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Diverse Smile Video Generation

* Wei Wang, Xavier Alameda-Pineda, Dan Xu, Pascal Fua, Elisa Ricci, and Nicu Sebe.

“Every Smile is Unique: Landmark-Guided Diverse Smile Generation”, in CVPR 2018

* Wei Wang, Xavier Alameda-Pineda, Dan Xu, Elisa Ricci, and Nicu Sebe. “Learning
How to Smile: Expression Video Generation with Conditional Adversarial Recurrent
Nets”, in IEEE Transactions on Multimedia, 22(11):2808-2819, Nov. 2020.



Landmark-Guided Diverse Smile Generation

Conditioning label (posed, creepy,
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e Push-Pull Loss
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e Landmark Sequence = Real
Face via U-Net

(a) Generate sequence of smiles conditioned on labels

Mode 1

Mode2

(b) Generate K different sequences of smiles



Landmark-Guided Diverse Smile Generation
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Landmark-Guided Diverse Smile Generation
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* Encode the landmark image and generate a sequence of landmark
embeddings according to the conditioning label



Landmark-Guided Diverse Smile Generation
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* Encode the landmark image and generate a sequence of landmark
embeddings according to the conditioning label
* Generate K different landmark embedding sequences



Landmark-Guided Diverse Smile Generation
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* Encode the landmark image and generate a sequence of landmark
embeddings according to the conditioning label

* Generate K different landmark embedding sequences

* Translate each of the sequences into a face video



Landmark-Guided Diverse Smile Generation
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(1) Conditional Recurrent Neural Network
« y9=>initial input neutral face landmark image
» x'=>generated face landmark images
 LSTMis the recurrent unit receiving as input the concatenation
of h, , and the embedding of the conditioning label c

12



Landmark-Guided Diverse Smile Generation
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(2) One-to-Many Mapping: Push & Pull loss
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Landmark-Guided Diverse Smile Generation

Skip Connections allow texture passing from source to target to preserve the identity
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(3) Landmark Sequence to Video Generation via U-Net

14



Landmark-Guided Diverse Smile Generation
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Landmark-Guided Diverse Smile Generation

Comparison with the state-of-the-art

Video GAN

CRA-Net

CMM-Net

Original
Sequence

(a) Spontaneous Smile (b) Posed Smile

2

Original
Sequence
16

(c) Spontaneous Smile with Glasses (d) Posed Smile with Glasses



Example 1: Neutral -> Smile -> Neutral

Speed: 121ps




Pose-based Human Image Generation

e Aliaksandr Siarohin, Enver Sangineto, Stephane Lathuiliere, and Nicu Sebe.
“Deformable GANs for Pose-based Human Image Generation”, in CVPR 2018

» Aliaksandr Siarohin, Enver Sangineto, Stephane Lathuiliere, and Nicu Sebe
“Appearance and Pose-Conditioned Human Image Generation using Deformable
GANSs”, in IEEE Transactions on Pattern Analysis and Machine Intelligence,
43(4):1156-1171, April 2021

https://github.com/AliaksandrSiarohin/pose-gan




Pose-based Human Image Generation [1]

Prediction

Real or Fake

U
|

Ground Truth

[1] L. Ma, X. Jia, Q. Sun, B. Schiele, T. Tuytelaars, and L. Van Gool, Pose-guided person image generation, NeurlPS, 2017



Pose-based Human Image Generation

To targét

pose ¢

(a) Aligned task (b) Unaligned task

(a) typical “rigid” scene generation task: the local structures of conditioning and
output image local structures are well aligned
(b) deformable-object generation task: the input and output are not spatially aligned



Pose-based Human Image Generation




Pose-based Human Image Generation

We need a deformation model



Pose-based Human Image Generation
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* For each specific body part, compute an affine transformation f,
* Usef, to “move” the corresponding feature-map content



Pose-based Human Image Generation

Encoder Deocoder
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Pose-based Human Image Generation

