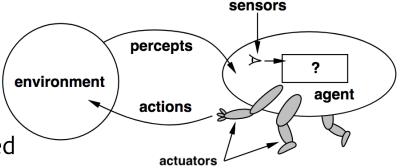


Autonomous Systems (AS)

- Intelligent autonomous agents
 - Embodied sense-process-act cycle fusing data from multiple sensors
 - Reasoning based on models, provided a-priori or learned from experience



[Norvig, Russel. Artificial Intelligence. PrenticeHall, 2003]

- Autonomy strongly influenced by models and capabilities (resources + reasoning)
- Key application: robotics (real or virtual robots)
- Networked autonomous systems
 - Single, independent to multiple, collaborative systems
 - Closed-loop sense-process-communicate-act cycle
 - Applications: CPS, IoAT, swarm robotics [1]

[1] David Cearley, Brian Burke. Top 10 Strategic Technology Trends for 2019. Gartner report

UNIVERSITÄT

Self-Awareness (SA)

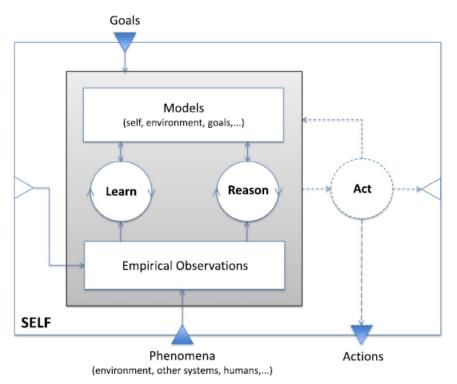
- Concept borrowed from psychology and cognitive science
 - Described as capabilities of biological or artificial agents
 - Has some knowledge about "itself" based on its own senses and internal models
 - Knowledge may take on different forms resulting from perceptions of internal and external phenomena
 - Agent exploit this knowledge to react appropriately (behavior)
- SA means different things in different contexts
- Focus on SA in computational context
 - Able to learn and exploit models of itself and its environment
 - Act in accordance with high-level goals
 - Adopted methods and algorithms from different disciplines

[U. Neisser. The Roots of Self- Knowledge: Perceiving Self, It, and Thou. Annals of the New York Academy of Sciences, 1997.]

Self-Awareness Architecture

- (Computational) framework
 - Analyzing observations
 - Modelling
 - Reasoning and decision making
- Various approaches
 - Abstraction level
 - Innate knowledge and capabilities
 - Application domain
- Representation of "self"
 - Internal (proprioceptive) vs. external perception and actuation
 - Reasoning about own decision making

[Kounev et al. <u>The notion of self-aware computing</u>. In *Self-Aware Computing Systems*, Springer, 2017]



Examples where we find SA Concepts

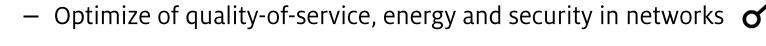
Hardware components

 Monitor state of a system-on-chip and perform adaptations based on changes in environment

Software systems

Design self-aware and self-adaptive software system considering architectural patterns

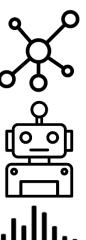
Networks



Robots

Explore tradeoff between collaborative localization and navigation

- Perform active sensing for ego noise and acoustic scene analysis



Agenda

1. SA Concepts

Architectures, models and capabilities

2. SA Techniques

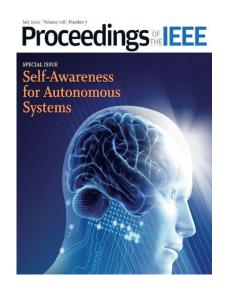
Modelling techniques and reasoning

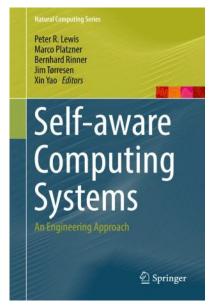
3. Challenges

Discuss limitations and open challenges

[Dutt, Regazzoni, Rinner, Yao. <u>Self-Awareness for Autonomous Systems</u> (special issue). *Proceedings of the IEEE*, 108(7), 2020]

[Lewis, Platzner, Rinner, Torresen, Yao (Eds.). <u>Self-aware Computing Systems: An Engineering Approach</u>. Springer, 2016]





