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Approaches to Self-Driving
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Imitation Learning
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Motivation: Hard coding policies is difficult = follow data-driven approach!
» Given: demonstrations or demonstrator

» Goal: train a policy to mimic decision



Conditional Imitation Learning

Advantages:
» End-to-End Trainable
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» Generalization 1
» High Sample Complexity Measured Speed C__IJ H |_|__> FE
Vehicle Controls

» Interpretability

Navigational Command

Codevilla, Santana, Lopez and Gaidon: Exploring the Limitations of Behavior Cloning for Autonomous Driving. ICCV, 2019.



How can we learn to drive under the vast diversity
of all visual, planning and control scenarios?




Situational Driving




Inspiration: World Models
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world mode

action
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» Step 1: Learn generative model of game environments (VAE)

» Step 2: Learn dynamics model and control model in latent space (CMA-ES)

» Not sufficient = we combine this idea with imitation learning

Ha and Schmidhuber: Recurrent World Models Facilitate Policy Evolution. NeurIPS, 2018.



Learning Situational Driving

Enwronment 2. Context Embeddlng

3. Task-Driven
Refinement

» Step 1: Learn a mixture of expert policies {af, 75} via imitation (LSD)
» Step 2: Learn a general purpose context embedding ¢, as a 5-VAE

» Step 3: Perform task-driven policy refinement by interacting with the simulation
and maximizing a driving task reward (LSD+)

Ohn-Bar, Prakash, Behl, Chitta and Geiger: Learning Situational Driving. CVPR, 2020.



Learning Situational Driving

Observations:

Command:
Actions:
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Ohn-Bar, Prakash, Behl, Chitta and Geiger: Learning Situational Driving. CVPR, 2020.



Learning Situational Driving
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mh(alo,c) = N (a| (o, c), diag(ah(o,c)”)
Training:
» Step 1: Learn Mixture of Experts: Ly = — log [Zle a’gw’;} + Ly + Lg
» Step 2: Learn Context Embedding: Lyag = BKL (g¢(2|I) || po(z)) + ||de(z) — I||§

» Step 3: Task-driven optimization: Jrask (€readout, ¥) = Exg [Zfzo rt}

Ohn-Bar, Prakash, Behl, Chitta and Geiger: Learning Situational Driving. CVPR, 2020.



Experiments




Training Town Test Town

» Random start and end location, 4 known weathers, 2 unseen weathers
» Metric: Percentage of successfully completed episodes (success rate)

» Collision does not necessarily terminate episode

Ohn-Bar, Prakash, Behl, Chitta and Geiger: Learning Situational Driving. CVPR, 2020. il



CARLA NoCrash Benchmark

Empty Regular Dense

» Difficulty varies with number of dynamic agents in the scene
» Empty: 0 Agents Regular: 65 Agents  Dense: 220 Agents

» All collisions terminate episode

Ohn-Bar, Prakash, Behl, Chitta and Geiger: Learning Situational Driving. CVPR, 2020. 12



CARLA AnyWeather Benchmark
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» Evaluation on 10 unseen weathers, quantifies generalization performance

Ohn-Bar, Prakash, Behl, Chitta and Geiger: Learning Situational Driving. CVPR, 2020.




Importance of Mixture Model

Training Data and Mixture Components

Evaluation Task Navigation (Static, K=1) ‘ Navigation (Dynamic, K=1) ‘ Navigation (Dynamic, K=3)
Straight (Static) 99 64 100
One Turn (Static) 98 74 100
Navigation (Static) 96 78 98
Navigation (Dynamic) 40 78 92

Results of Mixture Model on CARLA Benchmark:
» Static model solves static scenes well but cannot handle dynamic objects
» Dynamic model handles dynamic scenes better but degrades on static scenes

» Dynamic mixture model generalizes to all scenarios (without on-policy data)

Ohn-Bar, Prakash, Behl, Chitta and Geiger: Learning Situational Driving. CVPR, 2020. 14



