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“Hari Seldon [..] brought
the science of psychohistory
to its full development. [..]
The individual human being
is unpredictable, but the
reactions of human mobs,

Seldon found, could be

treated statistically.”
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Read and Grow Wiser say that it is impressionistically true
not always factually so.’

Dr. Frank Rosenblatt, do-
signer of the Perceptron, con-
ducted the demonstration, He
said ‘the machine would be the
first device to think as the hu-
man brain, As do hyman be-
ings, Perceptron will make mis-
takes at first, but will grow
wiser as It gains experience, he
Later Perceptrons will be able
to recognize people and call out
;thclr names and instantly trans-
llute speech in one language to
speech or writing In another
langungc it was predicted,

what ig fed into them on punch

f(cards or magnetic tape.
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“The problems of running a pub in Cork
were often hilarious, seldom businesslike and
sometimes traglc. The gamut of life she saw
was as various as the life you will encounter
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Symbolic Al

I Newell & Simon:
1975

Turing The Physical Symbol System Hypothesis. A physical symbol system
has the necessary and sufficient means for general intelligent action.

Awiard

l.ectlure

Expanded Edition

Perceptrons

Marvin L. Minsky

Bernhard Schélkopf Seymour A. Papert




Moravec's paradox, 1980s

“Machines will be capable, within twenty years, of doing any work a man can do”



Classic Al Learning Al (Machine learning)

10 000

- 5000

>

Programmed by humans and

learning from experience
(Video: D. Biichler)

1990 2000 2010

Programmed by humans - Classic Al conferences

(AAAI + IJCAI)

Learning Al conferences
(NIPS + ICML + CVPR)

Image credit: W. Brendel / M. Be: a
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a8 https://www.gwern.net/Tanks
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THE NEURAL NET TANK URBAN LEGEND

Al folklore tells a story about a neural network trained to detect tanks which instead learned to detect time of day;

SITE investigating, this probably never happened.

ME
NN, history, sociology, Google, bibliography

I:IE:,IV f;IL 20 Sep 2011-14 Aug 2019 - finished - certainty: highly likely -
© /R/GWERN
1 Did It Happen?

SUPPORT ON
PATREON 1.1 Versions of the Story

1.1.1 2010s

1.1.2 2000s

1.1.3 1990s

1.1.4 1980s

1.1.5 1960s

1.2 Evaluation
1.2.1 Sourcing
1.2.2 Variations
1.2.3 Urban Legends
1.2.4 Origin
2 Could it Happen?
2.1 Could Something Like it Happen?
3 Should We Tell Stories We Know
Aren’t True?
3.1 Alternative examples

4 See Also

5 External Links

importance: 4

A cautionary tale in artificial intelligence tells about
researchers training an neural network (NN) to detect
tanks in photographs, succeeding, only to realize the
photographs had been collected under specific condi-
tions for tanks/non-tanks and the NN had learned
something useless like time of day. This story is often
told to warn about the limits of algorithms and impor-
tance of data collection to avoid “dataset bias”/“data
leakage” where the collected data can be solved using
algorithms that do not generalize to the true data dis-
tribution, but the tank story is usually never sourced.

I collate many extent versions dating back a
quarter of a century to 1992 along with two NN-related
anecdotes from the 1960s; their contradictions & de-
tails indicate a classic “urban legend”, with a probable
origin in a speculative question in the 1960s by Edward
Fredkin at an AI conference about some early NN re-
search, which was subsequently classified & never fol-
lowed up on.

I suggest that dataset bias is real but exaggerated
by the tank story, giving a misleading indication of
risks from deep learning and that it would be better to
not repeat it but use real examples of dataset bias and
focus on larger-scale risks like Al systems optimizing
for wrong utility functions.

day (“environment”)

tank class

weather

image
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Human- Ievel object recognition?

milk agriculture farm cattle livestock dairy
hayfield field grass mammal pasture calf
farmland rural animal pastoral bull grassland
eef agriculture cattle milk pasture mammal
gck farmland grass farm hayfield rural herd
dairy pastoral grassland field calf bull
mammal pasture grass animal no person nature
gficulture livestock hayfield cattle farm rural field

ilk land beef toral trysid
mi grassian ee pastora countrysidge fI/’Om Perona’ 201 7;
cf. Lopez-Paz et al., 2016



Machine Iearning uses correlations rather than causality
e vy SUEE

e PO i " Bl ot
r——— . S beach sand travel no person water sea seashore

=

summer Sky outdoors ocean nature

b i BRI ANAS)

no person water mammal cattle outdoors

landscape travel sky livestock

= % water no person beach seashore sea sand mammal

outdoors travel ocean surf sky

from Perona, 2017,
cf. Lopez-Paz et al., 2016




Adversarial Vulnerability

“airliner”

Image credit: http://people.csail.mit.edu/madry/lab/blog/adversarial/2018/07/06/adversarial _intro/

C. Szegedy et al. Intriguing properties of neural networks. arXiv:1312.6199, 201

Bernhard Schélkopf
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Reichenbach’s Common Cause Principle

(i) if X and Y are de- (i) Z screens X
pendent, then there and Y from each

exists Z causally in- other (given Z,
; X und Y become
fluencing both;

independent)

PX,Y)

>, P(x|2)p(y|2)p(2) p(x)p(y|x)