SA Concepts Architectures, models and capabilities

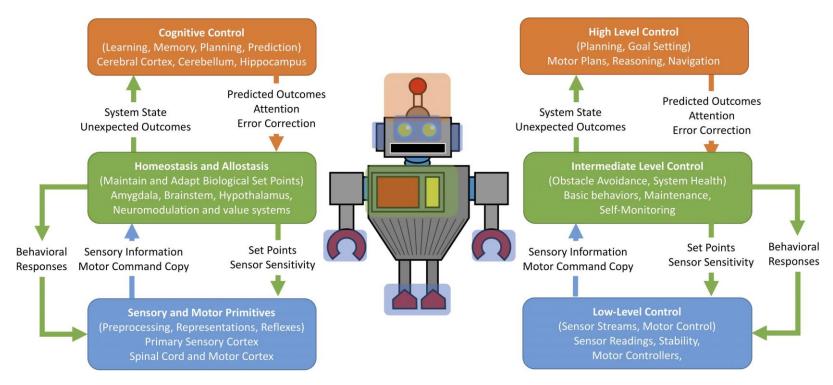
UNIVERSITÄT KLAGENFURT

Key Terminology

- Private and public self-awareness to obtain knowledge on
 - Internal phenomena via internal sensors (i.e., internal state)
 - External phenomena via external sensors (i.e., environment)
- Levels of self-awareness
 - Different capabilities for obtaining and exploiting knowledge
 - Stimulus-, interaction-, time-, goal- and meta-self-awareness
- Collective self-awareness
 - SA capabilities of group of agents where knowledge may be distributed
- Self-expression
 - Capability concerned about the behavior (decision making)
 - To emphasize difference to knowledge obtainment ("self-awareness")

[Lewis, Platzner, Rinner, Torresen, Yao. <u>Self-aware Computing Systems: An Engineering Approach</u>. Springer, 2016]

Neurobiological inspired SA System



Terms derived from neuroscience

mapped to autonomous robots

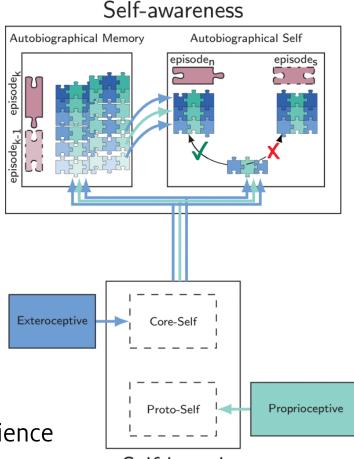
- Innate preferences and behaviors/reflexes basis for exploration
- Homeostasis and allostasis as permanent complementary control processes
- Cognitive control plans and executes long-term strategies

[Chiba and Krichmar. <u>Neurobiologically Inspired Self-Monitoring Systems</u>. *Proceedings of the IEEE,* 108(7):976-986, 2020]

Damasio's Human Conscience Model

Autobiographical memory (AM)

- Memorizing models of learned episodes
- Episodes encoded by neural vocabulary (proprio- and exteroceptive information)
- "Dispositional units" as information
 - Exteroceptive data contextualized to proprioceptive data, and vice versa
 - Represent state changes, can be hierarchically structured
- Autobiographical self
 - Comparing stored AMs with current experience
- Core- and proto-self process internal/external data



Self kernel

Haykin's Cognitive Dynamic Systems

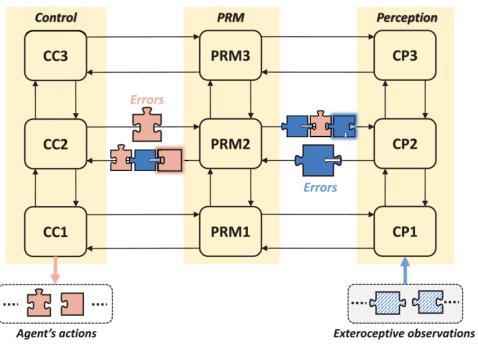
 Probabilistic reasoning machine (PRM) hierarchically organizes probabilistic information from control (CC) and perception (CP)

Maintain meta-level perception-action cycle by switching

CC and CP behavior

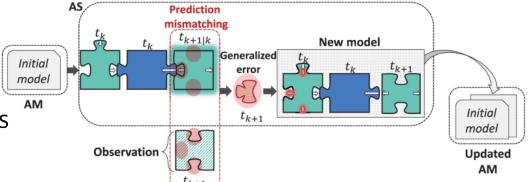
 Proposes Bayesian framework to model uncertainty&causality

