

Image and Video Generation A Deep Learning Approach

Nicu Sebe University of Trento niculae.sebe@unitn.it

Collaborators: Xavier Alameda-Pineda, Stephane Lathuilière, Willi Menapace, Elisa Ricci, Subhankar Roy, Enver Sangineto, Aliaksandr Siarohin, Hao Tang, Sergey Tulyakov, Wei Wang, Dan Xu, etc.

A Bit of History

The second secon

... about 2018

... about 2008

A Bit of History

... about 2019

A Bit of History

... nowadays

Image and Video Generation AIDA

Deep Generative Models for Image/Video Generation & Animation

F

Facial

Expression

INPUT:

Neutral face Landmarks

Cond. Label

Target pose

Xa

GT

Full

Arbitrary Object Animation without 3D modeling

Playable and Multimodal Video Generation

ARTIFICIAL INTELLIGENCE

Diverse Smile Video Generation

- Wei Wang, Xavier Alameda-Pineda, Dan Xu, Pascal Fua, Elisa Ricci, and Nicu Sebe. "Every Smile is Unique: Landmark-Guided Diverse Smile Generation", in CVPR 2018
- Wei Wang, Xavier Alameda-Pineda, Dan Xu, Elisa Ricci, and Nicu Sebe. "Learning How to Smile: Expression Video Generation with Conditional Adversarial Recurrent Nets", in IEEE Transactions on Multimedia, 22(11):2808-2819, Nov. 2020.

(a) Generate sequence of smiles conditioned on labels

(b) Generate K different sequences of smiles

Challenges

- Sequence Generation conditioned on priors (i.e., input neutral face and smile label)
 - Conditional Recurrent Neural Network
- One-to-Many
 - Push-Pull Loss
- Preserve the identity
 - Landmark Sequence → Real Face via U-Net

• Encode the landmark image and generate a sequence of landmark embeddings according to the conditioning label

- Encode the landmark image and generate a sequence of landmark embeddings according to the conditioning label
- Generate K different landmark embedding sequences

- Encode the landmark image and generate a sequence of landmark embeddings according to the conditioning label
- Generate K different landmark embedding sequences
- Translate each of the sequences into a face video

(1) Conditional Recurrent Neural Network

- y⁰ => initial input neutral face landmark image
- xⁱ => generated face landmark images
- LSTM is the recurrent unit receiving as input the concatenation of h_{t-1} and the embedding of the conditioning label c

(2) One-to-Many Mapping: Push & Pull loss

Skip Connections allow texture passing from source to target to preserve the identity

(3) Landmark Sequence to Video Generation via U-Net

closed mouth closed eyes wide-open mouth

				\backslash								
Original Sequence					(10- 0)		20	B	25	35		27
Bottom					D	10	(10 0)	(IC)		14 0	10	14 0
Mode 1					12	(10 g)	100	100	10	R	0.0	19
Mode 2					1	10	(10	(10)	10 1	10 1		11
Mode 3					(10- 0)	(10 g)	100	(10	(tc 0)	1	10	0-31

Multi-Mode Generation

Comparison with the state-of-the-art

(c) Spontaneous Smile with Glasses

(d) Posed Smile with Glasses

16

Example 1: Neutral -> Smile -> Neutral Speed: 12fps

- Aliaksandr Siarohin, Enver Sangineto, Stephane Lathuilière, and Nicu Sebe. "Deformable GANs for Pose-based Human Image Generation", in CVPR 2018
- Aliaksandr Siarohin, Enver Sangineto, Stephane Lathuilière, and Nicu Sebe "Appearance and Pose-Conditioned Human Image Generation using Deformable GANs", in IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(4):1156-1171, April 2021

https://github.com/AliaksandrSiarohin/pose-gan

[1] L. Ma, X. Jia, Q. Sun, B. Schiele, T. Tuytelaars, and L. Van Gool, Pose-guided person image generation, NeurIPS, 2017

- (a) typical "rigid" scene generation task: the local structures of conditioning and output image local structures are well aligned
- (b) deformable-object generation task: the input and output are not spatially aligned

We need a deformation model

- For each specific body part, compute an affine transformation f_h
- Use f_h to "move" the corresponding feature-map content

stream

• Hence, H_b is not concatenated with the other input tensors

Conditional Image Generation

Qualitative results on the Market-1501 dataset

Qualitative results on the DeepFashion dataset

Badly generated images

- errors of the pose estimation
- ambiguity of the pose estimation
- rare object appearance
- rare poses

Image Animation

- Aliaksandr Siarohin, Stephane Lathuilière, Sergey Tulyakov, Elisa Ricci, and Nicu Sebe, "Animating Arbitrary Objects via Deep Motion Transfer", in CVPR,2019
- Aliaksandr Siarohin, Stephane Lathuilière, Sergey Tulyakov, Elisa Ricci, and Nicu Sebe, "First Order Motion Model for Image Animation", in NeurIPS, 2019

https://github.com/AliaksandrSiarohin/first-order-model

Image Animation: Appearance or Motion Transfer?

