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Learning is to be able to generalise

From examples, what can a system
learn about the underlying
phenomenon?

Memorising the already seen data is
usually bad — overfitting

Generalisation is the ability to
‘perform’ well on unseen data.

[Figure from Wikipedia]
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Statistical Learning Theory is about high confidence
For a fixed algorithm, function class and sample size, generating random
samples — distribution of test errors

m Focusing on the mean of the error distribution?
> can be misleading: learner only has one sample

m Statistical Learning Theory: tail of the distribution
> finding bounds which hold with high probability
over random samples of size m

m Compare to a statistical test — at 99% confidence level
> chances of the conclusion not being true are less than 1%

m PAC: probably approximately correct [59]
Use a ‘confidence parameter’ 5: P™[large error] < &
0 is the probability of being misled by the training set

m Hence high confidence: P™[approximately correct] > 1 —
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Mathematical formalization

Learning algorithm A : Z™ — X
cZ=XxY
X = set of inputs

Y = set of outputs (e.g.
labels)

* J = hypothesis class
= set of predictors
(e.g. classifiers)

Training set (aka sample): S, = (X1, Yq), ..., (X Ym))
a finite sequence of input-output examples.
Classical assumptions:

+ A data-generating distribution P over Z.
 Learner doesn’t know PP, only sees the training set.
 The training set examples are i.i.d. from P: S, ~ P™
> these can be relaxed (mostly beyond the scope of this tutorial)
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What to achieve from the sample?

Use the available sample to:
learn a predictor
certify the predictor’s performance

Learning a predictor:
- algorithm driven by some learning principle
+ informed by prior knowledge resulting in inductive bias

Certifying performance:
+ what happens beyond the training set
+ generalization bounds

Actually these two goals interact with each other!
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Risk (aka error) measures

A loss function €(h(X), Y) is used to measure the discrepancy between
a predicted output h(X) and the true output Y.

Empirical risk: Rin(h) =1 37 ¢(h(X)), Y;)
(in-sample)

Theoretical risk: ~ Rou(h) = E[¢(h(X), Y)]
(out-of-sample)

ExampIeS'
((h(X),Y)=1[h(X) # Y] : 0-1 loss (classification)
L(h(X),Y) = (Y —h(X))? :square loss (regression)
L(h(X),Y)=(1—Yh(X)),: :hinge loss
(h(X),Y)=—log(h(X)) :log loss (density estimation)
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Generalization

If predictor h does well on the in-sample (X, Y) pairs...
...will it still do well on out-of-sample pairs?

Generalization gap:  A(h) = Rous(h) — Rin(h)

Upper bounds: w.h.p. A(h) < e(m,?)

Lower bounds: w.h.p. A(h) > &(m,?5)

Flavours:
m distribution-free m distribution-dependent
m algorithm-free m algorithm-dependent
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Before PAC-Bayes
m Single hypothesis h (building block):
with probability > 1 -8,  Rout(h) < Rin(h) + 4/ 5= log ().
m Finite function class HH (worst-case approach):

wp.>1-8, Vhe®X, Rout(h)ng(h)ﬂ/ﬁnmg(@)

m Structural risk minimisation: data-dependent hypotheses h;
associated with prior weight p;

wp.>1-8, Yh €3, Roulh) < Aulh)+ /55 log (55)

m Uncountably infinite function class: VC dimension, Rademacher
complexity...

These approaches are suited to analyse the performance of individual
functions, and take some account of correlations.

— Extension: PAC-Bayes allows to consider distributions over
hypotheses.
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The PAC-Bayes framework

m Before data, fix a distribution P € M;(JH) > ‘prior’

m Based on data, learn a distribution Q € M;(H) © ‘posterior’

m Predictions:
« draw h ~ Q and predict with the chosen h.

 each prediction with a fresh random draw.