Bernhard Schélkopf

by permission of the
University of Pittsburgh.
All rights reserved.
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p(x|y)p(y)




parents (causes) of X

Structural causal models (Peari, Spirtes, et al.)
r'/_-_\\\

e Set of observables Xy,...,X,, on a DAG G

e arrows represent direct causation non-descendg\ \_ /\

) )(Z = fz(PAu UZ> with / \ o ::/'“\::
independent RVs Uy, ..., U,. ‘ \ () =

\__/ descendants
e distribution of the U; picks up footprint of graph topology: '
observational distribution p(X,...,X,,) satisfies:

[ Conditioned on its parents, X is independent of its non-descendants (causal Markov condition,)

—assay using conditional independence testing (for n > 2)
o (G,p) is a “graphical model” (Lauritzen, 1996), p(X1, ..., X,) = | [, p(X;|Parents;)

e interventions / mechanism shifts are modelled by changing functions (mechanisms);
entail interventional distribution

Bernhard Schélkopf



Causality in differential equations

Consider the set of differential equations

dx

E = f(X), X & Rd,

with initial value x(¢y) = xo.
Picard—Lindel6f: locally, if f is Lipschitz, there exists a unique solution x(t)
—> the immediate future of x is implied by its past
Using dt and dx = x(t + dt) — x(t):
x(t+dt) =x(t) +dt - f(x()).

This tells us which entries of x(¢) cause the future of others x(¢ + dt), i.e., the causal structure.

//;: 7 >N
Vg A

https://arxiv.org/abs/1911.10500

Bernhard Schélkopf \\f T/



Linking ODEs and SCMs

There is no reason why simple SCMs should be derivable in general.

Derive SCMs describing the interventional behavior of a coupled ODE system in
equilibrium state and perturbed in an “adiabatic” way (Mooij et al., UAI 2013)

Generalization to oscillatory systems (Rubenstein et al., UAI 2018)

Subject to appropriate conditions, structural models can arise from coarse-graining
of microscopic models, including microscopic structural equation models (Chalupka
et al. 2015; Rubenstein et al., UAT 2017) or temporally aggregated time series (Gong
et al., UAI 2017).

Bernhard Schélkopf



What is cause and what is effect?
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temperature

T T T T T T T
0 500 1000 1500 2000 2500 3000
altitude

e intervention on a: raise the city, find that ¢ changes

e hypothetical intervention on a: still expect that ¢
changes, since we can think of a physical mechanism
p(t|a) that is independent of p(a)

e we expect that p(t|a) is invariant across, say, differ-
ent countries in a similar climate zone

N
2% )H)

| X
Y
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Independent Causal Mechanisms:: < “.
Principle (ICM):

The causal generative process

is composed of autonomous

modules that do not inform

or influence each other.

ST




Independence of input and mechanism

 No noise on effect variable

* Assumption: y = f(x) with invertible f @ @

A

y
f(x)

Daniusis, Janzing, Mooij, Zscheischler, Steudel,
Zhang, Scholkopf:

Inferring deterministic causal relations, UAl

/ MA-/—DTX)/\ 2010 W7
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A //




Causal independence implies anticausal dependence

Assume that f is a monotonically increasing bijection of [0, 1].

View p, and log f’ as RVs on the prob. space [0, 1] w. Lebesgue measure.

Postulate (independence of mechanism and input):
Cov (1Og flapa:) =0

Note: this is equivalent to

[ 1o i = [ 1os sy,

since Cov (log f',p;) = Ellog f" - p.] — Ellog f'|E|p.] = Ellogf" - p.] —
2 [log £

Proposition: If f = Id,
Cov (log f_ll,py) > 0.

Bernhard Schélkopf



Bernhard Schélkopf

Uy, U,y uniform densities for =,y
vy, v, densities for x,y induced by transforming wu,, u, via f ~* and f

Equivalent formulations of the postulate:

Additivity of Entropy:
S (py) — S (pz) =S (vy) — 5 (ug)

Orthogonality (information geometric): a2 -
D (ps || vz) = D (pa [ uz) + D (uz || vz)

which can be rewritten as X
D (py || uy) = D (pax | uz) + D (vy || uy) SN

Interpretation:
irregularity of p, = irregularity of p, + irregularity introduced by f



Algorithmic structural causal model

e for every node z; there exists a program wu; that computes z;
from its parents pa; a.
P3;

U.
/ J
e all u; are jointly independent (
e the program u; represents the causal mechanism that generates ( pa J ) U J)
the effect from its causes

e u; are the analog of the unobserved noise terms in the statistical
functional model

Theorem: this model implies the causal Markov condition
(replacing Shannon entropy with Kolmorogov complexity).

(Janzing € Scholkopf, IEEE Trans. Information Theory 2010)
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Gedankenexperiment

Particles scattered at an object

e incoming beam: ‘cause’
. L .
e scattering at object: ‘mechanism

e outgoing beam: ‘effect’, contains information about the object

Bernhard Schélkopf =



Independence assumption

e s initial state of a physical system

e ) the system dynamics applied for some fixed time

Independence Principle: s and M are algorithmically inde-
pendent

I(s: M) =0,
i.e., knowing s does not enable a shorter description of M and vice
versa.

Bernhard Schélkopf kg




Thermodynamic Arrow of Time

Theorem [non-decrease of entropy]|. Let M be a bijective map on the set of
states of a system then (s : M) = 0 implies

K(M(s)) > K(s)

Proof idea: If M(s) admits a shorter description than s, knowing M admits a shorter description of s:
just describe M(s) and then apply M 1.

