Hybrid AI for knowledge representation and model-based medical image understanding

Isabelle Bloch

Sorbonne Université, CNRS, LIP6 isabelle.bloch@sorbonne-universite.fr



2021

# Image Understanding

### Multiple definitions

- Recognition of one object or structure, of several objects.
- Global recognition of a scene.
- Semantics.
- Linguistic descriptions
  - in which language?

#### Example: brain MRI



## Data and Knowledge

#### Is everything in the data?

• Powerful methods, with excellent results (e.g. deep learning).

• But:

- access to the data sometimes limited,
- important data sets and number of examples usually required,
- high annotation and learning cost.

 $\Rightarrow$  Importance of knowledge and models.

# Models for Image Understanding

### From models to interpretation

- Mathematical models to represent
  - knowledge (domain, structure of the scene...),
  - image information,
  - their combination,
  - their imperfections (imprecision, uncertainty, incompleteness...).
- Algorithms and applications.
- Semantic gap.
- Pathological cases.
- Knowledge representation and reasoning.

### From images to models

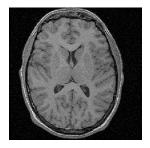
• Examples: knowledge extraction, learning bases, digital twins, virtual patients...

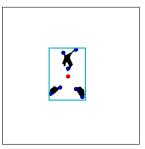




# Hybrid Artificial Intelligence

#### Merging different fields of AI, whether symbolic or statistical


- Abstract knowledge representation and formal reasoning (logics).
- Structural representations (graphs and hypergraphs, ontologies, conceptual graphs, concept lattices...).
- Imprecision (fuzzy sets).
- Semantic gap to link concepts to visual percepts in the images.
- Statistical learning, deep learning (machine learning, neural networks).


• ...

Spatial reasoning: Knowledge representation on spatial entities and spatial relations, and reasoning on them.

## Spatial entities


- Regions, fuzzy regions.
- Keypoints, landmarks.
- Simplified regions (center, bounding box...).
- Abstract representations (formulas in some logic, RCC...).





## Spatial relations

- Structural information.
- Different types (binary / n-ary, simple / complex, well-defined / vague or imprecise).
- Fuzzy representations are useful (Freeman 1975, Kuipers 1978...).





## Structural information: spatial relations

Many relations can be formally modeled using mathematical morphology:

- set theoretical relations,
- topological relations (neighborhood, adjacency...),
- distance (minimal, Hausdorff),
- directional relations,
- more complex relations (between, along, parallel...).

In different frameworks:

- sets, fuzzy sets,
- logic,
- graphs and hypergraphs,
- formal concept analysis, conceptual graphs, ontologies

• ...

### Commun mathematical structure: lattice

# Mathematical morphology in a nutshell (Serra, 1982)

Dilation: operation in complete lattices that commutes with the supremum. Erosion: operation in complete lattices that commutes with the infimum.

 $\Rightarrow$  applies in any mathematical framework endowed with a lattice structure.

#### Using a structuring element:

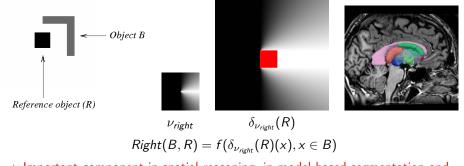
- dilation as a degree of conjunction:  $\delta_B(X) = \{x \in S \mid B_x \cap X \neq \emptyset\},\$
- erosion as a degree of implication:  $\varepsilon_B(X) = \{x \in S \mid B_x \subseteq X\}.$



A lot of other operations...

## Fuzzy sets in a nutshell (Zadeh, 1965)

- Space  $\mathcal{S}$  (image space, space of characteristics, etc.).
- Fuzzy set:  $\mu : S \rightarrow [0,1] \mu(x) =$  membership degree of x to  $\mu$ .
- Set theoretical operations: complementations, conjunctions (t-norms), disjunctions (t-conorms).
- Logics, aggregation and fusion operators...


Example: spatial fuzzy set

- $\mathcal{S} {:}~\mathbb{R}^3$  or  $\mathbb{Z}^3$  in the digital case
- $\mu: \mathcal{S} \to [0,1]$   $\mu(x)$  = degree to which x belongs to the fuzzy object

# Usefulness of spatial relations

- Often used in scene descriptions, textbooks or ontologies.
- Provide structural information.
- More robust to the presence of pathologies or unexpected event than information on shape or appearance.
- But usually vague and imprecise.
- $\Rightarrow$  Formalized using fuzzy sets and mathematical morphology.

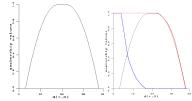
Example: Find B knowing that it should be to the right of R?

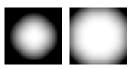


 $\Rightarrow$  Important component in spatial reasoning, in model-based segmentation and recognition.

