Towards Robust End-to-End Driving

Andreas Geiger

Autonomous Vision Group University of Tübingen / MPI for Intelligent Systems Tübingen

March 23, 2021

Approaches to Self-Driving

+ End-to-end + Simple - Generalization - Interpretable

Imitation Learning

Motivation: Hard coding policies is difficult \Rightarrow follow data-driven approach!

- Given: demonstrations or demonstrator
- ► **Goal:** train a policy to mimic decision

Conditional Imitation Learning

Advantages:

- ► End-to-End Trainable
- Cheap Annotations

Limitations:

- ► Generalization
- ► High Sample Complexity
- ► Interpretability

How can we learn to drive under the **vast diversity** of all visual, planning and control scenarios?

Situational Driving

Inspiration: World Models

- ► Step 1: Learn **generative model** of game environments (VAE)
- Step 2: Learn dynamics model and control model in **latent space** (CMA-ES)
- ► Not sufficient ⇒ we combine this idea with **imitation learning**

Learning Situational Driving

- Step 1: Learn a **mixture of expert policies** $\{\alpha_{\theta}^k, \pi_{\theta}^k\}$ via imitation (LSD)
- Step 2: Learn a general purpose context embedding q_{ϕ} as a β -VAE
- Step 3: Perform task-driven policy refinement by interacting with the simulation and maximizing a driving task reward (LSD+)

Learning Situational Driving

 $\begin{array}{lll} \text{Observations:} & \mathbf{o} = [\mathbf{I}, v] \in \mathcal{O} \\ \text{Command:} & c \in \mathcal{C} = \{\text{left}, \text{right}, \text{straight}, \text{follow}\} \\ \text{Actions:} & \mathbf{a} \in \mathcal{A} = [-1, 1]^2 \end{array}$

Ohn-Bar, Prakash, Behl, Chitta and Geiger: Learning Situational Driving. CVPR, 2020.

Learning Situational Driving

Training:

- ► Step 1: Learn Mixture of Experts: $\mathcal{L}_{MOE} = -\log \left[\sum_{k=1}^{K} \alpha_{\theta}^{k} \pi_{\theta}^{k} \right] + \mathcal{L}_{V} + \mathcal{L}_{R}$
- ► Step 2: Learn Context Embedding: $\mathcal{L}_{VAE} = \beta \operatorname{KL} (q_{\phi}(\mathbf{z}|\mathbf{I}) \parallel p_0(\mathbf{z})) + \|d_{\phi}(\mathbf{z}) \mathbf{I}\|_2^2$
- ► Step 3: Task-driven optimization: $\mathcal{J}_{TASK}(\boldsymbol{\theta}_{readout}, \boldsymbol{\Psi}) = \mathbb{E}_{\pi_{\boldsymbol{\Theta}}}\left[\sum_{t=0}^{T} r_t\right]$

Ohn-Bar, Prakash, Behl, Chitta and Geiger: Learning Situational Driving. CVPR, 2020.

Experiments

CARLA

Training Town

Test Town

- ► Random start and end location, 4 known weathers, 2 unseen weathers
- Metric: Percentage of successfully completed episodes (success rate)
- Collision does not necessarily terminate episode

Ohn-Bar, Prakash, Behl, Chitta and Geiger: Learning Situational Driving. CVPR, 2020.

CARLA NoCrash Benchmark

Empty

Regular

Dense

- Difficulty varies with number of dynamic agents in the scene
- ► Empty: 0 Agents Regular: 65 Agents Dense: 220 Agents
- ► All collisions terminate episode

CARLA AnyWeather Benchmark

Evaluation on 10 unseen weathers, quantifies generalization performance

Ohn-Bar, Prakash, Behl, Chitta and Geiger: Learning Situational Driving. CVPR, 2020.

Importance of Mixture Model

	Training Data and Mixture Components			
Evaluation Task	Navigation (Static, K=1)	Navigation (Dynamic, K=1)	Navigation (Dynamic, K=3)	
Straight (Static)	99	64	100	
One Turn (Static)	98	74	100	
Navigation (Static)	96	78	98	
Navigation (Dynamic)	40	78	92	

Results of Mixture Model on CARLA Benchmark:

- Static model solves static scenes well but cannot handle dynamic objects
- Dynamic model handles dynamic scenes better but degrades on static scenes
- Dynamic mixture model generalizes to all scenarios (without on-policy data)

Importance of Mixture Model and Task-based Refinement

Model	Success Rate (%)
Monolithic (K=1)	75
MoE Shared Backbone (K=3)	89
MoE Shared Backbone (K=5)	90
MoE Shared Backbone (K=8)	87
MoE Separate Backbone (K=3)	94
MoE Separate Backbone (K=5)	93
MoE Separate Backbone (K=8)	93
MoE Separate Backbone + Refinement (K=3)	98

Results of Full Model on CARLA Benchmark:

- Performance improves up to 3 or 5 mixture components
- Separate backbones increase diversity and generalization
- ► Tasked-based refinement improves performance further

Emergent Driving Modes

Emergent Driving Modes:

Acceleration distribution of three different experts during testing

Ohn-Bar, Prakash, Behl, Chitta and Geiger: Learning Situational Driving. CVPR, 2020.

