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The Smart Revolution!!

▪ Smart Phones

▪ Smart Cars

▪ Smart Grids

▪ Smart Buildings

▪ Smart Cities

▪ Smart Camera Networks

▪ Smart Water Networks 

▪ ……….
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The Smart Revolution!!

▪ Smart Phones

▪ Smart Cars

▪ Smart Grids

▪ Smart Buildings

▪ Smart Cities

▪ Smart Camera Networks

▪ Smart Water Networks 

→ Smart-X
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Characteristics of Smart-X

HARDWARE

▪ Sensing devices

▪ Actuation devices

▪ Embedded computing

▪ Wide area connectivity

SOFTWARE

▪ Data management

▪ Decision making algorithms

▪ Learning algorithms

▪ Optimization and control

4
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From Smart-ready-X to Smart-X

5

▪ Digital advances provide the ICT infrastructure not the 

INTELLIGENCE (so far)

▪ Infrastructure will be further enhanced via the IoT

▪ From Smart-ready-X  to Smart-X
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From Smart-ready-X to Smart-X

6

▪ Digital advances provide the ICT infrastructure not the 

INTELLIGENCE (so far)

▪ Infrastructure will be further enhanced via the IoT

▪ From Smart-ready-X  to Smart-X

→ Machine Learning and Feedback Control Systems are at the 

heart of transforming Smart-ready-X to Smart-X 
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Cyber-Physical Systems (CPS)

▪ physical part: physical, biological or 

engineered systems that are usually large-

scale & complex

▪ cyber part: communication networks & 

computational resources for monitoring, 

controlling & coordinating the physical part

P. J. Antsaklis, B. Goodwine, V. Gupta, M. J. McCourt, Y. Wang, P. Wu, M. Xia, H. Yu, and F. Zhu, “Control of cyber-

physical systems using passivity and dissipativity based methods,” European Journal of Control, vol. 19, no. 5, pp. 

379 – 388, 2013.

Physical Part

Cyber 
Part
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From Traditional Systems to CPS

▪ Sensor technology

▪ wealth of sensors

▪ new generation sensors

▪ Information & Communication Technology (ICT)

▪ store, process and transmit data collected by sensors

8
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From Traditional Systems to CPS

Big Data

▪ sensor technology and ICT enabled the collection of extremely large 

data sets

▪ contribute to the better perception of complex systems

▪ Internet of Things

sensor enabled 

devices connected to 

the internet and able to 

communicate with  each 

other

9
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Examples of CPS

Smart Grid Smart Buildings
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Examples of CPS

Intelligent Transportation Multi-robot formation
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Examples of CPS
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Smart Cities: a network of 

interconnected CPS

▪Physical Interconnections

▪Cyber Interconnections

▪ Interdependencies
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The Future of Jobs

13

World Economic Forum: 

By 2025, 85 million jobs will be displaced 

and 97 million new professional positions 

will be created

Some key areas of futures jobs: 

AI, Big-Data analytics, IoT, Machine 

Learning, Robotics, cloud computing
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Fault Tolerant Systems

The technological trend is towards:

▪ more complex and large-scale systems

▪ more interconnected systems

▪ more automation and autonomy 

However if the data is faulty/inconsistent/missing, this may 

lead to:

▪ wrong decisions or escalation to a catastrophic failure

▪ fault propagation from one subsystem to another

▪ Unreliable and untrustworthy automation procedures

14
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▪ wrong decisions or escalation to a catastrophic failure
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Lifelong Intelligent Condition Monitoring

▪ Monitor the condition of a system during its lifetime

▪ Using learning to improve condition monitoring

▪ Use cooperation to improve condition monitoring

▪ Consider more realistic events, slowly developing faults, 

cybersecurity attacks, etc.