Importance of Mixture Model and Task-based Refinement

Model Success Rate (%)
Monolithic (K=1) 75
MoE Shared Backbone (K=3) 89
MoE Shared Backbone (K=5) 90
MOoE Shared Backbone (K=8) 87
MOoE Separate Backbone (K=3) 94
MOoE Separate Backbone (K=5) 93
MoE Separate Backbone (K=8) 93
MOoE Separate Backbone + Refinement (K=3) 98

Results of Full Model on CARLA Benchmark:
» Performance improves up to 3 or 5 mixture components
» Separate backbones increase diversity and generalization

» Tasked-based refinement improves performance further

Ohn-Bar, Prakash, Behl, Chitta and Geiger: Learning Situational Driving. CVPR, 2020.



Emergent Driving Modes
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Emergent Driving Modes:
» Acceleration distribution of three different experts during testing

Ohn-Bar, Prakash, Behl, Chitta and Geiger: Learning Situational Driving. CVPR, 2020.



Results on CARLA Benchmark

Driving Task CIRL ‘ CILRS ‘ CILRS (ours) ‘ LSD (ours) ‘ LSD+R (ours)
Straight 100 96 96 100 100
One Turn 71 84 86 99 99
Navigation 53 69 67 99 99
Navigation Dynamic 41 66 64 94 98

» Using reward-based optimization alone (CIRL) is not sufficient
» LSD enables better driving behavior across all driving tasks

» Large improvements in the presence of dynamic objects

Ohn-Bar, Prakash, Behl, Chitta and Geiger: Learning Situational Driving. CVPR, 2020.



Results on CARLA NoCrash Benchmark

Driving Task CILRS ‘ CILRS ‘ LSD (ours) ‘ LSD+R (ours) H Expert
Empty 66+2 | 65+2 93+2 94 +1 96+0
Regular 49+5|46+£2 66 4+ 2 68 +2 9141
Dense 23+1 | 20+ 1 27 £2 30+4 4142

» All methods perform worse due to challenges (density, collision terminations)
» Expert provided by CARLA often fails in dense environments (e.g., clogging)

» LSD enables better driving behavior across all driving tasks

Ohn-Bar, Prakash, Behl, Chitta and Geiger: Learning Situational Driving. CVPR, 2020.



Results on AnyWeather Benchmark

Task CILRS ‘ LSD (ours) ‘ LSD+R (ours)
Straight 83.2 85.2 85.6
One Turn 78.4 80.4 81.6
Navigation 76.4 78.8 79.6
Nav. Dynamic  75.6 77.2 78.4

» AnyWeather benchmark test generalization to challenging unseen weathers
» All methods can fail even on simple straight driving tasks
» Some challenging weathers lead to zero success rate for all methods

» More research is required to address these challenges

Ohn-Bar, Prakash, Behl, Chitta and Geiger: Learning Situational Driving. CVPR, 2020. 19



Qualitative Results

Ohn-Bar, Prakash, Behl, Chitta and Geiger: Learning Situational Driving. CVPR, 2020.
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How useful is data aggregation for self-driving?




Imitation Learning

Expert Trajectories Dataset Supervised Learning Test Execution
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Hard coding policies is often difficult = Rather use a data-driven approach!
» Given: demonstrations or demonstrator

» Goal: train a policy to mimic decision

22



Formal Definition of Imitation Learning

General Imitation Learning:

arglglin Egp(sjmg) [£ (77(5), m0(5))]

» State distribution P(s|mg) depends on rollout
determined by current policy g

Behavior Cloning:

arglglin E(s+ qo)pe [£(a*, mo(s™))]

=0 £(af mo(s5))

» State distribution P* provided by expert

» Reduces to supervised learning problem

e

23



Challenges of Behavior Cloning

» Behavior cloning makes IID assumption

> Next state is sampled from states observed during expert demonstration
» Thus, next state is sampled independently from action predicted by current policy

» What if mg makes a mistake?
» Enters new states that haven't been observed before
» New states not sampled from same (expert) distribution anymore
» Cannot recover, can lead to catastrophic failure

24



DAgger

Rollout

Aggregate

On-Policy Data

Data Aggregation (DAgger):
» |teratively build a set of inputs that the final policy is likely to encounter based on
previous experience. Query expert for aggregate dataset.