The risk measures Fﬁn(h) and R, (h) are extended by averaging:
m fg{ 1n h) Rout(Q) = J‘g{ Rout(h) dQ(h)

KL(Q||P) = E In < P ) is the Kullback- Leibler divergence.
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PAC-Bayes aka Generalised Bayes

Bayesian inference

Unique > Posterior
Statistical modelling
(likelihood)
PAC-Bayes
Any distribution Model-free Any distribution
not depending d (possibly) depending
on data Inspired by the on data

Bayesian update
principle - Only
depends on loss

"Prior”: exploration mechanism of J{
"Posterior” is the twisted prior after confronting with data
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PAC-Bayes bounds vs. Bayesian learning

m Prior

+ PAC-Bayes: bounds hold for any distribution
+ Bayes: prior choice impacts inference

m Posterior

« PAC-Bayes: bounds hold for any distribution
« Bayes: posterior uniquely defined by prior and statistical model

m Data distribution

« PAC-Bayes: bounds hold for any distribution
- Bayes: randomness lies in the noise model generating the output
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A General PAC-Bayesian Theorem
A-function: “distance” between R;,,(Q) and R,;(Q)

Convex function A : [0, 1] x [0, 1] — R.

General theorem (Bégin et al. [7, 8], Germain [21])

For any distribution D on X x Y, for any set 3{ of voters, for any distribution
P on X, for any 6 € (0, 1], and for any A-function, we have, with probability at
least 1—b over the choice of S ~ D,

1
m

VQonH: A(H’i (O),Ff(mt(Q)) <

[KL(OIIP) fin ”Aé’”)] |
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A General PAC-Bayesian Theorem
A-function: “distance” between R;,,(Q) and R,;(Q)

Convex function A : [0, 1] x [0,1] — R

General theorem (Bégin et al. [7, 8], Germain [21])

For any distribution D on X x Y, for any set 3{ of voters, for any distribution
P on X, for any 6 € (0, 1], and for any A-function, we have, with probability at
least 1—b over the choice of S ~ D,

vaon3: A(Ru(Q) Rul(@) < :n[ JAém)]'

where

m
Ialm) = sup [Z ym—k gMA (s, )].

Bin (k m r)



Proof of the general theorem

General theorem

1 9
P <VQonJ-C: A(F{m(Q),Ffout(Q)) < E{KL(QHPH—In Aém)D > 1-5.

Proof ideas.

Change of Measure Inequality
For any P and Q on HH, and for any measurable function ¢ : H — R, we have

“In (Epemm) - —hE (%emm)

Q(h)
h!Eoln (%) B h!qu)(h)

= KL(Q|IP) - E o(h).
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Proof of the general theorem

General theorem

1 9
P <VQonJ-C: A(F{m(Q),Ffout(Q)) < E{KL(QHPH—In Aém)D > 1-5.

Proof ideas.

Change of Measure Inequality
For any P and Q on HH, and for any measurable function ¢ : H — R, we have

—In (Epemm) - —hE (%emm)

Q(h)
h!Eoln (%) B h!qu)(h)

= KL(Q|IP) - E o(h).

Markov’s inequality

for a random variable X satisfying X > 0
Pr(X}a)S% — Pr(Xé%)21—6.
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Proof of the general theorem

Probability of observing k misclassifications among m examples
Given a voter h, consider a binomial variable of m trials with success R, (h):

P, (Ant=4) = () (Rund)) (1 = Al = Bin(iim. ALh)

S~Dm k
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Prs.om (Voonﬂ-fz A(Fi’i,,(o),l?(,m(()]) < %[KL(QHPH—In @D >1-5.

Proof.

m-A( E Riu(h), E Rouilh))
h~Q h~Q
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1 J
Prs.pm (VQOH J: A(Rm(o]. Rout (Q)) < m [KL(QHP) +In %}) >1-3.
Proof.

m- A E Ru(h), E Roui(h)

< Ema(Ruh. Auln)
h~Q
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P|’5~Dm (VQ on U-C . A(Rin(oju Rout (Q)) S % [KL(QHP) + ln @}) > 1_5 .