16
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Monitoring and Control

System

Monitoring

and Diagnosis

u y

d f
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SystemController  
u yr

d f

18

Monitoring and Control
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Monitoring and Control

System

Fault

Accommodation

Controller  

Monitoring

and Diagnosis

u yr

d f

Supervisory
Algorithm

Control Algorithm
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Fault Scenarios

▪ System/Process Faults

▪ Actuator Faults

▪ Sensor Faults

▪ Communication Faults

▪ Controller Faults

▪ Environment Faults

▪ Malicious Attacks  (cyber-physical security)

P

FA

C 

FD

20
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Diagnostic Steps

▪ Event detection

▪ Event isolation

▪ Risk assessment 

▪ Accommodation

21
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Diagnostic Methods

Physical redundancy based: use of 

redundant physical components

Analytical redundancy based: use of 

models describing the system, i.e. 

analytical mathematical expressions  

or symbolic /qualitative system 

representations

22
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Analytical Redundancy Diagnostic Methods

Analytical Redundancy

Functional

Qualitative Quantitative

Causal 
models

Digraphs

Fault Trees

Abstraction 
Hierarchy

Structural

Observers

Kalman
filters

Parameter 
Identification

Parity 
Equations

23
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Large-scale Interconnected Systems

Centralized architectures: less suitable for 

large-scale, interconnected systems

▪ increased computational complexity of the 

FD algorithms using global models 

▪ reduced isolability of multiple faults

▪ increased communication due to the 

transmission of information to a central 

point

▪ vulnerability of the central cyber core to 

security threats (single-point of failure)

▪ reduced scalability of model-based FD in 

case of system expansion

SYSTEM 2

SYSTEM 1

SYSTEM 3

AGENT

24
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Common features of non-centralized architectures: 

▪ deployment of several FD agents 

▪ every agent performs FD based on local models

SYSTEM 2

SYSTEM 1

SYSTEM 3

AGENT 2

AGENT 3

AGENT 1

Large-scale Interconnected Systems

SYSTEM 2

SYSTEM 1

SYSTEM 3

AGENT 2

AGENT 3

AGENT 1

Decentralized 
Architecture

Distributed  
Architecture

25
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▪ Classification based on

▪ type of system interconnections 

▪ physical

▪ cyber

▪ type of exchanged information

▪ input & output data

▪ estimations of interconnected subsystems’ states

▪ fault signatures

▪ decisions

▪ type of communication 

▪ continuous

▪ sporadic

▪ event-driven

Distributed Fault Diagnostic Methods

SYSTEM 2

SYSTEM 1

SYSTEM 3

AGENT 2

AGENT 3

AGENT 1

26
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Motivation for Distributed Fault Diagnosis

▪ Handling of large-scale systems

▪ More natural as systems become more interconnected

▪ Scalability of fault diagnosis

▪ Makes it easier to isolate faults

▪ Matches with distributed control; allows for fault accommodation

27
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▪ N interconnected CPS. 

▪ I-th CPS: described by the pair
▪ : physical part of the I-th CPS,

▪ : cyber part of the I-th CPS.

Interconnected CPS

( )( ) ( ),I I

( )I

( )I

28
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Interconnected CPS – Single Agent

29
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Interconnected CPS

Objective: Detect and isolate multiple faults that may occur in one 

or more CPS 

30
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Interconnected CPS

▪ (physical part)

▪ a nonlinear system
( )I

( )I

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

known local dynamics

known interconnection dynamics

modeling uncertainty

( , )

         ( , , )

         ( , , )

I I I I I I

I I I I I

z

I I I

x A x x u

h x u C z

x u t





= +

+

+

( )

( )

)

( )

( ) (

:  local state vector

:  local input vector generated by a 

feedback control agent using 

:  interc

 

 

 

onnection vect or

I

I

I

I

Ir

x

u

z

•

•

•

31



www.kios.ucy.ac.cy

Interconnected CPS

▪ (physical part)

▪ Sensor set            used for 
measuring the linear 
combination of states 

( )I

( )I

( ) ( ) ( ) ( ) ( )  ( ) ( ) ( ) ( )I I I I Iy t C x t d t f t= + +

( )

( )

( )

   :  local output vector

 :  measurement noise

 :  fault vector

I

I

I

y

d

f

•

•

•

( ) ( )  I IC x
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Interconnected CPS

( ) ( ) ( ) ( ) ( )  ( ) ( ) ( ) ( )I I I I I

z z z zy t C z t d t f t= + +

▪ (cyber part)

▪ control agent          that 
generates the input        
based on some reference 
signal         , the measured 
output and the transmitted 
sensor information 

( )Iu

( )Ir

( )I

( )I

( )I

z
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Distributed Sensor Fault Diagnosis Architecture