Janzing, Chaves, Scholkopf. Algorithmic independence of initial condition and dynamical law in ther-

modynamics and causal inference. New J. of Physics, 2016
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Using cause-effect knowledge

Bernhard Schélkopf

e example 1: predict protein from mRNA sequence

O Growing peptide chain

@ - - caus al
ﬁP\ @ — /\‘ Incoming tRNA
\6\‘ \ T \ v\ps \bou nd to Amino Acid
Outgoing \ ]
ty tRNA \ ¢ O\ ‘ p
B ) | / W
R )

NAVRIRVATR' UGGAAAGAUUUQWNWNWWTL

MessengerRNA N

Ribosome Y

Peptide Synthesis .
Source: http://commons.wikimedia.org/wiki/File: Peptide syn.png CCLUSQZ mechanzsm 2

e example 2: predict class membership from handwritten digit

anticausal
Y
3 3 ﬂ 0 9 ?ld
N N v




Covariate Shift and Semi-Supervised Learning

Assumption: p(C') and mechanism p(F|C) “independent”
Goal: learn X — Y, i.e., estimate (properties of) p(Y'|X)

Semi-supervised learning: improve estimate by more data from p(X)
Covariate shift: p(X) changes between training and test

Causal learning

p(X) and p(Y|X) independent X ;0 Y
1. semi-supervised learning impossible id
NX NY

2. p(Y|X) invariant under change in p(X)

o : causal mechanism
Anticausal learning ’

p(Y) and p(X|Y') independent . ;
hence p(X) and p(Y|X) dependent QQD ?d Scholkopf, Janzing, Peters, Sgouritsa,

i

NX NY

Zhang, Mooij, 2012, cf. Storkey, 2009,

1. semi-supervised learning possible Bareinboim & Pearl. 2012

2. p(Y|X) changes with p(X)

Bernhard Schélkopf




* Experimental Meta-Analysis confirms prediction
Scholkopf et al., ICML 2012, von Kiigelgen et al., UAI 2020, Jin et al., submitted

* All known SSL assumptions link p(X) to p(Y|X):
* Cluster assumption: points in same cluster of p(X) have the same Y

» Low density separation assumption: p(Y|X) should cross 0.5 in an area where

p(X) 1s small
* Semi-supervised smoothness assumption: E(Y|X) should be smooth where

p(X) 1s large

Bernhard Schélkopf



Independent Causal Mechanisms in NLP
(with Zhijing Jin & Julius von Kugelgen)

Prompt for annotators

2 Given the English sentence above, can
° you write its Spanish translation?

Com mon N LP tas ks . Cause: [En] This is a beautiful world. > /’Annotation

process
Effect: [Es] Este es un mundo hermoso. (Noise)
Category Example NLP Tasks Effect = CausalMechanism (Cause, Noise)

Summarization, question answer-
Causal learning ing, parsing, tagging, data-to-text
generation, information extraction
Author attribute classification,

Anticausal learning question generation, review sen-
timent classification

Other/mixed (depend- Machine translation, language
ing on data collection) modeling, intent classification




ICM in NLP: Findings

(with Zhijing Jin & Julius von Kugelgen)

Causal direction corresponds to shorter description of machine translation data
in terms of minimum description length (MDL):

Data (X—Y) MDL(X) MDL(Y) MDL(YIX) MDL(XIY) MDL(X)+MDL(YIX) vs. MDL(Y)+MDL(XIY)

En—Es 46.54 105.99 2033.95 2320.93 2080.49(<R2426.92
Es—En 113.42 55.79 3289.99 3534.09 3403.41) < 3589.88
En—Fr 20.54 53.83 503.78 535.88 52432 <1589.71
Fr—En 53.83 21.6 705.28 681.12 759.11) > [702.72
Es—Fr 58.26 55.66 701.04 73535 759.301<B11.16
Fr—Es 56.14 54.34 665.26 706.53 721.401<]760.87




ICM in NLP: Findings

(with Zhijing Jin & Julius von Kugelgen)

Implications of ICM for SSL and DA confirmed by NLP meta-study:

Semi-supervised learning (SSL): anticausal > causal.

Task Type Mean ASSL (+std) According to ICM

Causal +0.04 (£4.23) Smaller or none
Anticausal +1.70 (£2.05) Larger

Domain adaptation (DA): causal > anticausal.

Task Type Mean ADA (£std) According to ICM

Causal 5.18 (£6.57) Larger
Anticausal 1.26 (+1.79) Smaller




(v. Kiigelgen, Gresele, https://arxiv.org/abs/2005.07180 / IEEE Trans. Al)

Simpson's paradox in Covid-19 case fatality , @

Case fatality rates (CFRs) by age group A
mmm China, 17 February Simpson’s paradox: opposite trends
147 mmm italy, 9 March : d and dd
IN groupea an aggregate ata.

Here, it stems from a difference in
case demographic:

Proportion of confirmed cases by age group

I China, 17 February
| mmwm Italy, 9 March

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80+ | Total
Age

Case fatality rates (CFRs) in Italy are lower
for each age group, but higher overall.

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80+
Age

Thanks to Elias Bareinboim


https://arxiv.org/abs/2005.07180

Mediation analysis

Only for linear models can total causal
effect (TCE) be decomposed into direct
effect (DE) and indirect effect (IE),

A
TCE=DE+IE
. . Path-specific effects of changing country from China to Italy
Due to interactions, DE and IE are not 10 _ TR
. . . I Natural Direct Effect .
uniquely defined in general, but depend me= Natural Indirect Effect

g | Wmm Total Causal Effect

on the state of the mediator.