Proof.

m- A(hEoFﬁn( h), E Roui h))

Jensen’s Inequality < EQm -A (Rm (h) N Rout (h))
h~
Change of measure < KL(QH P) +1In EPemA (Rin (") Four (h))
e h~
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Prs.on (VQonCH: A(Ri,,(o),l?(,m,(O)) < %[KL(QHPHM@D > 12,
Proof.

< EmA(RuA. Aln)

< KUQIP g ()
- h~P

1
Markov’s Inequality <is KL(QHP) +in- E E emAFRin(h).Rout(h))
L — 5 s'~pm hP

m- A(hEOF.’m( h), E Roui h))
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Prs.om (VQoan: A(Ri,,(OJ.RﬂM(O)) < %[KL(QHPH—In jAém)D >1-5.

Proof.

m- A(hEOF.’m( h), E Roui h))

< Em A(Rulh), Roulh)
h~Q
< KL(Q|P) + In E g (Fin ) Aouei)
hP
<. s KLQIP)+Int E E emAlnh)Aoulh)
- 5 s'~pm h~P

1
KOt E B
- ~ S/\Dm
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Prs.om (VQoan: A(Ri,,(OJ.RﬂM(O)) < %[KL(QHPH—In jAém)D >1-5.

Proof.

m- A(hEOF.’m( h), E Roui h))

1

Binomial law = KL(QHP) + In 5

< Em A(Rulh), Roulh)

< KL(Q|P) + In E g (Fin ) Aouei)

A ——— hP

<. s KLQIP)+Int E E &™) Aoulh)
. — 5 s/~Dm h-P

—  KLQ|P)+Int E E AR Ao )
R & hP s/~Dm

m
E > Bin(k; m, Roye () €™ A Rout (1)

k=0
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Prs.om [V Qon % : A(Ri,,(O),Rw,(O)) < %[KL(QHPH—In IJAém)D >1-5.

m- A(hEOF.’m( h), E Roui h))

Proof.
< Em (Rl Auln)
< KL(@IP)+in g g ()
R, h~P
<. s KLQIP)+Int E E &™) Aoulh)
e 5 s/~Dm h~P
—  KLQIP)+Int E E emARm(n Aot
D & h~P s/~pm
1 - . :
= KLQIP) +In5 E ;) Bin (K; m, Rou, (h)) @™ AU fowe (1)
1 7 K
< KLOIP +ing sup |3 Bin(iim.)ems b
o rel01] | 455
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Prs.om [V Qon % : A(Ri,,(O),Rw,(O)) < %[KL(QHPH—In IJAém)D >1-5.

m- A(hEOF.’m( h), E Roui h))

Proof.
< (Rl R
< KLOIR) g g )
I P
<. s KLQIP)+Int E E &™) Aoulh)
e 5 s/~pm h~P
—  KLQIP)+Int E E emARm(n Aot
S § h-P spm

1 “ K
—K@IP ] £ 3B A ) )

1 o K
< KL(Q|P) +In < sup ZBin(k;m,r)emA‘ﬁ'”
S 8 refo,1) Py

1

= KL(QHP)JrIngJA(m). O
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General theorem

1 J
Pr (VQonf}{: A(Rin(Q),RM(Q)) < E{KL(OHPH—In Aé’")D > 1-5.

Corollary
[...] with probability at least 1—5 over the choice of S ~ D™, for all Q on I :

(a) kl(Ri,,[Q),HU.,\,(O)) < ‘E[KL[C)HP)—f—In @] Langford and Seeger [31]
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General theorem

Pr <VQonf}{: A(Rin(Q),Rmt(Q)) < l{KL(OHPH—In jA(m)D > 1-5.
S~pm m

)

Corollary

[...] with probability at least 1—5 over the choice of S ~ D™, for all Q on I :

@ K(A.(Q), Aoul@) < & [KL(QIP)+ 27|, Langford and Seeger [31]

m Ruut(oj S Rill(Q))+\/1 [KL(QHP)+|n @] !