▪ (cyber part)

▪ monitoring agent           allowed 
to exchange information with the 
neighboring agents 

( )I

( )I

Task:
Detection & isolation of  multiple 
sensor faults in

Detection of propagated sensor 
faults in 

( )I

( )I

z

( )I
z
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Monitoring Agent

monitoring agent
( )I

35
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j-th residual,

▪ : estimation model based on 

the nonlinear observer
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Monitoring Module
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▪ The j-th adaptive threshold         

is designed to bound the j-th 

residual                 under healthy 

conditions

( , ) ( )
j

I q

y t

( , ) ( )
jH

I q

y t

Monitoring Module

( , ) ( , )( ) ( )
jH j

I q I q

y yt t 
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→ The j-th adaptive threshold can be implemented using linear filters
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Decision Logic based on a set of Analytical 

Redundancy Relations (ARRs)

( , ) ( , ) ( , ): ( ) ( ) 0,
j j

I q I q I q

j y yt t − 

( , )

( , ) ( , ):
I q

I q I q

j

j

residual adaptive threshold

Monitoring Module

Under healthy conditions,             is 

always satisfied 

( , )I q
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Monitoring Agent

40
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Local Multiple Sensor Fault Isolation

Example: 
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Robustness and Structured Fault Sensitivity

Theorem: The distributed sensor fault diagnosis design guarantees that: 

(a) Robustness: If neither the local sensor set           nor the transmitted 

sensor information       are affected by sensor faults, then the set of 

ARRs           is always satisfied. 

(b) Structured fault sensitivity: If there is a time instant at which           is 

not satisfied, then the occurrence of at least one sensor fault in                    

is guaranteed.

( , )I q

( )I
zy

( , )I q

( , )I q

( , ) ( )I q I
z

V. Reppa, M. Polycarpou and C. Panayiotou, “Distributed Sensor Fault Diagnosis for a Network of 

Interconnected Cyber-Physical Systems,” IEEE Transactions on Control of Network Systems, vol 2, no. 1, 

pp. 11-23, March 2015. 
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Learning Approaches for Fault Diagnosis

▪ Reduce adaptive thresholds by reducing the bound of the 

modeling uncertainty using learning techniques. 

▪ Design and analysis of an adaptive approximation methodology to 

learn the modeling uncertainty

▪ Learn from previous monitoring experience and from other agents 

• V. Reppa, M. Polycarpou and C. Panayiotou, “Adaptive approximation for multiple sensor fault detection and 

isolation of nonlinear uncertain,” IEEE Transactions on Neural Networks and Learning Systems, vol 25, no. 1, 

pp. 137-153, January 2014. 

• C. Keliris, M. Polycarpou and T. Parisini, “An Integrated Learning and Filtering Approach for Fault Diagnosis of 

a Class of Nonlinear Dynamical Systems", IEEE Transactions on Neural Networks and Learning Systems, vol. 

28, no. 4, pp. 988-1004, April 2017.
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Fault Diagnosis and Cyber-Physical Security

▪ Similar formulation for detection, isolation and risk assessment

▪ How do we distinguish between faults and cyber-physical attacks 

(compare to robust fault diagnosis)

▪ Early detection of a cyber-physical attack is crucial

▪ Sensor placement is a key issue

46
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Applications pursued at KIOS Center of Excellence

• Monitoring of water distribution networks for water leakages and 

detection of water contamination

• Distributed fault diagnosis and fault-tolerant control of HVAC 

systems

• Contamination event detection and isolation in large-scale 

buildings

• Fault diagnosis and accommodation in transportation systems 

• Security surveillance using smart camera networks

• Monitoring of electric grid side converters

47
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Simulation Results

Consider a seven-zone HVAC system where the architectural arrangement of the seven zones is 
presented by the diagram
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Fig. 2. Architecture of the local adaptive fault-tolerant control
scheme of the subsystem Ss, i ∈N
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Fig. 3. Architecture of the local adaptive fault-tolerant control