- Cognitive control (CC)
 - Generates output towards lower levels, control actions at bottom
- Cognitive preceptor (CP)
 - No proprioceptive data, but internal strategies



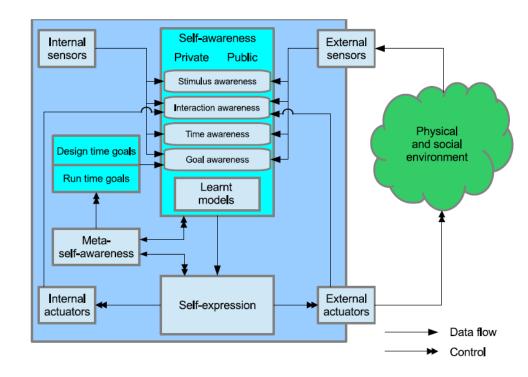
Friston's Bayesian Dynamical Systems

- Cognitive framework for SA linking neuroscientific observations with computational models (BDS)
 - Relates statistical mechanics' optimization with Bayes filtering
 - Proposes "generalized states" as basis for hierarchical filters
- Free energy principle as optimization criterion for discovering
 SA models from given experiences
- Variational computational representation & inference techniques
 - Discriminating models from different experiences
 - Prediction at different hierarchical&temporal levels



Reference Architecture

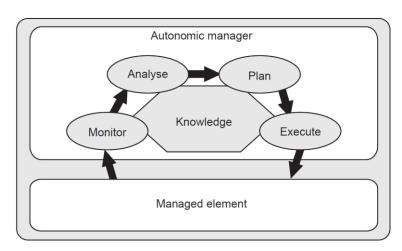
- Self-Awareness
 - How to learn models
 - Different levels
 - Private and public scope
- Self-Expression
 - How to make decisions
 - Exploiting learnt models
- Meta-Self-Awareness
 - Reasoning about own decision making
- Internal (proprioceptive) vs. external perception and actuation



[Lewis et al. <u>Architectural Aspects of Self-Aware and Self-Expressive Computing Systems:</u> From Psychology to Engineering. *IEEE Computer*, 48(8):62-70, 2015]

Autonomic Software Systems

- Effective self-management of complex IT systems at runtime, according to high-level objectives
 - Decomposed into four activities: Self-configuration, Self-optimization
 Self-healing, Self-protection
- Each component is managed by autonomic manager
 - Monitoring the managed element and its environment
 - Constructing and executing plans
 - Utilizing a knowledge repository
- MAPE-K architecture
 - Implements a control loop
 - Adopts ideas from reinforcement learning



[Kephart, Chess. The vision of autonomic computing. IEEE Computer, 36(1):41-50, 2003]

SA Architectures: Some Observations

- Architectures are quite diverse
 - From modelling cognitive processes to controlling software systems
 - Available initial knowledge and capabilities
 - Interpretation of sensor data and actuation of system components
- Differences in the representation of the "self"
 - Modelling proprioception and reasoning based on internal state
- Learning capabilities are fundamental
 - All architectures rely on some learning, some remain vague on techniques
 - Model creation and explainability important
- Hierarchical representation required for complex reasoning

UNIVERSITÄT

Self-Awareness Capabilities

- Initialization
 - Initial knowledge/cababilities of agent starts building own memories
- Memorization
 - Storing and retaining information (experience)
- Inference
 - Making predictions about future states
- Anomaly detection
 - Recognize observations that cannot be explained (by its memory)
- Model creation
 - Generate models than encode previous experiences (and predictions are supported by observations)
- Decision-making influence

SA Techniques

SA Modeling Using A Generalized Markov Jump Particle Filter

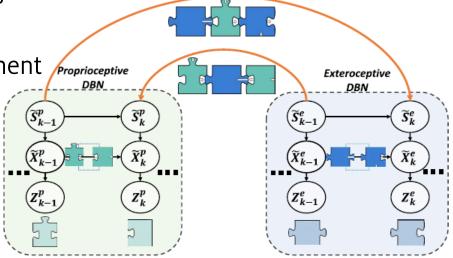
- Realize SA capabilities with hierarchical and multi-sensorial filtering
- Build proprioceptive (PM) and exteroceptive models (EM) with Dynamic Bayesian Networks (DBN)