2m
Rom,(o) S 1_1970 (C' Rin(o) + 1; [KL(QHP) +In %]) ’

McAllester [40, 43]

Catoni [11]

K(g,p) = qlni+(1—qni=2 > 2(q—p)P°,

—nftl—(1—e°)-pl—c-q,
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General theorem

Pr <VQonf}{: A(Rm(Q),RO“t(Q)) < l{KL(OHPH—In jA(m)D > 1-5.
S~pm m

)

Corollary
[...] with probability at least 1—5 over the choice of S ~ D™, for all Q on I :

B kl(Ri,,(O),RU.,\,(O)) < %[KL[C)HPHIn @] Langford and Seeger [31]

@ R...(Q) < Ru(Q) + \/ L [KL(QHP)Hn@], McAllester [40, 43]
Rout(Q) £ == (¢ Rin(Q) + L [KL(Q|IP) +In1]), Catoni [11]
@ Rouw(Q) < Ru(Q)+ 3 [KL(Q|IP) +InF + f(A, m)]. Alquier et al. [4]

Klg.p) £ ghi+(1-qhi=k > 2(q—p),

Aclgp) € —Int-(1—e°)-pl—c-q,

Mg p) £ 2p-q).
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Proof of the Langford/Seeger bound

Follows immediately from General Theorem by choosing A(q, p) = kl(q, p).
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Proof of the Langford/Seeger bound

Follows immediately from General Theorem by choosing A(q, p) = kl(q, p).
m Indeed, in that case we have

mA(Rg(M).A(M)  — As(m \MAs (M) (1 () ym(1—As (1))
S\ED’" hEP e s hgp S\EDm ( R(h) ) < 1—R(h) )
_ k & g —% ok
= E Zis Prm('qs(h):ﬁ)(ﬂ(h]> (w H(h))
= 7o (P k/mk(1—k/mm—k, (1)
< 2vm.
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mA(Rg(M.A(M)  — As () ™5 (M) 1—Rg () \m(1—As (1)
S\ED’" hEP e s hgp S\EDm ( R(h) ) < 1—R(h) )
K k K m—k
_ _k m 1—m
= E Zis Prm(Rs(h)*ﬁ)(n(hO (w H(h))
= IP o (M) k/mK(1—k/m)ym—k, (1)

< 2vm.

m Note that, in Line (1) of the proof, Pr_ (Rs(h) = £) is replaced by the probability
mass function of the binomial.
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mA(Rg(MR(N)  — As(m \MAs (M) (1 () ym(1—As (1))
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Proof of the Langford/Seeger bound

Follows immediately from General Theorem by choosing A(q, p) = kl(q, p).
m Indeed, in that case we have

mA(Rg(h).R(A))  — Ag () \™As (M) (1—Rg () \m(1—As(A))
S\ED’" hEP e s hgp S\EDm ( R(h) ) < 1—R(h) )
_ k % g -5 e
= E Zis Prm('qs(h):ﬁ)(ﬂ(h]> (w H(h))
= 7o (P)k/m)*(1—k/mym—k, (1)
< 2vm.

m Note that, in Line (1) of the proof, Pr_ (Rs(h) = £) is replaced by the probability
mass function of the binomial.
m This is only true if the examples of S are drawn iid.  (i.e., S~ D™)

m So this result is no longer valid in the non iid case, even if General Theorem is.
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Linear classifiers

m We will choose the prior and posterior distributions to be Gaussians
with unit variance.
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Linear classifiers

m We will choose the prior and posterior distributions to be Gaussians
with unit variance.

m The prior P will be centered at the origin with unit variance

m The specification of the centre for the posterior Q(w, ) will be by a
unit vector mw and a scale factor p.
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m Prior P is Gaussian N(0, 1)
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m Prior P is Gaussian N(0, 1)

Posterior is in the direction w

\
QJ m at distance p from the origin
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PAC-Bayes Bound for SVM (1/2)