scheme of the subsystem S( i) , i ∈N and j ∈Ki

{ 1,2,4} , K4 = { 2,3} . To simplify the diagram, we did not

include Ss, which isconnected to each of the four subsystems

S( 1) , S( 2) , S( 3) , S( 4) , which represent the four zones. The

parameters of the four-zone HVAC system are presented in

Table III. It is assumed that the exogenous inputs areconstant

and defined as follows: To = 5oC, Tpl = 10oC, Tamb = 5oC,

T11 = T31 =10oC, T21 = T41 =12 oC. The system is controlled

by five distributed feedback linearization controllers (i.e.,

four dedicated controllers for each subsystem taking into

account the temperature dynamics of the four zones and one

dedicated controller for the subsystem taking into account

the temperature dynamics of the storage tank). The controller

gains are selected asks=6, k( i) =4, i ∈N . Thedesired values of

the temperatures are set up as follows: bs=55 oC and b( i) =22
oC, i ∈N . The modeling uncertainty in each subsystem rs =

5%ds
1sin(0.1t) and r i =5%d

( i)
1 sin(0.1t) , i ∈N . For simulation

purposes, the noise corrupting the sensor output is defined

as follows: ns = 3%Ys and n( i) = 3%Y( i) , where Ys and Y( i)

are the steady state value of sensor measurements ys and

y( i) , respectively, i ∈N , under healthy conditions. The design

constants for the distributed sensor fault detection and isola-

tion (DSFDI) agents are chosen as follows: Ls=5 and L( i) =4,

r s=1.3, r ( i) =1.3, x s=10, x ( i) =6, gs
q=3, g

( i)
q =3, ds=8, d( i) =3,

l s=8, l ( i) =8, k s=1, k ( i) =1. In the simulation experiment,

we consider the following multiple sensor fault scenario: two

bias abrupt faults occur in sensors Ss and S( 4) at simulation

time ts
f = t

( 4)
f = 20 h such as f s( t) = 15%Ys(1−e−104( t−20) )

and f ( 4) ( t) = 20%Y( 4) (1− e−104( t−20) ) , while the form of

sensor faults is presented in [13], [11].

TABLE III

PARA METERS OF THE SEVEN-ZONE HVAC SYSTEM

Symbol Value Units

azi , i ∈{ 1,2,3,4,5,6,7} 740 kJ/hoC
az12

, az13
, az24

, az34
, az45

, az46
, az47

, az56
, az67

50 kJ/hoC

ast 12 kJ/kgoC

asz 0.6 kJ/kgoC

Cst 837 kJ/oC

Cp 1.004 kJ/kgoC

Cv 0.717 kJ/kgoC

r air 1.225 kg/m3

Czi , i ∈{ 1,2,3,4,5,6,7} 370 kJ/oC

Ui,max, i ∈{ 1,2,3,4,5,6,7} 3700 kg/h

Ust,max 27.36 ×104 kJ/h

Pmax 3.5

DTmax 45 oC

Aw,i , i ∈{ 1,2,3,4,5,6,7} 120 m2

h 8.29 W/moC

Ad,12, Ad,13, Ad,24, Ad,34 2.60 m2

Ad,45, Ad,46, Ad,47, Ad,56, Ad,67 2.60 m2

In general, the simultaneous occurrence of more than one

fault makes the fault isolation task more challenging, which

is the reason for considering two simultaneous faults in the

current scenario. Figures ?? and ?? present the simulation

results for the multiple sensor scenario. In more detail,

Figures ??–?? show the residuals es
y and e

( i)
y (blue solid

lines), the adaptive thresholds ēs
y and ē

( i)
y (green solid lines),

and the detection signals Ds and D( i) (red doted lines),

i ∈{ 1,2,3,4} . As shown, at time instants Ts
d =20.19 h, T

( 1)

d =

20.33 h and T
( 4)

d =20 h, the distributed sensor fault detection

scheme of agents M s, M ( 1) and M ( 4) detect, respectively,

the sensor faults. Figures ??–?? show the output residuals

es
y and e

( i)
y (blue solid lines), the adaptive thresholds ēs

y and

ē
( i)
y (green solid lines), and the detection signals Is and I ( i)

(red doted lines), i ∈{ 1,4} . At time instant T
( 1)
I = 21.46 h,

the isolation signal I ( 1) becomes 1, and the agent M ( 1)

excludes the single occurrence of a fault affecting sensor

S( 1) and infers that at least one of the sensors in zone 2, 3

and storage tank is faulty and characterizes the sensor S( 1)

possibly faulty. Is and I ( 4) are equal to 0 for all t > 20.33

h and t > 20 h, excluding the propagation of sensor faults.

