision dependence

Closed-world

Societal impact

This talk

We question common representation learning assumptions

i. Learning without **label** assumption

ii. Learning without **task** assumption

iii. Learning without **domain** assumption

I. Learning without label assumption

Pengwan Yang University of Amsterdam

Pascal Mettes University of Amsterdam

Cees Snoek University of Amsterdam

Few-Shot Transformation of Common Actions into Time and Space. In CVPR 2021.

Canonical Paradigm: few-shot classification

Support images w/ label

Figure credit: Vinyals et al. NeurIPS 2016

Canonical Paradigm: few-shot detection

Support images w/ label + box

Query image

Network

w/ Tao Hu et al. AAAI 2019

w/ Tao Hu et al. ICCV 2019

Few-shot common object localization

Support images w/o label and w/o box

Localize the common object in the query image without any label and box annotation

w/ Tao Hu et al. ICCV 2019

Few-shot common object localization

Support images

Localize the common object in the query image without any box annotation

Few-shot common action in video

No need for action class label or any temporal and/or spatial annotation

support videos

Example

query video

one-shot prediction

Inspiration: object detection transformers

Benefits of transformers:

- i) it avoids the needle-in-the-haystack problem with proposals
- ii) it provides powerful relation modeling capability

Method

Method

Method

Support videos

Results

Query video

one-shot (blue) five-shot (red)

Common action localization in time and space

Ablations on Common-AVA

Influence of length and number of support videos. We obtain a more precise common localization with more and longer support videos.

Ablations on Common-AVA

Influence of length and number of support videos. We obtain a more precise common localization with more and longer support videos.

No noise	28.1
Video-level noise	
1 noisy support video of other class	26.8
1 noisy support video without action	26.3
2 noisy support videos of different class	25.3
2 noisy support videos of same class	24.7
Frame-level noise	
2 noisy frames in each support video	27.9
4 noisy frames in each support video	27.4
6 noisy frames in each support video	26.1
8 noisy frames in each support video	24.5

Effect of noisy support videos for the five-shot setting. The result shows our robustness.

Self-support video instance segmentation

Query video

Find support videos using the query

Pool from unlabelled video in selfsupervised fashion

Transformer enables instance segmentation

No labels, no masks.

Video instance segmentation

Video instance segmentation results

Query video

Video instance segmentation results

Query video

Scalable video instance segmentation?

II. Learning without task assumption

MetaNorm: Learning to Normalize Few-Shot Batches Across Domains. In ICLR 2021.

Few-shot meta-learning

5-way, 1-shot

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In ICLR 2017.

Deep learning work horse: batch normalization

Stabilize the distribution of internal activations during training

$$\mu_{\mathcal{B}} = \frac{1}{M} \sum_{i=1}^{M} a_i, \quad \sigma_{\mathcal{B}}^2 = \frac{1}{M} \sum_{i=1}^{M} (a_i - \mu_{\mathcal{B}})^2$$
$$\hat{q}_i \leftarrow \mathbf{BN}(a_i) \equiv \gamma \hat{a}_i + \beta, \quad \text{where,} \quad \hat{a}_i = \frac{a_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}},$$

Challenge I: batch statistics become unstable with small batch sizes Challenge II: distribution shift between source and target domains

Sergey Ioffe & Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML 2015.

Transductive Batch Normalization

Compute batch statistics by using all available query data

Transductive

Requirement to have test set samples available limits real-world use

TaskNorm

Identified the limiting assumption of the transductive setting

Leverages statistics from both layer and instance normalization

Better than batch norm, sometimes better than transductive.

John Bronskill et al. TaskNorm: Rethinking batch normalization for meta-learning. In ICML 2020.

Our proposal: MetaNorm

Leverage the meta-learning setting

Infer statistics from the support set that better match the query set

 $D_{\mathrm{KL}}[q(m|S)||p(m|Q)]$

Distribution inferred from support set

Distribution inferred from query set

Achieve adaptive batch normalization

Meta-training optimization

Hypernetworks f_{μ}^{ℓ} , f_{σ}^{ℓ} , generate (μ_S, σ_S) and (μ_Q, σ_Q) from the support and query sets, for calculating the KL term during meta-training optimization.