* Natural Direct Effect (NDE): case
demographic kept as in China while CFRs
per age group changed to those in Italy.

* Natural Indirect Effect (NIE): CFRs per
age group kept as in China, while case 01
demographic changed to that in Italy.

Change in total CFR (%)

9 March 12 March 19 March 26 March 2 April 9 April
Date



Causal models for exoplanet detection

o T

planet | @
AN

ICML 2015 0 Shaer o ] [oma

Astrophysical Journal 2015 g

PNAS 2016 e Q-E[Q] =Y - E[Y|X]
_\—;h‘@ @

®

Kepler 5088536 Quarter 5 Kepler 5949551 Quarter 5
CCD channel 25 Row 875 Column 322 CCD channel 25 Row 57 Column 756

Discovered 21 new explanets. One of them received the name K2-18b.







NATIONAL 5 . :
GEOGRAPHIC ‘ : Missions | Galleries | NASATV | Follo

Water found on a potentially life-
friendly alien planet

A super-Earth about 111 light-years away is “the best candidate for habitability
that we know right now,” astronomers say.

Humans in Space ‘ Moon to Mars ‘ Earth ’ Space Tech | Flight ‘ S¢

O, Search v T e Edtﬁirgr?tvional
Guardian f S 6
Water found on most habitable known
world beyond solar system - e ee—

UNDARK

But humans would not fare well on planet K2-18b despite wispy
clouds and huge red sun

@a gesschau.de SENTUIC e | Exoplanets, Life,
! and the Danger

Startseite  Videos & Audios Inland Investigati of a Single Study
rch
Observations

W Startseite  » Ausland » Erstmals Wasserdampf in Planetenat

No, the Exoplanet K2-18b Is Vot
Habitable

News outlets that said otherwise are just crying
wolf—but they’re not the only ones at fault Hubble

Astronomische Sensation

Wasserdampf auf Planet K2-18lI By Laura Kreidberg on September 23, 2019 NASA’s Hubble Finds Water Vapor on Habitable-Zone Exoplanet for 1st Time
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Herb Simon, 1956

“Machines will be capable, within twenty years, of doing any work a man can do”



Toward causal representation learning

Core Problem of Statistical Representations: Representation learn-
ing only includes statistical information — it does not capture interventions,
reasoning, planning.

Core Problem of Causal Representations: SCMs are usually at the
symbolic level — they assume the causal variables are given.

https://arziv.org/abs/2102.11107



Independent mechanisms and the disentangled factorization

Factorization

e independent noises in the causal graph:

p(Xi,..., Xa) =], _ p(Xi|PA)

1)

= \L '\\1';/4/‘
NG

Bernhard Schélkopf



Independent mechanisms and the disentangled factorization

https://arxiv.org/abs/1911.10500
https://arxiv.org/abs/2102.11107

Disentangled (causal) factorization

e independent noises in the causal graph:
p(X17 0o c 7Xn) — Hle p (X7 ‘ PAI)

e independent mechanisms: changing one p (X; | PA;) does not change the other
p (X, | PA;) (5 # 4); they remain invariant

(Janzing & Scholkopf, IEEE Trans. Inf. Th. 2010; Schélkopf et al., ICML 2012),
cf. autonomy, (structural) invariance, separability, exogeneity, stability, modularity: (Aldrich, 1989; Pearl, 2009)

Special case: If the graph has no edges, disentanglement reduces to statistical independence:
n
p(X17 s 7XTL) — lel p (X1>

In general, the causal factors will not be statistically independent, and independence—basedf_\
methods struggle to find them (Trauble et al., ICML 2021) €

A
Bernhard Schélkopf

%,
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https://arxiv.org/abs/1911.10500
https://arxiv.org/abs/2102.11107

Entangled factorizations

Disentangled (causal) factorization

p(Xi,.. X)) =], p ([ PA)

Entangled (non-causal) factorizations
e.g.,
p(X17 SRR 7Xn) — H[—lp(Xi ‘ Xi—l—la SR 7Xn>

e cannot intervene on p(X; | Xiji1,..., Xp)

e changing one p (X; | PA;) will usually change many of the p(X; | X;i1,...,X,)

https://arxiv.org/abs/1911.10500

Bernhard Schélkopf



Causal viewpoint on distribution shift

Disentangled causal factorization
p(X17 R 7X’Il) — HI:1 P <XI ‘ PA7)

with independent mechanisms p (X, | PA;).

Sparse Mechanism Shift Hypothesis: small distribution changes manifest themselves
sparsely in the disentangled factorization, i.e., they should usually not affect all factors
simultaneously.

Here, a shift can be passive (e.g., distribution drift) or active (intervention, action).

Stated in (Parascandolo et al., arXiv:1712.00961 (2017); Bengio et al., arXiv:1901.10912 (2019), Schélkopf, arXiv:1911:10500
(2019)); see also (Schélkopf et al., ICML 2012, Schélkopf, Janzing, Lopez-Paz 2016, Zhang et al., ICML 2013, Huang, Zhang et
al., JMLR 2020)

// =N
\\{

https://arxiv.org/abs/1911.10500 /

Bernhard Schélkopf



Causal training

Sparse mechanism shift training: require that across domain shifts or ac-
tions/interventions, only a sparse set of causal representation factors changes.