Results on CARLA Benchmark

Driving Task	CIRL	CILRS	CILRS (ours)	LSD (ours)	LSD+R (ours)
Straight	100	96	96	100	100
One Turn	71	84	86	99	99
Navigation	53	69	67	99	99
Navigation Dynamic	41	66	64	94	98

- ► Using reward-based optimization alone (CIRL) is not sufficient
- ► LSD enables better driving behavior across all driving tasks
- ► Large improvements in the presence of dynamic objects

Results on CARLA NoCrash Benchmark

Driving Task	CILRS	CILRS	LSD (ours)	LSD+R (ours)	Expert
Empty	66 ± 2	65 ± 2	93 ± 2	94 ± 1	96 ± 0
Regular	49 ± 5	46 ± 2	66 ± 2	68 ± 2	91 ± 1
Dense	23 ± 1	20 ± 1	27 ± 2	30 ± 4	41 ± 2

- ► All methods perform worse due to challenges (density, collision terminations)
- Expert provided by CARLA often fails in dense environments (e.g., clogging)
- ► LSD enables better driving behavior across all driving tasks

Results on AnyWeather Benchmark

Task	CILRS	LSD (ours)	LSD+R (ours)
Straight	83.2	85.2	85.6
One Turn	78.4	80.4	81.6
Navigation	76.4	78.8	79.6
Nav. Dynamic	75.6	77.2	78.4

- ► AnyWeather benchmark test generalization to challenging unseen weathers
- ► All methods can fail even on simple straight driving tasks
- ► Some challenging weathers lead to zero success rate for all methods
- More research is required to address these challenges

Qualitative Results

Ohn-Bar, Prakash, Behl, Chitta and Geiger: Learning Situational Driving. CVPR, 2020.

How useful is **data aggregation** for self-driving?

Imitation Learning

Hard coding policies is often difficult \Rightarrow Rather use a data-driven approach!

- Given: demonstrations or demonstrator
- ► **Goal:** train a policy to mimic decision

Formal Definition of Imitation Learning

General Imitation Learning:

$$\underset{\theta}{\operatorname{argmin}} \mathbb{E}_{s \sim P(s|\pi_{\theta})} \left[\mathcal{L} \left(\pi^*(s), \pi_{\theta}(s) \right) \right]$$

 State distribution P(s|π_θ) depends on rollout determined by current policy π_θ

Behavior Cloning:

$$\underset{\theta}{\operatorname{argmin}} \underbrace{\mathbb{E}_{(s^*,a^*)\sim P^*}\left[\mathcal{L}\left(a^*,\pi_{\theta}(s^*)\right)\right]}_{=\sum_{i=1}^{N}\mathcal{L}\left(a^*_i,\pi_{\theta}(s^*_i)\right)}$$

- State distribution P^* provided by expert
- Reduces to supervised learning problem

Challenges of Behavior Cloning

- ► Behavior cloning makes IID assumption
 - ► Next state is sampled from states observed during expert demonstration
 - ► Thus, next state is sampled independently from action predicted by current policy
- What if π_{θ} makes a mistake?
 - Enters new states that haven't been observed before
 - ► New states not sampled from same (expert) distribution anymore
 - Cannot recover, can lead to catastrophic failure

Data Aggregation (DAgger):

- Iteratively build a set of inputs that the final policy is likely to encounter based on previous experience. Query expert for aggregate dataset.
- ► But can easily overfit to main mode of demonstrations
- ► High training variance (random initialization, order of data)

Distribution over Driving Actions

weather conditions

weather conditions

Prakash, Behl, Ohn-bar, Chitta and Geiger: Exploring Data Aggregation in Policy Learning for Vision-based Urban Autonomous Driving. CVPR, 2020.

DAgger with Critical States and Replay Buffer

Key Ideas:

- 1. Sample **critical states** from the collected on-policy data based on the utility they provide to the learned policy in terms of driving behavior
- 2. Incorporate a **replay buffer** which progressively focuses on the high uncertainty regions of the policy's state distribution

DAgger with Critical States and Replay Buffer

Sampling Strategies:

- ► Task-based: Sample uniformly from "left", "right", "straight"
- ► Policy-based: Use test-time dropout to estimate epistemic uncertainty
- Expert-based: Highest loss or deviation in brake signal wrt. expert

Distribution over Driving Actions

weather conditions

weather conditions

Prakash, Behl, Ohn-bar, Chitta and Geiger: Exploring Data Aggregation in Policy Learning for Vision-based Urban Autonomous Driving, CVPR, 2020.