M \)
m Prior P is Gaussian N(0, 1)

m Posterior is in the direction w

\
QJ m at distance . from the origin

Posterior Q is Gaussian
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PAC-Bayes Bound for SVM (2/2)

Linear classifiers performance may be bounded by

e KL(P||Q(w, i 1
KL(Qs(w, )] Qn(w, 1)) < (Pl (Wr;t))+ n 7
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PAC-Bayes Bound for SVM (2/2)

Linear classifiers performance may be bounded by

e KL(P||Q(w, i 1
KL(Qs(w, )] Qn(w, 1)) < (Pl (W;)H n 7

m Qp(w, 1) true performance of the stochastic classifier

m SVM is deterministic classifier that exactly corresponds to
sgn (Eg-q(mw, ) [¢(X)]) as centre of the Gaussian gives the same
classification as halfspace with more weight.

m Hence its error bounded by 2Qp» (mw, 1), since as observed above
if x misclassified at least half of ¢ ~ Q err.
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PAC-Bayes Bound for SVM (2/2)

Linear classifiers performance may be bounded by

KL(P||Q(w, p)) + In 21

KL( Qs(w, 1) [|Qn (W, 1)) < pe

1) stochastic measure of the training error

1) = EnlF(uy(x, y))]

Q> O

m Qs(w,
m Qs(w,
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KL(P||Q(w, p)) + In 21

KL( Qs(w, 1) [|Qn (W, 1)) < pe

stochastic measure of the training error

m Qs(w, )
m Qs(w, 1) = EnlF(uy(x,y))]
my(x,y) = (yw d(x)/([|p(x)]]]|wl])
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PAC-Bayes Bound for SVM (2/2)

Linear classifiers performance may be bounded by

: KL(P||Q(W, 1)) + In m1
KL( Qs(w, 1) |||Qp(w, u)) < (P (Wr:)) + In ™

) stochastic measure of the training error
) = EmlF(wy(x, y))]
) = (ywd(x)) /([ (x)][[lw])

t _ 2
t):1—ﬁffooe x*/2dx
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PAC-Bayes Bound for SVM (2/2)

Linear classifiers performance may be bounded by

- (KL(P[[Q(w, ) |+ In 2L

KL(Qs(w, w)[|Qp(w, p) -

m Prior P = Gaussian centered on the origin
m Posterior Q = Gaussian along w at a distance p from the origin
m KL(P|Q) = u?/2
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PAC-Bayes Bound for SVM (2/2)

Linear classifiers performance may be bounded by

L(P||Q(w, 1)) +In ”@1
KL(Qs(w, 1)||Qn (W, 1)) <

m J is the confidence

m The bound holds with probability 1 — & over the random i.i.d.
selection of the training data.
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Form of the SVM bound

m Note that bound holds for all posterior distributions so that we can
choose p to optimise the bound
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Form of the SVM bound

m Note that bound holds for all posterior distributions so that we can
choose p to optimise the bound

m If we define the inverse of the KL by
KL~ (g, A) = max{p : KL(q||p) < A}

then have with probability at least 1 — &

2 1
ue/2 4 In T
m

Pr((w, $(x)) # y) < 2min KL~ (Em[ﬁ(w(x,ym,
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Gives SVM Optimisation

m Primal form:

minw,e, [3W[?+ C Xy &
s.t. ywld(x;) =>1-§; i=1,....m
& =0 i=1,..., m

m Dual form:

m 1 m
maXxy [Zi:1 Xi— 3 Zi,j:1 OCIOCjYIJ/jK(Xiy Xj)

s.t. 0<0€,‘<C i=1,..., m

where k(x;, X;) = (d(x;), d(x;)) and (w, d(x)) = Zf’; o yik(X;, X).
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Model Selection with the new bound: setup

m Comparison of 10-fold Xvalidation, PAC-Bayes Bound and the Prior
PAC-Bayes Bound

m UCI datasets

m Select C and o that lead to minimum Classification Error (CE)

m For 10-F XV select the pair that minimize the validation error
m For PAC-Bayes Bound and Prior PAC-Bayes Bound select the pair
that minimize the bound
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Results