Encoder Decoder
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* joint locations in x, and H, are spatially aligned (by construction)
* in H, the joint locations may be far apart from x,
* Hence, H, is not concatenated with the other input tensors

connections
from (x,,H,)
stream



Pose-based Human Image Generation
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Conditional Image Generation
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Qualitative results on the Market-1501 dataset



Baseline
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Qualitative results on the DeepFashion dataset



Badly generated images

* errors of the pose estimation

* ambiguity of the pose estimation
* rare object appearance

* rare poses




Image Animation

» Aliaksandr Siarohin, Stephane Lathuiliere, Sergey Tulyakov, Elisa Ricci, and Nicu
Sebe, “Animating Arbitrary Objects via Deep Motion Transfer”, in CVPR,2019

» Aliaksandr Siarohin, Stephane Lathuiliere, Sergey Tulyakov, Elisa Ricci, and Nicu
Sebe, “First Order Motion Model for Image Animation”, in NeurlPS, 2019

https://github.com/AliaksandrSiarohin/first-order-model




Image Animation: Appearance or Motion Transfer?
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Appearance transfer
Detect pose in each frame of the driving video

Apply our pose-base image generator with the source image and each
detected pose
Problems: requires a detector, does not work when the shapes of the object are
different (ie. short to tall persons) => Use Unsupervised Transfer Motion



Image Animation with MOviNg KEYpoints

Monkey-Net



Image Animation with MOviNg KEYpoints

Monkey-Net

Again, we have an alignment problem



Image Animation with I\/IOviNg KEYpoints

Motion I 1) 1|
Crenae |n L

Monkey Net

Monkey-Net has a motion-specific keypoint detector A, a motion prediction network M,

and an image generator G (reconstructs the image x’ from the keypoint positions A(x) and
A(x')); Optical flow computed by M is used by G to handle misalighments between x and x'.
The model is learned with a self-supervised learning scheme



Image Animation: Motion Prediction

From the appearance of the first frame and the keypoints motion, the network M predicts a
mask for each keypoint and the residual motion



Image Animation Generation
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At testing time the model generates a video

with the object appearance of the source

image but with motion from driving video:

* transfer the motion between the source
image and each driving frame

» provide the generator the relative
difference between keypoints



Learned Keypoints




Image Animation Evaluation

Tai-Chi Nemo Bair

L1 AKD AED L1 AKD AED L1
X2Face [7] | 0.068 4.50 0.27 0.022 0.47 0.140 | 0.069
Ours 0.050.7/2.53 0.21 | 0.017 0.37 0.072 | 0.025

AKD: Average Keypoint Distance; AED: Average Euclidean Distance

Tai-Chi | Nemo |

Bair

85.0% | 79.2% | 90.8%

User study. Proportion of times our approach is preferred over X2face






Motion-supervised Co-Part Segmentation

» Aliaksandr Siarohin, Subhankar Roy, Stephane Lathuiliere, Sergey Tulyakov, Elisa Ricci,
and Nicu Sebe, “Motion Supervised Co-Part Segmentation”, in ICPR 2020

https://github.com/AliaksandrSiarohin/motion-cosegmentation




Self-supervised Co-Part Segmentation
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Leverage motion info to train a segmentation network without annotation

* At training, use frame pairs (source and target) extracted from the same video => predict
segments in target that can be combined with a motion representation between the two
frames to reconstruct the target frame



Self-supervised Co-Part Segmentation
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Segmentation

Leverage motion info to train a segmentation network without annotation

* At training, use frame pairs (source and target) extracted from the same video => predict
segments in target that can be combined with a motion representation between the two
frames to reconstruct the target frame

 Atinference, use the trained segmentation model to predict object parts segments



Self-supervised Co-Part Segmentation
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* Segmentation Module predicts the segmentation maps Y. and Y, and the affine
motion parameters