Experiments

Evaluation

- CARLA NoCrash benchmark
- ► **Dense setting** with 220 agents
- ► Comparison to various baselines with (+) and without data augmentation

Evaluation

New Town

- Data augmentation increases the performance of all methods
- ► DAgger overfits quickly (!), not better than data augmentation
- Our model consistently improves upon the baselines in all conditions

Infractions Analysis

- ► Signficiant reduction in collisions with dynamic objects
- ► More time-outs due to less infractions (e.g., clogged scenes, red lights)

Training Variance

	CILRS ⁺	DAgger ⁺	DA-RB ⁺
Iter 0	$14.6\pm\textbf{3.4}$	14.6 ± 3.4	14.6 ± 3.4
Iter 1	-	15.2 ± 5.1	24.8 ± 1.9
Iter 2	-	13.2 ± 1.9	25.4 ± 1.5
Iter 3	-	$17.8\pm\textbf{3.6}$	$27.0\pm\textbf{0.9}$

Standard deviation wrt. 5 random training seeds (New Town & Weather)

Significant reduction in variance compared to CILRS and DAgger

Interpretability: GradCAM Attention Maps

CILRS [Codevilla et al. 2019]

Our Approach

Qualitative Results

CILRS+ (Codevilla et al. 2019) DA-RB+ (Our Approach)

What is a good intermediate representation?

Approaches to Self-Driving

+ End-to-end + Simple - Generalization - Interpretable

Does Computer Vision Matter for Action?

Does Computer Vision Matter for Action?

- Analyze various intermediate representations: segmentation, depth, normals, flow, albedo
- Intermediate representations improve results
- Consistent gains across simulations / tasks
- Depth and semantic provide largest gains

Approaches to Self-Driving

Approaches to Self-Driving

Which intermediate modality?

- Semantic segmentation
- ► Bounding boxes
- ► Depth
- ► Optical flow

Visual Abstractions

What is a good visual abstraction?

- ► Invariant (hide irrelevant variations from policy)
- ► Universal (applicable to wide range of scenarios)
- ► Data efficient (in terms of memory/computation)
- ► Label efficient (require little manual effort)

Semantic segmentation:

- Encodes task-relevant knowledge (e.g. road is drivable) and priors (e.g., grouping)
- ► Can be processed with standard 2D convolutional policy networks

Disadvantage:

► Labelling time: ~90 min for 1 Cityscapes image

Label Efficient Visual Abstractions

Model:

- Visual abstraction network $a_{\psi} : \mathbf{x} \mapsto \mathbf{s}$
- Control policy $\pi_{\theta} : \mathbf{s}, \mathbf{n}, v \mapsto \mathbf{c}$
- Composing both yields $\mathbf{c} = \pi_{\theta}(a_{\phi}(\mathbf{x}))$

Label Efficient Visual Abstractions

Datasets:

- ▶ n_s images annotated with semantic labels $S = { \mathbf{x}^i, \mathbf{s}^i }_{i=1}^{n_s}$
- n_c images annotated with expert driving controls $C = {\mathbf{x}^i, \mathbf{c}^i}_{i=1}^{n_c}$
- We assume $n_s \ll n_c$

Label Efficient Visual Abstractions

Training:

- ► Train visual abstraction network $a_{\phi}(\cdot)$ using semantic dataset S
- Apply this network to obtain control dataset $C_{\phi} = \{a_{\phi}(\mathbf{x}^i), \mathbf{c}^i\}_{i=1}^{n_c}$
- Train control policy $\pi_{\theta}(\cdot)$ using control dataset C_{ϕ}

Results

Trained with 6400 finely annotated images and 14 classes Annotation time \approx 7500 hours, policy success rate = 50% Trained with 1600 coarsely annotated images and 6 classes Annotation time \approx 50 hours, policy success rate = 58%

Summary

Summary

- ► Mixture models can significantly improve generalization
- ► Task-driven optimization is difficult but important
- > Data augmentation is important but can easily overfit in self-driving
- Critical states and replay buffer improve performance and reduce variance
- ► Exploiting visual abstractions leads to more robust driving models
- ► Higher segmentation accuracy does not necessarily imply better driving
- ► Hybrid representations reduce annotation costs
- ► Visual abstractions can significantly **lower training variance**
- ► Attention is helpful for self-driving, but hasn't been explored much yet

Thank you!

http://autonomousvision.github.io