ICM training: encourage independence of mechanisms

Counterfactual training: require that interventions produce valid images
(e.g., after reconstruction in an autoencoder).

For interventions on the U;, this encourages statistical independence (cf. standard disentanglement).

For interventions on the S;, this encourages the mechanisms f; to be independently manipulable.

Structural training: embed SCM structure into decoder architecture and train
by reconstruction error

Bernhard Schélkopf



Structural Decoders peebetal =

arXiv 2006.07796 -}

- ~200-700k parameters . %

X

AdaTfm(x;,z) =z, *x + 2 = y;

Scale and offset each pixel of
the conv features individually

D Static features

D Adaptive Transform

— Vector Split

D Convolutio
n

D Fully-connected

D Bilinear Upsampling




Quantitative Results

Reconstruction Quality FID Score for Gen (Hyb)

@® Conv @ Baseline @ Branch-Dec B4-AE-lin
80
B4-AE
B4-AE-deep
WAE bVAE
60 e ® pbVAE ° B6-AE-lin
o N
VAE @ VAprVAE B6-AE
o o VAE pVAE °
& e’ WAEJ o
3 o ® ° B6-AE-deep
% B4-AE-lin
B4-AE-deep B4-AE o B12-AE-lin
» B6-AE-lin .
20 B&AEideep g B12-AE
B'IZ-AE-.Ii-n
Bg}%-zlfngdeep B12-AE-dee
I P
@)
0 0 50 100 150
3450 3460 3470 3480 3490 3500 3510

Reconstruction Loss (BCE)

81



Learning independent mechanisms

(with Parascandolo, Kilbertus, Rojas-Carulla, ICML 2018)

e Data drawn from p(x),
transformed by M
mechanisms fi, ..., fig

@ Goal: learn the
independent mechanisms
/ factors of variation

@ Method: generative
model with competing
mechanisms

Original data

Transformed
data



Method

. S — ransformed
@ Mechanisms initialized ~ texafmpze
identity
@ The highest scoring mechanism | ” | |
against the discriminator D wins _
. xperts
the example and is updated to ’
Increase the score 1
e % ":'-.'l.
@ D is trained on the original data | |3 5 ,??
. - ical
and against the winning outputs st I \ H l

7 — Discriminator

1 ;\r, \ \ \I \
max | E,.p IOg(DO,)(-T)) + Z Ezrn 108'(1 - DOD(EOJ(-T’))) )
8 ( i 2 B ) 00 01 05 0.2,



Accuracy of a CNN trained on MNIST for different test sets

100

0
o

80

70

60

Classifier accuracy (%)

50

40

Classifier accuracy

w— E(transf)

== Orig
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iterations

1000
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Recurrent Independent Mechanisms

Default Sparse Default Sparse
dynamics Communication dynamics Communication
with Anirudh Goyal,
. ._ . Alex Lamb,
.——’ A=)+ . S Jordan Hoffmann,
> > Shagun Sodhani,
.__> i . ._ Sergey Levine,
— G | Yoshua Bengio
= =P Query ICLR 2021
— Passing Gradient
Input Input """ » No Passing Gradient
. Active RIM

I:l Inactive RIM
Key-Value Attention

A. Goyal, A. Lamb, J. Hoffmann, S. Sodhani, S. Levine, Y. Bengio, and B. Scholkopf, 2019. Recurrent independent mechanisms.
arXiv:1909.10893.



Interventional Representations (Besserve et al., ICLR 2020)
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Interventional Representations (Besserve et al., ICLR 2020)

Original

-

Counterfactual

-
o
.;
=
o
-
O
—
=




Interventional Representations (Besserve et al., ICLR 2020)
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Self-supervised learning provably isolates content from style

(https.://arxiv.org/abs/2106.04619)

¥Supervised *SimCLR (4x)
s 1 ~_KSimCLR (2x)
& oCPCv2-L
c 70F MoCo (4x
5 *SimCLR MG ¢ (4x)
Q oPIRL-c2x
< AMDIM
~ 65k * eMoCo (2x)
oy cPCv2 PIRL-ens.
2 iR oBigBIGAN
g eob *MoCo
o} LA
g
£ s eRotation
95 e|nstDisc
25 50 100 200 400 626

Number of Parameters (Millions)

Data augmentation: very effective for self-
supervised representation learning.

Useful because transformations are typically
designed to leave semantics intact:

(f) Rotate {90°,180°, 270°}

(b) Crop and resize

(g) Cutout

(c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

(h) Gaussian noise

with Julius von Kiigelgen*,
Yash Sharma*, Luigi Gresele*,
Wieland Brendel, Michel
Besserve, Francesco Locatello

(i) Gaussian blur (j) Sobel filtering

Figures from:
SimCLR: A Simple Framework for Contrastive Learning of Visual Representations.
Chen, Kornblith, Norouzi, Hinton (ICML 2020; https://arxiv.org/abs/2002.05709)



https://arxiv.org/abs/2002.05709

Self-supervised learning with data augmentations
provably isolates content from style

with Julius von Kiuigelgen*,
Formalise generation x = /(z) and augmentation X = /(Z) processes Yash Sharma*, Luigi Gresele*,

as latent variable model with a content-style partition z = (c, s): Wieland Brendel, Michel
Besserve, Francesco Locatello
* invariant content c: always shared between pairs (x, x) of views;
* varying style s: may change across pairs (x,x) of views.

style change

Allow causal dependence of style on content (Causal3DlIdent dataset):
augmented view X = counterfactual under soft style intervention on x.