The agents M ( 2) and M ( 3) do not detect any sensor faults,

since the effects of sensor faults occurred in the storage tank

and zone 4 on the analytical redundancy relations of M ( 2)

and M ( 3) where not high enough to be detectable.
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Simulation Results

Consider a seven-zone HVAC system where the architectural arrangement of the seven zones is 
presented by the diagram
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Simulation Results
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Simulation Results
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Simulation Results

▪ Consider a 83-zone HVAC system where the architectural arrangement of the 
83 zones is presented by the diagram

Papadopoulos M. P., Reppa V., Polycarpou M. M., Panayiotou C., “Distributed Diagnosis of Actuator and 

Sensor Faults in HVAC systems,” IFAC World Congress, July 2017.

53



www.kios.ucy.ac.cy

Simulation Results

▪ Multiple Faults occurring consecutively

Actuator  fault

Sensor fault

(1) (1) (1)( 2 30%)a f nuf t == −

(3) (3) (3)( 2. 20%5) ref fs t yf = =
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Simulation Results

Have a look at the distributed monitoring agents located at  Zones { 1-10, 81, 82, 83}

1-10

83

8
1

8
2
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Simulation Results
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Simulation Results
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Simulation Results

▪ Local Fault Identification in Zone 1:
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Simulation Results

▪ Local Fault Identification in Zone 3:

60



www.kios.ucy.ac.cy

Some recent relevant references

▪ G. Milis, C.G. Panayiotou, M.M. Polycarpou, “SEMIoTICS: Semantically-enhanced IoT-enabled Intelligent Control Systems,” IEEE 

Internet of Things Journal, vol. 6, no. 1, pp. 1257-1266, February 2019. 

▪ M. Khalili, X. Zhang, Y. Cao, M. Polycarpou and T. Parisini, “Distributed Fault-Tolerant Control of Multi-agent Systems: An Adaptive 

Learning Approach,” IEEE Transactions on Neural Networks and Learning Systems, vol. 31, no. 2, pp. 420-432, February 2020.

▪ P. Papadopoulos, V. Reppa, M. Polycarpou and C. Panayiotou, “Scalable Distributed Sensor Fault Diagnosis for Smart Buildings,” 

IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 3, pp. 638-655, May 2020.

▪ M. Hadjicharalambous, M. Polycarpou and C. Panayiotou, “Neural Network-based Construction of Online Prediction Intervals”, 

Neural Computing and Applications, Springer, vol 32, pp. 6715-6733, June 2020

▪ A. Kyriakou, M. Michaelides, V. Reppa, S. Timotheou, C. Panayiotou and M. Polycarpou, "Distributed Contaminant Detection and 

Isolation for Intelligent Buildings" IEEE Transactions on Control Systems Technology, vol. 26, no. 6, pp. 1925-1941, November 2018. 

▪ P. Papadopoulos, L. Hadjidemetriou, E. Kyriakides and M. Polycarpou, “Robust Fault Detection, Isolation and Accommodation of 

Current Sensors in Grid Side Converters,” IEEE Transactions on Industry Applications, vol. 53, no. 3, pp. 2852-2861, May/June 2017.

▪ A. Kyriakou, S. Timotheou, M. Michaelides, C. Panayiotou and M. Polycarpou, “Partitioning of Intelligent Buildings for Distributed 

Contaminant Detection and Isolation,” IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 1, no. 2, pp. 72-86, 

April 2017.

▪ C. Keliris, M. Polycarpou and T. Parisini, “An Integrated Learning and Filtering Approach for Fault Diagnosis of a Class of Nonlinear 

Dynamical Systems", IEEE Transactions on Neural Networks and Learning Systems, vol. 28, no. 4, pp. 988-1004, April 2017.

61



www.kios.ucy.ac.cy

Where is intelligent monitoring and control heading?

▪ More distributed

▪ More cooperation

▪ More data → more machine learning

▪ More heterogeneous data

▪ More interaction between monitoring and control

▪ More interaction between fault diagnosis and cyber-physical 

security

▪ Safety of machine learning (Safe AI)
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Thank you!

Questions?
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