» But can easily overfit to main mode of demonstrations

» High training variance (random initialization, order of data)

Ross, Gordon and Bagnell: A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning. AISTATS, 2011. 25



Distribution over Driving Actions
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Prakash, Behl, Ohn-bar, Chitta and Geiger: Exploring Data Aggregation in Policy Learning for Vision-based Urban Autonomous Driving. CVPR, 2020.
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DAgger with Critical States and Replay Buffer

< Rollout
Dataset
I Sample
Replay Buffer Critical States On-Policy Data

Key Ideas:

1. Sample critical states from the collected on-policy data based on the
utility they provide to the learned policy in terms of driving behavior

2. Incorporate a replay buffer which progressively focuses on the high
uncertainty regions of the policy’'s state distribution

Prakash, Behl, Ohn-bar, Chitta and Geiger: Exploring Data Aggregation in Policy Learning for Vision-based Urban Autonomous Driving. CVPR, 2020.
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DAgger with Critical States and Replay Buffer

< Rollout
Dataset
I Sample
Replay Buffer Critical States On-Policy Data

Sampling Strategies:

n o«

» Task-based: Sample uniformly from “left”, “right”, “straight”
» Policy-based: Use test-time dropout to estimate epistemic uncertainty

» Expert-based: Highest loss or deviation in brake signal wrt. expert

Prakash, Behl, Ohn-bar, Chitta and Geiger: Exploring Data Aggregation in Policy Learning for Vision-based Urban Autonomous Driving. CVPR, 2020.
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Distribution over Driving Actions
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Prakash, Behl, Ohn-bar, Chitta and Geiger: Exploring Data Aggregation in Policy Learning for Vision-based Urban Autonomous Driving. CVPR, 2020. 28



Experiments




Evaluation

Dense

» CARLA NoCrash benchmark
» Dense setting with 220 agents

» Comparison to various baselines with (+) and without data augmentation

Prakash, Behl, Ohn-bar, Chitta and Geiger: Exploring Data Aggregation in Policy Learning for Vision-based Urban Autonomous Driving. CVPR, 2020.
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Evaluation

New Town
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» Data augmentation increases the performance of all methods
» DAgger overfits quickly (1), not better than data augmentation
» Our model consistently improves upon the baselines in all conditions

Prakash, Behl, Ohn-bar, Chitta and Geiger: Exploring Data Aggregation in Policy Learning for Vision-based Urban Autonomous Driving. CVPR, 2020.
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Infractions Analysis
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» Signficiant reduction in collisions with dynamic objects

» More time-outs due to less infractions (e.g., clogged scenes, red lights)

Prakash, Behl, Ohn-bar, Chitta and Geiger: Exploring Data Aggregation in Policy Learning for Vision-based Urban Autonomous Driving. CVPR, 2020.
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Training Variance

CILRST  DAggert  DA-RBT
lter 0 14.6+3.4 14.6+34 146+3.4

lter 1 - 1562+£51 248+19
lter 2 - 13.2+19 254+£15
Iter 3 - 178+3.6 27.0+0.9

Standard deviation wrt. 5 random training seeds (New Town & Weather)

» Significant reduction in variance compared to CILRS and DAgger

Prakash, Behl, Ohn-bar, Chitta and Geiger: Exploring Data Aggregation in Policy Learning for Vision-based Urban Autonomous Driving. CVPR, 2020.
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Interpretability: GradCAM Attention Maps

CILRS [Codevilla et al. 2019] Our Approach

Prakash, Behl, Ohn-bar, Chitta and Geiger: Exploring Data Aggregation in Policy Learning for Vision-based Urban Autonomous Driving. CVPR, 2020.
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Qualitative Results

CILRS+ (Codevilla et al. 2019) DA-RB+ (Our Approach)

Prakash, Behl, Ohn-bar, Chitta and Geiger: Exploring Data Aggregation in Policy Learning for Vision-based Urban Autonomous Driving. CVPR, 2020.
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What is a good intermediate representation?