Theory: Can identify* invariant content partition in generative and
discriminative learning with entropy maximisation (e.g., SImCLR).

huebg . . . . . . .
N

Figure 2: (Left) Causal graph for the Causal3DIdent dataset. (Right) Two samples from each object class. *up to invertible transformation




Nonlinear Invariant Risk Minimization
(with Chaochao Lu, Yuhuai Wu, José Miguel Hernandez-Lobato, arXiv:2102.12353)

Problem
fO) Key Idea:
O mpy- D(0) =y W ot Y Data representation @ (0) should be
Non Non the direct cause of Y.

Data Representation Invariant Classifier

Assumption on the Prior

- PX|Y,E)=P(X,,...X, |V.E) [[ PX| Y. E)

‘ iel,

o) - exp((T(X), A(Y, E)))

(X |V, E) = —2)
épT,/l( |Y,E) Z0.5)

This assumption is more general than the common The prior is assumed to be
Independence assumption in latent variable models. leading to IDENTIFIABILITY.


https://arxiv.org/abs/2102.12353

Experimental Results
(with Chaochao Lu, Yuhuai Wu, José Miguel Hernandez-Lobato, arXiv:2102.12353)

E

E~1{02,2,3,5)
X1 NN(X1|Ea1)
X5~ N(Xa]2E, 2)

Y ~ N(Y|X1 + Xo, 1)

O = g(X17X2)

Data Generating Process

Samples from iIVAE
(Khemakhem et al. 2020)

Samples f'roi:n VAE
(Kingma et al. 2013)

¢ -

Samples'from iCaRL

=0.1,p, = 0.2
Yo 7 1—p, {pe Pe }

* 1 Testing Env:
I-p. P D, = 0.9?

Table 2: Colored Fashion MNIST. Comparisons in
terms of accuracy (%) (mean = std deviation).

METHOD TRAIN TEST
ERM 83.17+£1.01  22.46 £0.68
ERM 1 81.33+£1.35 33.34£8.8
ERM 2 84.39+1.89  13.16 £0.82
ROBUST MIN MAX 82.81 £0.11  29.22 £ 8.56
F-IRM GAME 62.31 £2.35  69.25 £ 5.82
V-IRM GAME 68.96 £0.95  70.19 +1.47
IRM 75.01 £0.25  55.25 £ 12.42
iCaRL (ours) 74.87 £+ 0.36 73.56 £ 0.75
ERM GRAYSCALE  74.79£0.37  74.67 £0.48
OPTIMAL 75 75



https://arxiv.org/abs/2102.12353

Source-Free Adaptation to Measurement Shift via Bottom-
Up Feature ReStoratiOn (Cian Eastwood et al., https://arxiv.org/abs/2107.05446)

Source-free domain adaptation
-Development: train + equip model
-Deployment: adapt, no source data

4
Measurement shift (cf. Storkey, 2009) (0] [0 | ~ 6 O
-New sensor, same underlying features [ |
ying |OMHOPMO| OO
Feature restoration 9 O] O gO,J O
-Goal: extract same features, new env. Boonder:  (Cliustifiir : s
-Method: align (marginal) feature dists. 9s h ; h
I
Development i Deployment

o - N w £
o - ~ w s

i M i i
o - N w i

-0.5 0. 5

==kl I

0.0 0.5 -0.5 0.0 0.5



CausalWorld: A Robotic Manipulation Benchmark
for Causal Structure and Transfer Learning

colors

gravity

friction —p»

masses

Evaluate different generalization aspects by
intervening on a large range of different defining

variables of the hierarchical causal generative

world model of the robotic environment.

Ahmed and Trauble et al.,
arXiv: 2010.04296,
ICLR 2021

radar_plots_automatic_evaluation_causal_rl_bench

mean_last_fractional_success

goal_poses_SPACE_A

object_colors_SPACE 8

Benchmark with many challenging environments and fully documented code: https://github.com/rr-learning/CausalWorld
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On the Transfer of Disentangled Representations
in Realistic Settings

New Disentanglement Dataset

More complex and realistic, correlations
between factors, occlusions, sim-to-real

1 million simulated 1800 real (labeled)

Dittadi and Trauble et al.,
arXiv: 2010.14407,

Out-of-Distribution Generalization ICLR 2021

of Downstream Tasks

Disentanglement has minor role when

LA I G represent. function is OOD

[ v
[ & I\, AN J
v v v

Generalization error (OOD2)

downstream oobD1 00D2 0.30 DCI score
training colors colors colors Em <04
02 B 04<x<0.99
Task: predict value of non-O0D factors 020 HEE >0099
*  Train downstream task on 0.15 ‘
pre-trained representations
. 0.10 z

Test it OOD but still in the VAE’s training
distribution (OOD1)

Test it OOD w.r.t. the VAE itself (OOD2)

0.05

0.00
MLP GBT

| & S » ]

simulation real world



Causal Curiosity: RL Agents Discovering Self-supervised Experiments
for Causal Representation Learning

Set of environments

* Curiosity to discover causation in an
environment.

* Reward-free

* Set of environments with interventions
on causal factors

">.._ Simple model M’ encodes z,

> LMY

Fig 1: Experiment Discovery

* Use Kolmogorov Complexity as reward to Temporal Clustering
RL age nt Oueer l Camﬁo[gzc;:ence .
. a
* Agents producing self-supervised Fvironment
experiments to test out mass, size etc. [ Reset J+{ Environment | + - 2o ] Policy Network |
Self-supervised e Downstream task

Maximizing external
reward

Exploration Phase

Fig 2: Performing experiments sequentially to learn causal representations.
Representations used for downstream transfer.

