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Representation learning is heavily biased towards training conditions

Brittle under real-world situations that differ from those perceived 
during learning in terms of data, labels, objectives and fairness
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Simply scaling-up along all dimensions at training time seems a dead end 

Not only because of the compute, storage and ethical expenses
but especially as humans generalize robustly in a data-efficient fashion
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Real-World
Learning

No learning methodology exists that 
dynamically generalizes and adapts 
across domains, labels, tasks and 
fairness simultaneously and does
so in a data-efficient fashion.



This talk

We question common representation learning assumptions

i. Learning without label assumption

ii. Learning without task assumption

iii. Learning without domain assumption
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I. Learning without label assumption

Few-Shot Transformation of Common Actions into Time and Space. In CVPR 2021.

Pascal MettesPengwan Yang Cees Snoek
University of Amsterdam University of Amsterdam University of Amsterdam



Canonical Paradigm: few-shot classification

Figure credit: Vinyals et al. NeurIPS 2016

Network
Support images
w/ label

Query image



Canonical Paradigm: few-shot detection

Network

Support images
w/ label + box

Query image

w/ Tao Hu et al. AAAI 2019



Few-shot common object localization
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Localize the common object in the query image without any label and box annotation

Network

Support images w/o label and w/o box

Query image

w/ Tao Hu et al. ICCV 2019



Few-shot common object localization

Support branch

Query branch

Spatial similarity

Feature reweighting D
et

ec
tio

n

Backbone

Localize the common object in the query image without any box annotation
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Few-shot common action in video
Trimmed	support	videos

Untrimmed	query	video

Few-shot transformer

No need for action class label or any temporal and/or spatial annotation



Example



Inspiration: object detection transformers

Benefits of transformers:  
i) it avoids the needle-in-the-haystack problem with proposals
ii) it provides powerful relation modeling capability

Carion et al. ECCV 2020



Method



Method



Method



Results

one-shot (blue )  
five-shot (red )



Ablations on Common-AVA

Influence of length and number of support videos. 
We obtain a more precise common localization 
with more and longer support videos.



Ablations on Common-AVA

Influence of length and number of support videos. 
We obtain a more precise common localization 
with more and longer support videos.

Effect of noisy support videos for the five-shot 
setting. The result shows our robustness.



Self-support video instance segmentation

Find support videos using the query

Pool from unlabelled video in self-
supervised fashion

Transformer enables instance 
segmentation

No labels, no masks.

Yang et al. submitted



Video instance segmentation results

Self-support examples

Query video



Video instance segmentation results

Self-support examples

Query video



Scalable video instance segmentation?



II. Learning without task assumption

MetaNorm: Learning to Normalize Few-Shot Batches Across Domains. In ICLR 2021.

Cees Snoek
University of Amsterdam

Ling Shao
Inception Institute of AI

Yingjun Du
University of Amsterdam

Xiantong Zhen
University of Amsterdam



Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In ICLR 2017.

Few-shot meta-learning
5-way, 1-shot



Deep learning work horse: batch normalization

Stabilize the distribution of internal activations during training

Challenge I: batch statistics become unstable with small batch sizes
Challenge II: distribution shift between source and target domains

Sergey Ioffe & Christian Szegedy. Batch normalization: Accelerating deep network training by reducing 
internal covariate shift. In ICML 2015.

Published as a conference paper at ICLR 2021

METANORM: LEARNING TO NORMALIZE FEW-SHOT
BATCHES ACROSS DOMAINS

Yingjun Du1, Xiantong Zhen1,2, Ling Shao2, Cees G. M. Snoek1
1AIM Lab, University of Amsterdam
2Inception Institute of Artificial Intelligence

ABSTRACT

Batch normalization plays a crucial role when training deep neural networks. How-
ever, batch statistics become unstable with small batch sizes and are unreliable in
the presence of distribution shifts. We propose MetaNorm, a simple yet effective
meta-learning normalization. It tackles the aforementioned issues in a unified way
by leveraging the meta-learning setting and learns to infer adaptive statistics for
batch normalization. MetaNorm is generic, flexible and model-agnostic, mak-
ing it a simple plug-and-play module that is seamlessly embedded into existing
meta-learning approaches. It can be efficiently implemented by lightweight hyper-
networks with low computational cost. We verify its effectiveness by extensive
evaluation on representative tasks suffering from the small batch and domain shift
problems: few-shot learning and domain generalization. We further introduce an
even more challenging setting: few-shot domain generalization. Results demon-
strate that MetaNorm consistently achieves better, or at least competitive, accuracy
compared to existing batch normalization methods.

1 INTRODUCTION

Batch normalization (Ioffe & Szegedy, 2015) is crucial for training neural networks, and with
its variants, e.g., layer normalization (Ba et al., 2016), group normalization (Wu & He, 2018)
and instance normalization (Ulyanov et al., 2016), has thus become an essential part of the deep
learning toolkit (Bjorck et al., 2018; Luo et al., 2018a; Yang et al., 2019; Jia et al., 2019; Luo et al.,
2018b; Summers & Dinneen, 2020). Batch normalization helps stabilize the distribution of internal
activations when a model is being trained. Given a mini-batch B, the normalization is conducted
along each individual feature channel for 2D convolutional neural networks. During training, the
batch normalization moments are calculated as follows:
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where ai indicates the i-th element of the M activations in the batch, M = |B|⇥H ⇥W , in which
H and W are the height and width of the feature map in each channel. We can now apply the
normalization statistics to each activation:
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where � and � are parameters learned during training, ✏ is a small scalar to prevent division by 0,
and operations between vectors are element-wise. At test time, the standard practice is to normalize
activations using the moving average over mini-batch means µB and variance �2

B. Batch normalization
is based on an implicit assumption that the samples in the dataset are independent and identically
distributed. However, this assumption does not hold in challenging settings like few-shot learning
and domain generalization. In this paper, we strive for batch normalization when batches are of small
size and suffer from distributions shifts between source and target domains.