Self-supervised Co-Part Segmentation
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Segmentation Module predicts the segmentation maps Y. and Y;, and the affine

motion parameters

Reconstruction Module: (1) computes a background visibility mask V and the optical
flow F; (2) reconstructs the target frame X; by warping the features of the source frame
Xs and masking the occluded features
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Playable Video Generation

* Willi Menapace, Stephane Lathuiliere, Sergey Tulyakov, Aliaksandr Siarohin, and Elisa
Ricci, “Playable Video Generation”, in CVPR 2021

https://github.com/willi-menapace/PlayableVideoGeneration




Playable Video Generation

Unlabeled videos

/z__ix\
/NN

Training

* Consider a set of videos depicting an agent acting in an environment
* Differently from other methods that use frame by frame action annotations, no annotation

is present



Playable Video Generation

Unlabeled videos

Training Test

* Learn a model that represents the observed environment
* Allow the user to input actions to the model through a controller at the testing time



Playable Video Generation

Unlabeled videos

Training

* Produce a video where the agent acts according to the actions specified by the user



Architecture

Encoder :

Sample an input sequence and use an encoder network to extract frame features



Architecture
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Encoder

e Use then pairs of successive features to infer the action that was performed by the
agent in the corresponding transition using an action network



Architecture

Encoder

* Given the frame features and the action, a recurrent model is used to produce features
representing the successive state



Architecture

1

Encoder :

The successive state is translated back to an image using a decoder network



Architecture

l

Encoder

* For extra supervision, we encode back the produced frame using the encoder and the
action network



Architecture

Encoder

* Impose different self supervision losses on the frames, the frame features and the
produced actions: use a mutual information maximization loss between actions and
reconstructed actions as the main driving loss for action learning



Architecture
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Encoder Temporal model

The model is then unrolled over the whole sequence

Action
Network Training



Action Network
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* The action network first encodes the frame features using a Multi Layer Perceptron to
produce two embeddings



Action Network
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* Take the difference between these embedding as the representation of the transition
between two frames: action direction d,



Action Network
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 When visualized, the learned space of action
directions is a representation of the different
types of transitions that are observed in the
training videos

t-SNE plot of| d;




Action Network

Which action is done

o Left
\ « Right
MLP " a,

ft+1

/

* Use an MLP to assign a label to each point d,: the

high level action associated to the current frame
] e Use of action variability embeddings to ensure a
.‘ "’".,v* R well-posed reconstruction loss on the frames

t-SNE plot of | d;




Action Network

Which action is done
e Left

\ « Right

MLP " a,

d How the action is done
t

e Speed
e Limb movement

——> €41 v = é@v - 694» Vi

Expectation of distance from cluster centroids

* For each d, compute the expectation of its

distance from the cluster centroids: variability
s embedding v, => the particular way in which an
action is performed

t-SNE plot of d;




Results

Action 4

Action 1 Action 2 | Action 3

Action 5 Action 6 |

Action 7 |

* We learn a wide range of actions. The meaning of actions is consistent, independently
from the starting frame the action is applied to



Results

Action 1 Action 2 Action 3 Action 4 Action 5 Action 6 Action 7
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Action Interpolation

At inference, typically v, = 0 and user is specifying actions a, at each time step
v, can also be obtained from an action direction d, that moves between the centroids of

different actions => generate a variety of different movement directions, eg. diagonal
movements






Music-Guided Dance Video Synthesis



DanceGAN
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Self-Frame Spatial Graph Attention Network
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Cross-Frame Temporal Graph Attention Network
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Self-Supervised Regularization Network
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Music-Guided Dance Video Synthesis




Can't Stop Dancing:
Music-Guided Dance
Video Synthesis

Paper ID 3316




Limitations and extensions

Issues with 3D movements => incorporate the modeling of 3D keypoints
or other 3D information

So far we are animating single objects => animate multiple objects and
consider also the interactions/constraints between them, e.g, people
interactions, complex surveillance scenes, etc.

Interactive video generation

Video2video translation => repurpose video generation to different domains,
e.g., Comics2Video and Video2Comics

Possible ethical issues => deep fake forensics
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