Sontakke, Sumedh A., Arash Mehrjou, Laurent Itti, and Bernhard Schélkopf. "Causal Curiosity: RL Agents Discovering Self-
supervised Experiments for Causal Representation Learning." arXiv preprint arXiv:2010.03110 (2020). To appear at ICML 2021




Discovered Behaviors - Mujoco

Pirouette

Leap



Discovered Behaviors - CausalWorld




Discovered Behaviors - CausalWorld

Pushing along x Roll



Causal Influence Detection for Reinforcement Learning

(with Maximilian Seitzer and Georg Martius, arXiv:2106.03443)

Observations

* Real-world agents have limited interventional range
e Causal influence of agent on environment occurs
only sparsely

Idea

* Use causal influence to speed-up reinforcement
learning

Method

* Define measure of causal action influence as a
conditional mutual information

C(s):=1I(S",A|S =5s)

Causal influence on object impossible

e Estimate it from data using neural networks



Causal Influence Detection for Reinforcement Learning

(with Maximilian Seitzer and Georg Martius, arXiv:2106.03443)

Results

* Focusing on states with causal influence (exploration and
prioritization)

» Highly increased sample-efficiency on robotic
manipulation tasks
* Maximizing causal influence as intrinsic motivation

» Agent quickly discovers interesting behaviors (grasping,
lifting)

1.0

I
o0

Success Rate
e
(o)

<
o

o
o

Fraction of Episode
o o o
IS [N o0

©
[\
1

b
o

FETCHPICKANDPLACE

=
AN
1

S

— CAI-All
PER
— HER

4 8 12 16 2
Rollouts x 1000

0

Agent Moves Object

(=)

— Agent Holds Object in Air

i 2 3 4
Rollouts x 1000

5

Brockmann et al. OpenAl Gym, arXiv:1606.01540



Causality for nonlinear ICA with Luigi Gresele", Julius &3

von Kugelgen*, Vincent

(httpS.’//arXiV.Ol’g/abS/2106. 05200) Stimper’ Michel Besserve -
7 W)
e @ Observe: nonlinear mixtures, x = f(s), of independent sources s
Goal: recover the unobserved sources (blind source separation)
" Problem: impossible in general [Hyvarinen & Pajunen, ‘99]
@ @ New: interpret mixing as causal process & constrain f using the ICM principle

:

()

ICM usually applied to cause distribution p, and mechanism pe (or f),
e.g., cause-effect discovery

But: in nonlinear ICA, cause (source distribution) is unobserved

S o ,)) a_f ___________
Independent mechanism analysis (IMA): ﬁ 0sy

* |ICM at level of mixing function

contributions g of each source to observed

Si )
distribution be "independent” (not statistical) ﬁ»

» speakers’ positions not fine-tuned to room
accoustics and microphone placement

of
(352



with Luigi Gresele*, Julius

Independent mechanism analysis von Kiigelgen*, Vincent

Stimper, Michel Besserve

IMA Principle: the influences of each source on the
observed distribution are independent in the sense that: o Of

________ - 882
n Of P 4 A 7
log |J5(s)| = 21, log || £5(s) ; :
of || || e || ! /
381 382 1 |Jf| II
Geometric interpretation: corresponds to an : J
orthogonality condition on the columns of the Jacobian. : e ’Iaf
>' 881 V 881
Contrast function: . <
n/8 4 27 ‘ A\
n af 0.4 "“‘“ “““ K\
CunsFo) = | (D) tog|5r @) 108 1) petoras o B
i=1 [ ® 01 > 0.01 SSSSSRsmmENNEN
l o2 | I
. . -0.4
« > 0, with equality iff. f is an orthogonal coordinate transformation 8] _2.6 ool
* Invariant to reparametrisation of the sources by permutation and ot The 13 1%y e

element-wise invertible nonlinearities r x



= . with Luigi G le*, Julius §
Independent mechanism analysis  vonkigelgen®, vincent T

Stimper, Michel Besserve

Theory Experimental results

Can rule out (in the sense that Cjy,4 is larger for) Even when assumptions are not perfectly satisfied,
well-known spurious ICA solutions: IMA seems useful to distinguish spurious solutions
e Darmois (inverse CDF) construction and recover the true sources

® Measure-preserving automorphisms (MPA)

Consistent with existing identifiability results for 1.2| = Darmois

. N MLP
linear ICA, and conformal maps. 1.0
g
L 0.6
==

0.0
2 3 a

d) Number of MLP layers

Ground truth Observations Darmois MPA ri/4 Darmois + MPA ni/4




Generative models as “causal digital twins”

Disentangled (causal) factorization

p(Xl, . ,Xn)

e independent noises in the causal graph:

= lel p(X; | PA;)

https://arziv.org/abs/1911.10500

e independent mechanisms: changing one p (X, | PA;) does not change the other
p (X, | PA;) (5 # 7); they remain invariant (implies intervenability)

[ Orientation } [ Lighting }

[ Position \ '/\‘
Object Appearance ]

’ . / Image
[ Intrinsic Properties ]
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Presented at the ICLR 2020 workshop “Causal learning for decision making”