PM: allow inferences of sensory information wrt its actions and internal states

EM: allow inferences of sensory information wrt sensed environment

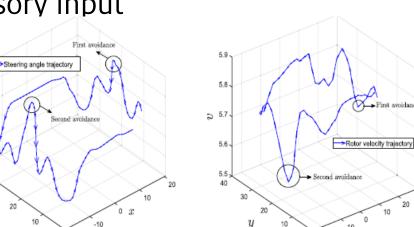
 Multi-level models w. discrete and continuous states

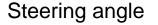
 Coupling PM and EM allows context-based inferences

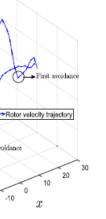


Implementation of SA Capabilities

- Autonomous vehicle executing reference task (w/ disturbance)
 - Steering angle, power and rotor velocity as proprioceptive sensors
 - Vision as exteroceptive sensors
- Detect abnormality wrt task's model

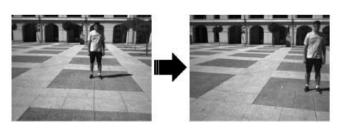






Rotor velocity

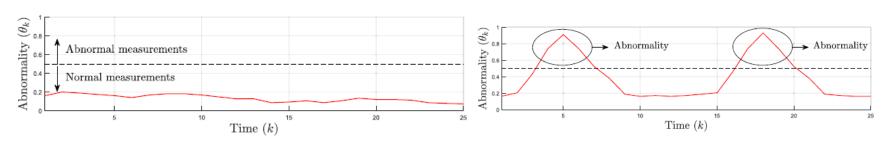




Vision

Implementation of SA Capabilities

- Initialization based on sensory input of reference behavior
 - PM: random walk dynamics (based on fixed internal states)
 - EM: GANs codifying image & optical flow on linear motion
- Inference at continuous and discrete levels
 - PM: continuous state changes; regions with linear movement
 - EM: set of GANS with generated errors
- Abnormality detection based distance metrics



Reference task w/o disturbance

Reference task w disturbance

Model creation based on identified errors of previous model

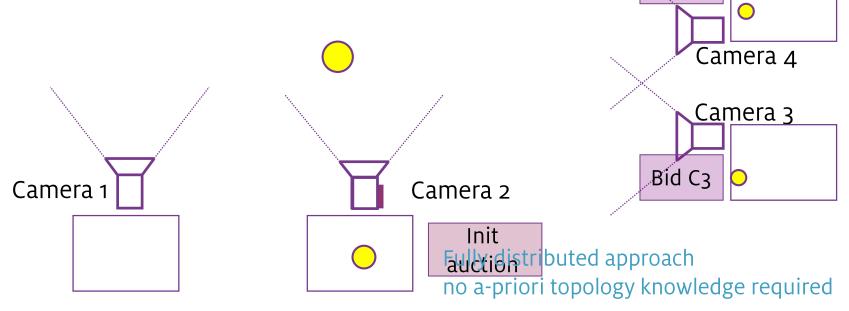
Self-aware Camera Network

- Perform autonomous, decentralized and resource-aware network-wide analysis
- Demonstrate autonomous multi-object tracking in camera network
 - Exploit single camera object detector & tracker
 - Perform camera handover
 - Learn camera topology
- Key decisions for each camera
 - When to track an object within its FOV
 - When to initiate a handover
 - Whom to handover

Bid C4

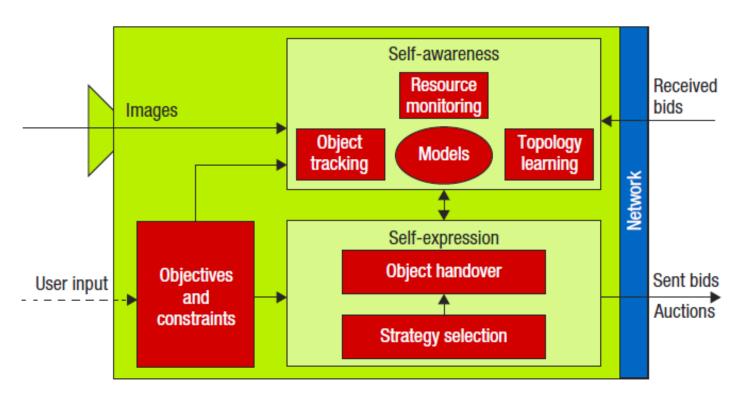
Virtual Market-based Handover

- Initialize auctions for exchanging tracking responsibilities
 - Cameras act as self-interested agents, i.e., maximize their own utility
 - Selling camera (where object is leaving FOV) opens the auction
 - Other cameras return bids with price corresponding to "tracking" confidence
 - Camera with highest bid continues tracking; trading based on Vickrey auction