Batch normalization for few-shot learning and domain generalization problems have so far been
considered separately, predominantly in a meta-learning setting. For few-shot meta-learning (Finn
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Transductive Batch Normalization

Compute batch statistics by using all available query data

Requirement to have test set samples available limits real-world use

Transductive

support query



TaskNorm

Identified the limiting assumption of the transductive setting

Leverages statistics from both layer and instance normalization

Better than batch norm, sometimes better than transductive.

John Bronskill et al. TaskNorm: Rethinking batch normalization for meta-learning. In ICML 2020.



Our proposal: MetaNorm

Leverage the meta-learning setting

Infer statistics from the support set that better match the query set

Achieve adaptive batch normalization

Distribution inferred from support set Distribution inferred from query set



Meta-training optimization
Support Query

Hypernetworks 𝑓!ℓ, 𝑓#ℓ, generate 𝜇$ , 𝜎$ and 𝜇% , 𝜎% from the support and 
query sets, for calculating the KL term  during meta-training optimization.



Meta-testing

Given a test task, the learned hypernetworks 𝑓!ℓ, 𝑓#ℓ take the support set as 
input to generate normalization statistics directly for the query set.



Effect of the KL term

Effective for both few-shot classification and many-shot domain generalization

Label gap Distribution gap



Comparison with other batch norms

MetaNorm outperforms transductive and non-transductive normalizations



Real-world learning: few-shot domain generalization 



Few-shot domain generalization

MetaNorm allows for batch normalization of small batches across domains.



III. Learning without domain assumption

Learning to Generalize across Domains on Single Test Samples. Submitted.

Cees Snoek
University of Amsterdam

Ling Shao
Inception Institute of AI

Xiantong Zhen
University of Amsterdam

Zehao Xiao
University of Amsterdam



Distribution gaps are a fact of life

Images with different style
Medical images from different devices

Daylight Night Downtown Suburban
Autopilot data in different environments



Test-time training

Update model parameters by self-supervision before prediction

Needs additional self-supervised model, plus fine-tuning

Yu Sun et al. Test-Time Training with Self-Supervision for Generalization under Distribution Shifts. In ICML 2020.



Test-time adaptation

Normalize test-batch predictions by entropy minimization

Needs a batch to be from the same domain, plus fine-tuning

Outperforms test-time training 

Dequan Wang et al. Tent: Fully Test-time Adaptation by Entropy Minimization. In ICLR 2021.



Key idea

Adapt source domain classifiers to each individual target sample



Meta-learning framework

Mimic shift between source and target by shift among source domains
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Adaptation as variational inference

Incorporate the test sample as a conditional for generating model parameters

Intractable during inference, so we approximate by source domain similarity

Our model learns the ability to adapt the meta-source model to each 
meta-target instance across different domain shifts

Meta-target

Meta-source
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Incorporate the test sample as a conditional for generating model parameters

Intractable during inference, so we approximate by source domain similarity
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Computational feasability

We divide the model θ into a feature extractor φ and a classifier w. 
φ is shared across domains, while w is trained to be adapted

Meta-target

Meta-source

Single sample



Generalization at test-time

Adaptation is achieved by generating wt for each target sample with only 
one forward pass using an amortization inference network



Comparison with test-time adaptation (Tent)

Dequan Wang et al. Tent: Fully Test-time Adaptation by Entropy Minimization. In ICLR 2021.

Results on Rotated-MNIST

Domain 0o … …

Domain 15o … …

Domain 90o … …

… … …



Comparison with test-time adaptation (Tent)

Tent works well with a large batch of samples from a single target domain

Dequan Wang et al. Tent: Fully Test-time Adaptation by Entropy Minimization. In ICLR 2021.
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Comparison with test-time adaptation (Tent)

Tent works well with a large batch of samples from a single target domain
We outperform with a single sample, especially for multiple target domains

Dequan Wang et al. Tent: Fully Test-time Adaptation by Entropy Minimization. In ICLR 2021.



More comparisons

The better the base network, the more we gain.

PACS benchmark Office-Home benchmark
ResNet-18 ResNet-50 ResNet-18 ResNet-50

Wang et al. ICLR 2021 83.09 86.23 64.13 67.99
Dubey et al. CVPR 2021 -- 84.50 68.90
Zhou et al. ECCV 2020 83.70 84.90 65.63 67.66
Seo et al. ECCV 2020 85.11 86.64 62.90 --
Ours 84.15 87.51 66.02 71.07

Test-time adaptation

Domain generation

Normalization



Failure cases



Conclusions

Need for real-world learning across domains, labels, tasks and with fairness.

Need to question common learning assumptions.

Label, task and domain assumptions can be relaxed during learning.

https://ivi.fnwi.uva.nl/vislab/
Thank you
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