TOWARDS CAUSAL GENERATIVE SCENE MODELS
VIA COMPETITION OF EXPERTS

Julius von Kiigelgen*' 12, Ivan Ustyuzhaninov* 2,

Peter Gehler'4, Matthias Bethge!3%, Bernhard Schélkopf? !4

Max Planck Institute for Intelligent Systems Tiibingen, Germany
ZDepartment of Engineering, University of Cambridge, United Kingdom
3University of Tiibingen, Germany

4Amazon Tiibingen, Germany

{jvk, bs}@tuebingen.mpg.de,
{ivan.ustyuzhaninov,matthias.bethge}@bethgelab.org,
pgehler@amazon.com

ABSTRACT

Learning how to model complex scenes in a modular way with recombinable
components is a pre-requisite for higher-order reasoning and acting in the physical
world. However, current generative models lack the ability to capture the inherently
compositional and layered nature of visual scenes. While recent work has made
progress towards unsupervised learning of object-based scene representations, most
models still maintain a global representation space (i.e., objects are not explicitly
separated), and cannot generate scenes with novel object arrangement and depth
ordering. Here, we present an alternative approach which uses an inductive bias
encouraging modularity by training an ensemble of generative models (experts).
During training, experts compete for explaining parts of a scene, and thus specialise
on different object classes, with objects being identified as parts that re-occur
across multiple scenes. Our model allows for controllable sampling of individual
objects and recombination of experts in physically plausible ways. In contrast to
other methods, depth layering and occlusion are handled correctly, moving this
approach closer to a causal generative scene model. Experiments on simple toy data
qualitatively demonstrate the conceptual advantages of the proposed approach.

1 INTRODUCTION

Proposed in the early days of computer vision|Grenander (1976); Horn! (1977), analysis-by-synthesis
is an approach to the problem of visual scene understanding. The idea is conceptually elegant and
appealing: build a system that is able to synthesize complex scenes (e.g., by rendering), and then
understand analysis (inference) as the inverse of this process that decomposes new scenes into their
constituent components. The main challenges in this approach are the need for generative models of
nhiecte (and their caomnneitinn inta ecenec) and the need tn nerfarm tractahle inference oiven new




Tangemann, Schneider et al., 2021

Training set

# of objects fish identities position

3 s
.
.




Towards causal machine learning

learn world models (aka digital twins) that are
(1) data-efficient
 use data from multiple tasks in multiple environments

 use re-usable components that are robust across tasks, 1.e., causal
(independent) mechanisms
» disentanglement as a causal problem

« bias RL to search for invariance / find models where shifts are sparse

(2) 1nterventional KONRAD

* move representation learning towards interventional representations: RHSRIE
“thinking is acting is an imagined space” (Konrad Lorenz) ---
planning, reasoning, ...

%\\ . cf. Scholkopf, Janzing, Lopez-Paz 2016

rtani et ysen ICML 2017 talk, https://vimeo.com/238274659 Y
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Toward Causal

Representation Learning

This article reviews fundamental concepts of causal inference and relates them to crucial
open problems of machine learning, including transfer learning and generalization,
thereby assaying how causality can contribute to modern machine learning research.

By BERNHARD SCHOLKOPF" , FRANCESCO LOCATELLO™ , STEFAN BAUER" , NAN ROSEMARY KE,
NAL KALCHBRENNER, ANIRUDH GOYAL, AND YOSHUA BENGIO'

ABSTRACT | The two fields of machine learning and graphical
causality arose and are developed separately. However, there
is, now, cross-pollination and increasing interest in both fields
to benefit from the advances of the other. In this article,
we review fundamental concepts of causal inference and relate
them to crucial open problems of machine learning, including
transfer and generalization, thereby assaying how causality
can contribute to modern machine learning research. This also
applies in the opposite direction: we note that most work in
causality starts from the premise that the causal variables
are given. A central problem for Al and causality is, thus,
causal representation learning, that is, the discovery of high-
level causal variables from low-level observations. Finally,
we delineate some implications of causality for machine learn-
ing and propose key research areas at the intersection of both
communities.

KEYWORDS | Artificial intelligence; causality; deep learning;
representation learning.
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February 8, 2021. Date of publication February 26, 2021; date of current version
April 30, 2021. (Bernhard Schélkopf and Francesco Locatello contributed equally
to this work. Stefan Bauer and Nan Rosemary Ke contributed equally to this
work.) (Corresponding author: Francesco Locatello.)

Bernhard Schélkopf and Stefan Bauer are with the Max Planck Institute for
Intellinent Svstems. 72076 Tithinaen. Germanv (a-mail: bs@tuebinoen moa de:

LINTRODUCTION
If we compare what machine learning can do to what
animals accomplish, we observe that the former is rather
limited at some crucial feats where natural intelligence
excels. These include transfer to new problems and any
form of generalization that is not from one data point
to the next (sampled from the same distribution), but
rather from one problem to the next—both have been
termed generalization, but the latter is a much harder form
thereof, sometimes referred to as horizontal, strong, or out-
of-distribution generalization. This shortcoming is not too
surprising, given that machine learning often disregards
information that animals use heavily: interventions in the
world, domain shifts, and temporal structure—by and
large, we consider these factors a nuisance and try to engi-
neer them away. In accordance with this, the majority of
current successes of machine learning boil down to large-
scale pattern recognition on suitably collected independent
and identically distributed (i.i.d.) data.

To illustrate the implications of this choice and its rela-
tion to causal models, we start by highlighting key research
challenges.

A. Issue 1—Robustness

MAX-PLANCK-GESELLSCHAFT
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