Self-aware Camera Node

Design following computational self-awareness



[Rinner et al. <u>Self-aware and Self-expressive Camera Networks</u>. *IEEE Computer*, 48(7):21-28, 2015]

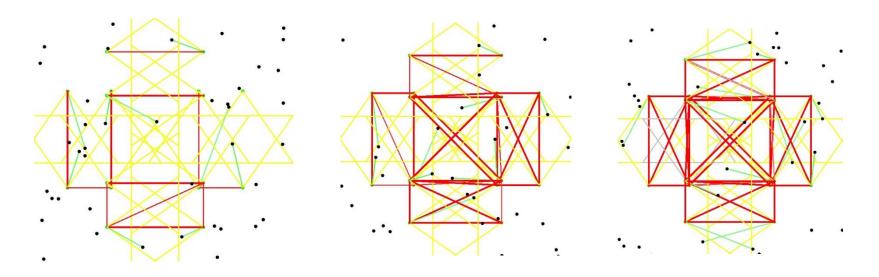
Camera Control

- Each camera acts as agent maximizing its utility function
- $U_i(O_i) = \sum_{j \in O_i} [c_j \cdot v_j \cdot \Phi_i(j)] p + r$

- Local decisions
 - When to initiate an auction (at regular intervals or specific events)
 - Whom to invite (all vs. neighboring cameras)
 - When to trade (depends on valuation of objects in FOV)
- Learn neighborhood relations with trading behavior ("pheromones")
 - Strengthen links to buying cameras
 - Weaken links over time

Learn Neighborhood Relationships

- Gaining knowledge about the network topology (vision graph) by exploiting the trading activities
- Temporal evolution of the vision graph

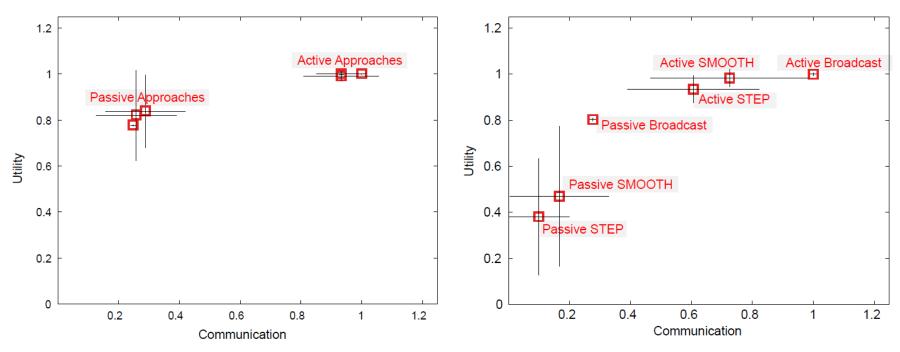


Six Camera Strategies

- Auction initiation
 - "Active": at regular intervals (at each frame)
 - "Passive": only when object is about to leave the FOV
- Auction invitation
 - "Broadcast": to all cameras
 - "Smooth": probabilistic proportional to link strength
 - "Step": to cameras with link strengths above threshold (and rest with low probability)
- Selected strategy influences network performance (utility) and communication effort

Tracking Performance

Tradeoff between utility and communication effort



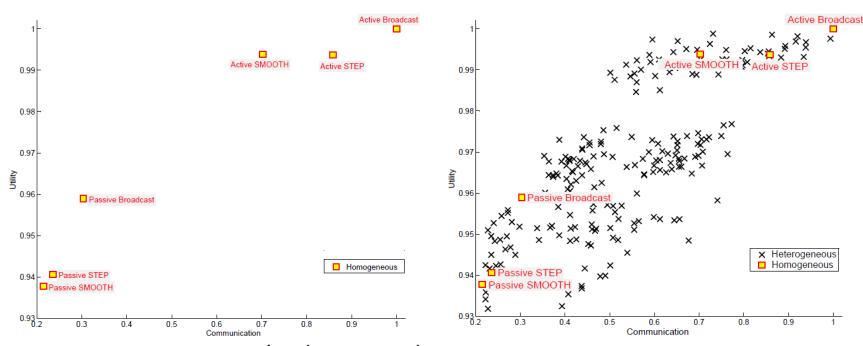
Scenario 1 (5 cameras, few objects) Scenario 2 (15 cameras, many objects)