Meta-testing

Given a test task, the learned hypernetworks f_{μ}^{ℓ} , f_{σ}^{ℓ} take the support set as input to generate normalization statistics directly for the query set.

$$\mu_S = rac{1}{|\mathcal{S}|} \sum_{i=1}^{|\mathcal{S}|} f_{\mu}^{\ell}(\mathbf{a}_i), \qquad \sigma_S = rac{1}{|\mathcal{S}|} \sum_{i=1}^{|\mathcal{S}|} f_{\sigma}^{\ell}((\mathbf{a}_i - \mu_S)^2).$$
 $a' = \gamma \left(rac{a - \mu_S}{\sqrt{\sigma_S^2 + \epsilon}}
ight) + eta,$

Effect of the KL term

	Label gap		Distribution gap				
	Few-shot c	lassification	D	omain g	generaliza	tion	
MetaNorm	5-way, 1-shot	5-way, 5-shot	Photo	Art	Cartoon	Sketch	Mean
w/o KL w/ KL	$\begin{array}{c} \textbf{34.3} \pm \textbf{1.5} \\ \textbf{46.8} \pm \textbf{1.6} \end{array}$	$\begin{array}{c} 50.7 \pm 0.8 \\ \textbf{60.1} \ \pm \textbf{0.8} \end{array}$	88.96 95.99	71.25 85.01	65.37 78.63	69.28 83.17	73.72 85.70

Effective for both few-shot classification and many-shot domain generalization

Comparison with other batch norms

	ProtoNets		MAML		
	5-way, 1-shot	5-way, 5-shot	5-way, 1-shot	5-way, 5-shot	
TBN	45.9 ± 0.6	65.5 ± 0.9	45.5 ± 1.8	59.7 ± 0.9	
CBN	47.8 ± 0.6	66.7 ± 0.5	20.1 ± 0.0	20.2 ± 0.2	
TaskNorm	47.5 ± 0.6	65.3 ± 0.5	42.0 ± 1.7	58.1 ± 0.9	
MetaNorm	$\textbf{48.1} \pm \textbf{1.6}$	$\textbf{65.9} \pm \textbf{0.9}$	$\textbf{46.8} \pm 1.6$	$\textbf{60.1} \pm \textbf{0.8}$	

MetaNorm outperforms transductive and non-transductive normalizations

Real-world learning: few-shot domain generalization

Few-shot domain generalization

	MAML			
	5-way, 1-shot	5-way, 5-shot		
TBN	28.7 ± 1.8	49.3 ±0.8		
CBN	20.0 ± 0.0	20.1 ± 0.2		
TaskNorm	26.9 ± 1.7	47.4 ± 0.8		
MetaNorm	$\textbf{32.7} \pm \textbf{1.7}$	51.9 ± 0.9		

MetaNorm allows for batch normalization of small batches across domains.

III. Learning without domain assumption

Learning to Generalize across Domains on Single Test Samples. Submitted.

Distribution gaps are a fact of life

Images with different style

Medical images from different devices

Autopilot data in different environments

Suburban

Test-time training

Update model parameters by self-supervision before prediction

Needs additional self-supervised model, plus fine-tuning

Yu Sun *et al.* Test-Time Training with Self-Supervision for Generalization under Distribution Shifts. In ICML 2020.

Test-time adaptation

Normalize test-batch predictions by entropy minimization

normalization $\mu \leftarrow \mathbb{E}[x_t], \sigma^2 \leftarrow \mathbb{E}[(\mu - x_t)^2]$ transformation $\gamma \leftarrow \gamma + \partial H / \partial \gamma, \beta \leftarrow \beta + \partial H / \partial \beta$

Needs a batch to be from the same domain, plus fine-tuning

Outperforms test-time training

Key idea

Adapt source domain classifiers to each individual target sample

Meta-learning framework

Mimic shift between source and target by shift among source domains

Meta-learning framework

Mimic shift between source and target by shift among source domains

Adaptation as variational inference

Incorporate the test sample as a conditional for generating model parameters

$$\log p(\mathbf{y}_{t'} | \mathbf{x}_{t'}, \mathcal{T}') = \log \int p(\mathbf{y}_{t'} | \mathbf{x}_{t'}, \boldsymbol{\theta}_{t'}) p(\boldsymbol{\theta}_{t'} | \mathcal{T}') d\boldsymbol{\theta}_{t'},$$