### Reasoning

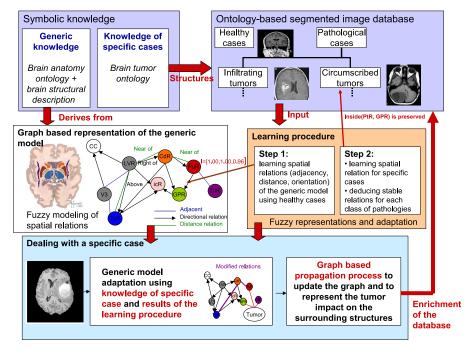
- Representations:
  - ontological: concepts, relations, roles...
  - graphs and hypergraphs,
  - logical knowledge base,
  - semantic gap between abstract / symbolic concepts and information extracted from images,
  - linguistic variable: useful notion to establish links between concepts and concrete domains.


#### • Reasoning for image understanding:

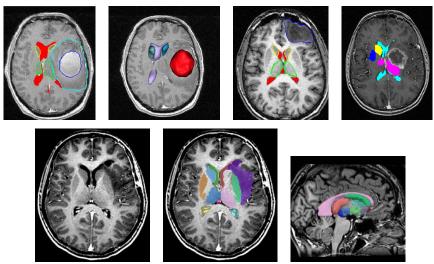

- matching,
- sequential interpretation,
- constraint satisfaction problems,
- logical reasoning (abduction...)

## Linguistic variable and concrete domains

- Abstract level: concept, linguistic values of a variable.
- Concrete domain: representation of the semantics of each value as a fuzzy set.


## Example: medium distance

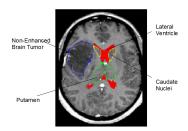





Example: to the right of






## Examples in MRI Brain Imaging



with J. Atif, G. Fouquier, H. Khotanlou, O. Nempont

# Applications

- Finding explanations and descriptions.
- Guiding surgery planning.
- Treatment follow-up.



Abductive reasoning: Find the best explanation to the observations and segmentation results, taking into account expert knowledge.

- Which level of description?
- Which language?
- To whom is the description/explanation dedicated?

#### Example in description logic

| Tbox: Brain                    |          | HumanOrgan                                               |
|--------------------------------|----------|----------------------------------------------------------|
| CerebralHemisphere             |          | BrainAnatomicalStructure                                 |
| PeripheralCerebralHemisphere   |          | CerebralHemisphereArea                                   |
| SubCorticalCerebralHemisphere  |          | CerebralHemisphereArea                                   |
| GreyNuclei                     |          | BrainAnatomicalStructure                                 |
| LateralVentricle               |          | BrainAnatomicalStructure                                 |
| BrainTumor                     |          | Disease ⊓∃hasLocation.Brain                              |
| SmallDeformingTumor            | $\equiv$ | BrainTumor □ ∃hasBehavior.Infiltrating                   |
|                                |          | <i>□∃hasEnhancement.NonEnhanced</i>                      |
| SubCorticalSmallDeformingTumor | $\equiv$ | SmallDeformingTumor $\sqcap$                             |
|                                |          | $\exists has Location. Sub Cortical Cerebral Hemisphere$ |
|                                |          | ⊓∃ <i>closeTo.GreyNuclei</i>                             |
| PeripheralSmallDeformingTumor  | $\equiv$ | BrainTumor ⊓                                             |
|                                |          | $\exists has Location. Peripheral Cerebral Hemisphere$   |
|                                |          | □∃farFrom.LateralVentricle                               |
| LargeDeformingTumor            | $\equiv$ | BrainTumor ⊓                                             |
|                                |          | $\exists has Location. Cerebral Hemisphere$              |
|                                |          | $\Box \exists hasComponent.Edema$                        |
|                                |          | □∃hasComponent.Necrosis                                  |
|                                |          | □∃hasEnhancement.Enhanced                                |

- $DiseasedBrain \equiv$
- TumoralBrain  $\equiv$

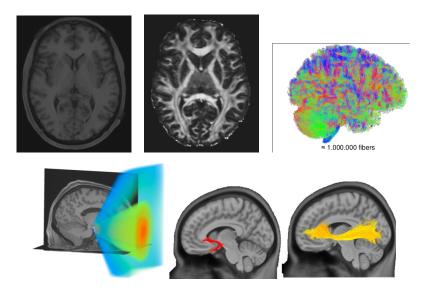
 $\equiv$ 

- $SmallDeformingTumoralBrain \equiv$
- $LargeDeformingTumoralBrain \equiv$
- $PeripheralSmallDeformingTumoralBrain \equiv$
- SubCorticalSmallDeformingTumoralBrain
- Brain □ ∃isAlteredBy.Disease Brain □ ∃isAlteredBy.BrainTumor Brain □ ∃isAlteredBy.SmallDeformingTumor Brain □ ∃isAlteredBy.LargeDeformingTumor Brain □ ∃isAlteredBy.PeripheralSmallDeformingTumor Brain □ ∃isAlteredBy.SubCorticalSmallDeformingTumor