Appearance transfer

Detect pose in each frame of the driving video

Apply our pose-base image generator with the source image and each detected pose

Problems: requires a detector, does not work when the shapes of the object are different (ie. short to tall persons) => Use Unsupervised Transfer Motion

Image Animation with MOviNg KEYpoints

Image Animation with MOviNg KEYpoints

Again, we have an alignment problem

Image Animation with MOviNg KEYpoints

- Monkey-Net has a motion-specific keypoint detector Δ, a motion prediction network M, and an image generator G (reconstructs the image x' from the keypoint positions Δ(x) and Δ(x')); Optical flow computed by M is used by G to handle misalignments between x and x'.
- The model is learned with a self-supervised learning scheme

Image Animation: Motion Prediction

From the appearance of the first frame and the keypoints motion, the network M predicts a mask for each keypoint and the residual motion

Image Animation Generation

At testing time the model generates a video with the object appearance of the source image but with motion from driving video:

- transfer the motion between the source image and each driving frame
- provide the generator the relative difference between keypoints
Learned Keypoints

Image Animation Evaluation

	\mathcal{L}_1	<i>Tai-Chi</i> AKD	AED	\mathcal{L}_1	Nemo AKD	AED	${\sf Bair}\ {\cal L}_1$
X2Face [7]	0.068	4.50	0.27	0.022	0.47	0.140	0.069
Ours	0.050	2.53	0.21	0.017	0.37	0.072	0.025

AKD: Average Keypoint Distance; AED: Average Euclidean Distance

Tai-Chi	Nemo	Bair
85.0%	79.2%	90.8%

User study. Proportion of times our approach is preferred over X2face

Motion-supervised Co-Part Segmentation

• Aliaksandr Siarohin, Subhankar Roy, Stephane Lathuilière, Sergey Tulyakov, Elisa Ricci, and Nicu Sebe, "Motion Supervised Co-Part Segmentation", in ICPR 2020

https://github.com/AliaksandrSiarohin/motion-cosegmentation

Leverage motion info to train a segmentation network without annotation

 At training, use frame pairs (source and target) extracted from the same video => predict segments in target that can be combined with a motion representation between the two frames to reconstruct the target frame

Leverage motion info to train a segmentation network without annotation

- At training, use frame pairs (source and target) extracted from the same video => predict segments in target that can be combined with a motion representation between the two frames to reconstruct the target frame
- At inference, use the trained segmentation model to predict object parts segments

• Segmentation Module predicts the segmentation maps Y_s and Y_T , and the affine motion parameters

- Segmentation Module predicts the segmentation maps Y_s and Y_T , and the affine motion parameters
- Reconstruction Module: (1) computes a background visibility mask V and the optical flow F; (2) reconstructs the target frame X_T by warping the features of the source frame X_s and masking the occluded features

Tai-Chi-HD

• Willi Menapace, Stephane Lathuilière, Sergey Tulyakov, Aliaksandr Siarohin, and Elisa Ricci, "Playable Video Generation", in CVPR 2021

https://github.com/willi-menapace/PlayableVideoGeneration

- Consider a set of videos depicting an agent acting in an environment
- Differently from other methods that use frame by frame action annotations, no annotation is present

- Learn a model that represents the observed environment
- Allow the user to input actions to the model through a controller at the testing time

• Produce a video where the agent acts according to the actions specified by the user

• Sample an input sequence and use an encoder network to extract frame features

• Use then pairs of successive features to infer the action that was performed by the agent in the corresponding transition using an action network

• Given the frame features and the action, a recurrent model is used to produce features representing the successive state

• The successive state is translated back to an image using a decoder network

• For extra supervision, we encode back the produced frame using the encoder and the action network

 Impose different self supervision losses on the frames, the frame features and the produced actions: use a mutual information maximization loss between actions and reconstructed actions as the main driving loss for action learning

• The model is then unrolled over the whole sequence

• The action network first encodes the frame features using a Multi Layer Perceptron to produce two embeddings

 Take the difference between these embedding as the representation of the transition between two frames: action direction d_t

- Use an MLP to assign a label to each point d_t: the high level action associated to the current frame
- Use of action variability embeddings to ensure a well-posed reconstruction loss on the frames

Results

• We learn a wide range of actions. The meaning of actions is consistent, independently from the starting frame the action is applied to

Results

Action Interpolation

- At inference, typically $v_t = 0$ and user is specifying actions a_t at each time step
- v_t can also be obtained from an action direction d_t that moves between the centroids of different actions => generate a variety of different movement directions, eg. diagonal movements

Music-Guided Dance Video Synthesis

DanceGAN

Self-Frame Spatial Graph Attention Network

Cross-Frame Temporal Graph Attention Network

Self-Supervised Regularization Network

Music-Guided Dance Video Synthesis

Can't Stop Dancing: Music-Guided Dance Video Synthesis

Paper ID 3316
Limitations and extensions

- Issues with 3D movements => incorporate the modeling of 3D keypoints or other 3D information
- So far we are animating single objects => animate multiple objects and consider also the interactions/constraints between them, e.g, people interactions, complex surveillance scenes, etc.
- Interactive video generation
- Video2video translation => repurpose video generation to different domains, e.g., Comics2Video and Video2Comics
- Possible ethical issues => deep fake forensics

The International AI Doctoral Academy (AIDA) is a joint initiative of the European R&D Projects: AI4media, ELISE, HumanE-AI Net, TAILOR, VISION

These projects have received funding from the European Union's Horizon 2020 research and innovation programme under the following Grant agreements: No 951911 (Al4media), No. 952070 (VISION) No. 952026 (HumanE-Al Net) and No 951847 (ELISE)