Emerging Pareto front

[Esterle et al. <u>Socio-Economic Vision Graph Generation and Handover in Distributed Smart Camera Networks</u>. ACM Trans. Sensor Networks, 10(2):1-24, 2014]

Assigning Strategies to Cameras

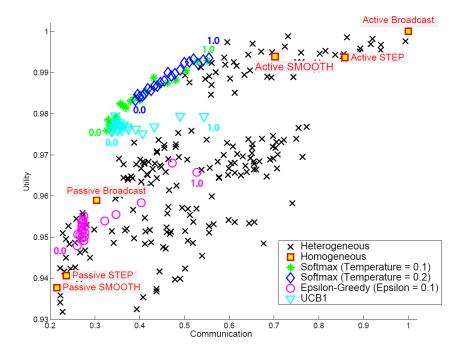
Identical strategy for all cameras may not achieve best result



- Homogeneous strategies (3 cameras)
- Heterogeneous strategies (3 cameras)
- Strategy depends on various parameters (FOV, neighbors, scene ...)
 - Let cameras learn their best strategy

Decentralized Multi-Agent Learning

- Exploit bandit solver framework to maximize global performance
 - Co-dependency among agents' performance
 - Complex relationship between local reward global performance



[Lewis et al. <u>Static, Dynamic and Adaptive Heterogeneity in Socio-Economic Distributed Smart Camera Networks</u>. *ACM Trans. Autonom. Adapt. Syst.* 10(2):1-30, 2015]

Challenges

How to Design SA Systems

- Complexity of SA models may vary
 - Type and dimensionality of sensed data
 - Actions and goal of the agent
- Mostly case-by-case design approaches are currently used
 - Application or extension of existing techniques
 - Based on engineers experience adopting trail-and-error
- Towards a "Theory" for SA systems
 - Collecting best practice examples
 - Analyzing benefits and limitations
 - Proposing design guidelines, patterns

How to Achieve Collective SA

- Often a collection of autonomous agents is working on mission
 - Individual sensors and decision making
 - Lack of global knowledge
- Build joint models and generate decisions at team level
- Decompose mission and let individual agents solve them
 - But system-level knowledge is distributed (or not available)
- Communication essential for knowledge sharing and coordination
 - Learning models of other agents
 - Interaction between human and SA agent

How to Guarantee/Avoid Behaviors

- Exploiting models derived from sensors may result in emergent behaviors
- Designing an agent such that particular behavior eventually emerges is challenging
 - Guarantees about behaviors are important for safety and resilience
 - Some specifications of models and behaviors are required, but such formal verification "contradicts" the concept of self-awareness
- Inherent (systematic) uncertainty particularly challenging for analysis and verification
 - Pursuing new goals due to (unknown) changes

- For engineering SA systems we must be able to estimate the system's performance and properties such as
 - Resource usage and cost
 - Reliability and safety
- Self-awareness incurs overheads and tradeoffs between overheads and capabilities need to be explored and quantified
 - Cost and benefit of SA capabilities (actual and worst case)
- Basis for (online) decision what SA capability should be used when
 - Modeling type and complexity
 - Inference techniques

[Birke et al. <u>Self-aware Computing Systems: Open Challenges and Future Research Directions</u>. Chapter 25, Springer, 2017]

How to Earn Trust in SA

- Autonomous systems will participate in society in many ways.
- Trust is essential to cooperation. AS must be designed to
 - understand and follow social norms, including morality, ethics, and convention
 - earn the trust of others in society
- To be accepted, and to strengthen our society, AS must show they are worthy of trust according to the social norms.

Conclusion

- Computing systems with various levels of autonomy have been proposed to manage ever increasing levels of complexity and uncertainty
- Self-awareness in a computational context is founded on advanced methods and algorithms from different disciplines
- Research on self-awareness in AS is fragmented over several fields and lacks a common terminology
- Self-awareness may be a fundamental principle with potential of becoming an enabling technology for AS applications
- Various research challenges and technical issues needs to be solved

Further Information

Pervasive Computing group

http://nes.aau.at

http://www.bernhardrinner.com

Book on Self-aware Computing Systems
 Lewis, Platzner, Rinner, Torresen, Yao (Eds)
 Springer, 2016