Classifier
SVM nPrior SVM

Problem 2FCV \ 10FCV \ PAC \ PrPAC | PrPAC \ T-PrPAC
digits Bound - - 0.175 | 0.107 0.050 0.047
TE 0.007 0.007 | 0.007 | 0.014 0.010 0.009

waveform | Bound - - 0.203 | 0.185 0.178 0.176
TE 0.090 0.086 | 0.084 | 0.088 0.087 0.086

pima Bound - - 0.424 | 0.420 0.428 0.416
TE 0.244 0.245 | 0.229 | 0.229 0.233 0.233

ringnorm | Bound — — 0.203 | 0.110 0.053 0.050
TE 0.016 0.016 | 0.018 | 0.018 0.016 0.016

spam Bound - - 0.254 | 0.198 0.186 0.178
TE 0.066 0.063 | 0.067 | 0.077 0.070 0.072

[ Average | TE [ 0.0846 | 0.0834 | 0.081 | 0.0852 | 0.0832 | 0.0832 |
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Take home messages

m Bounds are remarkably tight: for final column average factor
between bound and TE is under 3.
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Take home messages

m Bounds are remarkably tight: for final column average factor
between bound and TE is under 3.

m Model selection from the bounds is as good as 10FCV: in fact all but
one of the PAC-Bayes model selections give better averages for TE.

m The better bounds do not appear to give better model selection -
best model selection is from the simplest bound.

m A. Ambroladze, E. Parrado-Hernandez, and J. Shawe-Taylor. Tighter
PAC-Bayes bounds. In Advances in Neural Information Processing
Systems 18, (2006) Pages 9-16.

m P. Germain, A. Lacasse, F. Laviolette and M. Marchand.
PAC-Bayesian learning of linear classifiers, in Proceedings of the
26nd International Conference on Machine Learning (ICML09,
Montréal, Canada.). ACM Press (2009), 382, Pages 453-460.
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Deep Learning Results
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Deep Learning Results
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A flexible framework
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A flexible framework

Since 1997, PAC-Bayes has been successfully used in many machine
learning settings (this list is by no means exhaustive).

Statistical learning theory Audibert and Bousquet [6], Catoni [9, 10], Gued]
[25], Guedj and Pujol [27], Maurer [39], McAllester
[41, 42, 44, 45], Mhammedi et al. [46], Seeger [51, 52], Shawe-Taylor
and Williamson [56], Thiemann et al. [58]

SVMs & linear classifiers Germain et al. [19], Langford and Shawe-Taylor
[32], McAllester [44]

Supervised learning algorithms reinterpreted as bound minimizers
Ambroladze et al. [5], Germain et al. [22], Shawe-Taylor and Hardoon
57]

High-dimensional regression Alquier and Biau [1], Alquier and Lounici
[2], Guedj and Robbiano [24], Guedj and Alquier [26], Li et al. [35]

Classification Catoni [9, 10], Lacasse et al. [30], Langford and Shawe-Taylor
[32], Parrado-Hernandez et al. [49]
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A flexible framework

Transductive learning, domain adaptation Bégin et al. [7], Derbeko et al.
[12], Germain et al. [20], Nozawa et al. [48]

Non-iid or heavy-tailed data Alquier and Guedj [3], Holland [29], Lever et al.
[34], Seldin et al. [54, 55]

Density estimation Higgs and Shawe-Taylor [28], Seldin and Tishby [53]

Reinforcement learning Fard and Pineau [16], Fard et al. [17], Ghavamzadeh
et al. [23], Seldin et al. [54, 55]

Sequential learning Gerchinovitz [18], Li et al. [36]

Algorithmic stability, differential privacy Dziugaite and Roy [13, 14], London
[37], London et al. [38], Rivasplata et al. [50]

Deep neural networks Dziugaite and Roy [15], Letarte et al. [33], Neyshabur
etal. [47], Zhou et al. [60]
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