Approaches to Self-Driving
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Does Computer Vision Matter for Action?

Does Computer Vision Matter for Action?

Segmentation Albedo

| £ 5

B Segmentation

» Analyze various intermediate representations:

segmentation, depth, normals, flow, albedo ' ,
epth Optical flow Depth Optical flow
» Intermediate representations improve results |
- =

» Consistent gains across simulations / tasks ¢ nanug Dt

B —
» Depth and semantic provide largest gains s
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o SR WSR : SR WSR

@®Image()) ®@l+albedo @I+flow |+depth @ |+segment I+all

Zhou, Krahenbihl and Koltun: Does computer vision matter for action? Science Robotics, 2019. 38



Approaches to Self-Driving
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Approaches to Self-Driving

Sensory Input

Direct Perception

Neural Intermediate
Network Representations
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Control
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Which intermediate modality?
» Semantic segmentation
» Bounding boxes
» Depth

» Optical flow

Gas Brake

39



Visual Abstractions

What is a good visual abstraction? Pixel Space Representation Space

» Invariant (hide irrelevant variations from policy)
» Universal (applicable to wide range of scenarios) ¢(é

» Data efficient (in terms of memory/computation)

» Label efficient (require little manual effort) H- !!

Semantic segmentation:
» Encodes task-relevant knowledge (e.g. road is drivable) and priors (e.g., grouping)

» Can be processed with standard 2D convolutional policy networks

Disadvantage:

» Labelling time: ~90 min for 1 Cityscapes image

40



Label Efficient Visual Abstractions

Segmentation / Detection

S

Conditional Imitation Learning

Visual Ty l
Abstraction = Control @

Model:
» Visual abstraction network a,, : x — s
» Control policy mp : s,n,v +— ¢

» Composing both yields ¢ = m(ag(x))

Behl, Chitta, Prakash, Ohn-Bar and Geiger: Label Efficient Visual Abstractions for Autonomous Driving. IROS, 2020.
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Label Efficient Visual Abstractions

Segmentation / Detection

S C

Conditional Imitation Learning

Visual o l
Abstraction = Control @

Datasets:
> n, images annotated with semantic labels S = {x",s'}}"*,
> n.images annotated with expert driving controls C' = {x, ¢’}1¢,

» We assume ng < n.

Behl, Chitta, Prakash, Ohn-Bar and Geiger: Label Efficient Visual Abstractions for Autonomous Driving. IROS, 2020.
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Label Efficient Visual Abstractions

Segmentation / Detection
n v
Visual Ty l l
-
Abstraction Control @
S C

Conditional Imitation Learning

Training:
» Train visual abstraction network a,(-) using semantic dataset S
» Apply this network to obtain control dataset C, = {ay(x"), c'}7c,

» Train control policy my(-) using control dataset Cy

Behl, Chitta, Prakash, Ohn-Bar and Geiger: Label Efficient Visual Abstractions for Autonomous Driving. IROS, 2020.



Results

Trained with 6400 finely annotated images and 14 classes Trained with 1600 coarsely annotated images and 6 classes
Annotation time ~ 7500 hours, policy success rate = 50% Annotation time ~ 50 hours, policy success rate = 58%

Behl, Chitta, Prakash, Ohn-Bar and Geiger: Label Efficient Visual Abstractions for Autonomous Driving. IROS, 2020.
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Summary




Summary

vV vV vV vV vV V. vV VY

Mixture models can significantly improve generalization

Task-driven optimization is difficult but important

Data augmentation is important but can easily overfit in self-driving
Critical states and replay buffer improve performance and reduce variance
Exploiting visual abstractions leads to more robust driving models

Higher segmentation accuracy does not necessarily imply better driving
Hybrid representations reduce annotation costs

Visual abstractions can significantly lower training variance

Attention is helpful for self-driving, but hasn't been explored much yet
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Thank you!

http://autonomousvision.github.io
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http://autonomousvision.github.io