Meta-target

Adaptation as variational inference

Incorporate the test sample as a conditional for generating model parameters

$$\log p(\mathbf{y}_{t'} | \mathbf{x}_{t'}, \mathcal{T}') = \log \int p(\mathbf{y}_{t'} | \mathbf{x}_{t'}, \boldsymbol{\theta}_{t'}) p(\boldsymbol{\theta}_{t'} | \mathcal{T}') d\boldsymbol{\theta}_{t'},$$

Meta-target

Intractable during inference, so we approximate by source domain similarity

$$\geq \mathbb{E}_{q(\boldsymbol{\theta}_{t'})}[\log p(\mathbf{y}_{t'}|\mathbf{x}_{t'},\boldsymbol{\theta}_{t'})] - \mathbb{D}_{\mathrm{KL}}[q(\boldsymbol{\theta}_{t'}|\mathbf{x}_{t'},\mathcal{S}')||p(\boldsymbol{\theta}_{t'}|\mathcal{T}')].$$

Meta-source

Adaptation as variational inference

Incorporate the test sample as a conditional for generating model parameters

$$\log p(\mathbf{y}_{t'} | \mathbf{x}_{t'}, \mathcal{T}') = \log \int p(\mathbf{y}_{t'} | \mathbf{x}_{t'}, \boldsymbol{\theta}_{t'}) p(\boldsymbol{\theta}_{t'} | \mathcal{T}') d\boldsymbol{\theta}_{t'},$$

Meta-target

Intractable during inference, so we approximate by source domain similarity

$$\geq \mathbb{E}_{q(\boldsymbol{\theta}_{t'})}[\log p(\mathbf{y}_{t'}|\mathbf{x}_{t'}, \boldsymbol{\theta}_{t'})] - \mathbb{D}_{\mathrm{KL}}[q(\boldsymbol{\theta}_{t'}|\mathbf{x}_{t'}, \mathcal{S}')||p(\boldsymbol{\theta}_{t'}|\mathcal{T}')].$$

Meta-source

Our model **learns the ability to adapt** the meta-source model to each meta-target instance across different domain shifts

Computational feasability

We divide the model θ into a feature extractor φ and a classifier w. φ is shared across domains, while w is trained to be adapted

Generalization at test-time

(a) Training on meta-source (\mathcal{S}') and meta-target (\mathcal{T}') domains (b) Testing on the unseen domain (\mathcal{T})

Adaptation is achieved by generating w_t for each target sample with only one forward pass using an amortization inference network

Comparison with test-time adaptation (Tent)

Results on Rotated-MNIST

Comparison with test-time adaptation (Tent)

Tent works well with a large batch of samples from a single target domain

Comparison with test-time adaptation (Tent)

Tent works well with a large batch of samples from a single target domain We outperform with a single sample, especially for multiple target domains

More comparisons

The better the base network, the more we gain.

	PACS ben	PACS benchmark		Office-Home benchmark		
	ResNet-18	ResNet-50	ResNet-18	ResNet-50		
Wang et al. ICLR 2021	83.09	86.23	64.13	67.99	ר	
Dubey et al. CVPR 2021		84.50		68.90	F Test-time ada	
Zhou et al. ECCV 2020	83.70	84.90	65.63	67.66	Domain gener	
Seo et al. ECCV 2020	85.11	86.64	62.90		Normalizatior	
Ours	84.15	87.51	66.02	71.07		

Failure cases

Label: Guitar Prediction: Person

Label: Dog Prediction: Giraffe

Elephant

Classifiers:

★ Dog

🔵 Giraffe

Label: Horse Prediction: House

Horse

Label: Elephant Prediction: Horse

Guitar

House

•

Conclusions

Need for real-world learning across domains, labels, tasks and with fairness.

Need to **question** common learning **assumptions**.

Label, task and domain assumptions can be relaxed during learning.

https://ivi.fnwi.uva.nl/vislab/

Prof. dr. Cees Snoek https://www.ceessnoek.info

cgmsnoek@uva.nl

@cgmsnoek