#### Abox:

 $\begin{array}{rcccc} t_1 & : & BrainTumor \\ e_1 & : & NonEnhanced \\ h_1 & : & LateralVentricle \\ p_1 & : & PeripheralCerebralHemisphere \\ (t_1, e_1) & : & hasEnhancement \\ (t_1, h_1) & : & farFrom \\ (t_1, p_1) & : & hasLocation \end{array}$ 

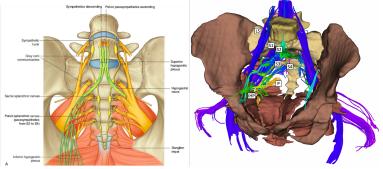
Most specific concept:


 $C \equiv BrainTumor \sqcap \exists hasEnhancement.NonEnhanced \sqcap$  $\exists farFrom.LateralVentricle \sqcap$  $\exists hasLocation.PeripheralCerebralHemisphere$  Concept abduction problem  $\langle \mathcal{K}, \mathcal{C} \rangle$  :  $\gamma \sqsubseteq_{\mathcal{K}} \mathcal{C}$ 

Possible explanation set: {DiseasedBrain,  $\exists isAlteredBy$ . $\top$ , SmallDeformingTumoralBrain, PeripheralSmallDeformingTumoralBrain...}.

A preferred solution with respect to some minimality criteria:

 $\gamma \equiv \textit{PeripheralSmallDeformingTumoralBrain}$ 


with J. Atif, C. Hudelot, Y. Yang



### with P. Gori and A. Delmonte

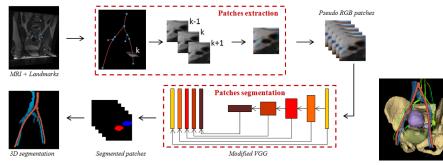
Nerves in pediatric imaging

- Descriptions:
  - Sacral Plexus = (crossing(VertebralCanalL5) and not anterior of(ObturatorMuscle)) or (crossing(SacralHoleS1) and not (anterior of(LevatorAniMuscle) ...
  - S4 = crossing SacralHoleS4 and crossing SacrumCanal
  - L5 = anterior of Sacrum and ...
  - <u>►</u> ...
- Spatial relations modeled using mathematical morphology and fuzzy sets.
- Combination and final decision



with A. Delmonte, C. Muller, S. Sarnacki

Combining knowledge representation models and deep learning

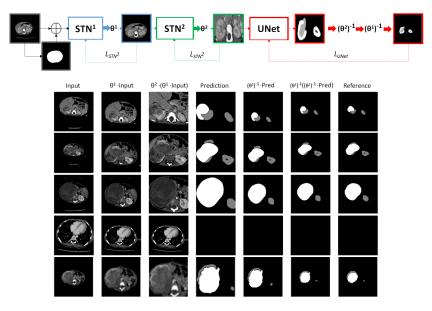

- Learning representations or their parameters.
- Introducing knowledge in neural networks.
- Explainable AI.

Architectures guided by expert reasoning: different modalities



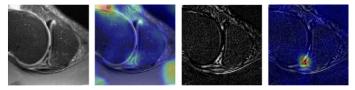
with M. Maillard, M. Hu, P. Gorio

#### Geometrical constraints



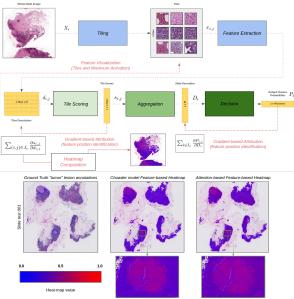

+ Nerve descriptions

 $\Rightarrow$  3D individual patient models for pediatric surgery


with A. Virzi, A. Delmonte, C. Muller, S. Sarnacki

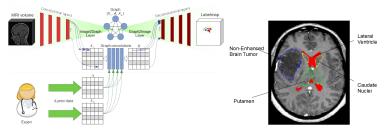
#### Geometrical transformations




with G. La Barbera, P. Gori, L. Rouet, H. Boussaid...

Improving accuracy and explainability by enhancing the input Knee meniscus tear detection from  ${\sf MRI}$ 




with V. Couteaux, O. Nempont, G. Pizaine, et al.

Architectures guided by expert reasoning: different scales and interpretability Whole Slide Imaging to detect metastases in lymph nodes



with A. Pirovano, H. Heuberger, S. Berlemont, S. Ladial

### Perspectives



- Which methods to be combined?
- Respective roles of data and knowledge.
- Knowledge acquisition and representation.
- Introducing structural knowledge in deep learning.
- Explain results, potential errors, methods.

...

# Thanks to...

- PhD candidates, post-doctoral researchers, colleagues, invited professors...
- Academic, medical and industrial collaborations.
- Public and industrial fundings.

