The Machine Learning of Time:
Past & Future

Efstratios Gavves, University of Amsterdam, egavves@uva.nl

www.i-aida.org



About Me

= Associate Professor at the University of Amsterdam

] _ o UNIVERSITY
» Director of QUVA and POP-AART Lab (we will be hiring!) | OF AMSTERDAM
= Co-founder of Ellogon.Al EJLoGoNAI
= Al to personalize to immunotherapy in oncology reanes
= ELLIS scholar "
Temporal Learning “\&\\ ellis@ lise
and Dynamics B
R ( )‘
o s = &
Efficient Vision Machine Learning WO
and Learning - for Oncology

QUALCOMMW | ‘t-

rrrrrrrrrrrrrrrrrrrrrr WWW I - al d a O r
DOCTORAL ACADEMY . .



The Golden Age of Learning Algorlthms

A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor.
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a teddy bear. in the water.
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[1] Ghodrati, Gavves, Snoek, Video Time: Encoders, Properties, Evaluation, BMVC, 2018
[2] Zhou, Andonian, Oliva, Torralba, Temporal Relational Reasoning in Videos, ECCV, 2018

An Urgent Paradox

Apple falling: videos reversed, shuffled or normal = no difference!=?

Normal video: 83.1% Reversed frames: 82.9%

State-of-the-art spatiotemporal models ignore time
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[1] Ghodrati, Gavves, Snoek, Video Time: Encoders, Properties, Evaluation, BMVC, 2018
[2] Zhou, Andonian, Oliva, Torralba, Temporal Relational Reasoning in Videos, ECCV, 2018

An Urgent Paradox

Apple falling: videos reversed, shuffled or normal = no difference!=?

Urgent for forecasting

1S0:0050

Normal video: 83.1% Reversed frames: 82.9%

...naril;t;ly issing itingé AchildM, ’
who had just exited a bus. ! g

State-of-the-art spatiotemporal models ignore time
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[1] Ghodrati, Gavves, Snoek, Video Time: Encoders, Properties, Evaluation, BMVC, 2018
[2] Zhou, Andonian, Oliva, Torralba, Temporal Relational Reasoning in Videos, ECCV, 2018

An Urgent Paradox

Apple falling: videos reversed, shuffled or normal = no difference!=?

Urgent for future planning

Normal video: 83.1% Reversed frames: 82.9%

State-of-the-art spatiotemporal models ignore time
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[1] Ghodrati, Gavves, Snoek, Video Time: Encoders, Properties, Evaluation, BMVC, 2018
[2] Zhou, Andonian, Oliva, Torralba, Temporal Relational Reasoning in Videos, ECCV, 2018

An Urgent Paradox

Apple falling: videos reversed, shuffled or normal = no difference!=?

Urgent for autonomous driving

Normal video: 83.1% Reversed frames: 82.9%

State-of-the-art spatiotemporal models ignore time
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Central Question
What is the role of time in visual recognition?




The Vision
Models that learn temporality in entangled spatiotemporal sequences
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The Vision
Models that learn temporality in entangled spatiotemporal sequences
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The Vision

Models that learn temporality in entangled spatiotemporal sequences
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Entangled spatiotemporal data

= Data in thousands of dimensions confounded space and time
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= Example 1: Long & complex videos

= Example 2: Migration patterns

= Example 3: Particles through time
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What's the challenge?

* Thousands of frames — A lot of correlations and dynamics

Challenge #1: State-of-the-art discards time by aggregating with set operations t am-a

Challenge #2: Hard to annotate manually — supervised learning is debatable

Challenge #3: A sequence is one of myriad possibilities = generative modelling critical

Challenge #4: Lack of standardization < data is huge, algorithms very complex
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Addressing the challenges

Time Geometry Time Supervision
= |earn spatiotemporal geometric manifolds » Replace manual annotation with time properties
= Aggregate over a geodesic time path on manifold = In particular, combine with time-sensitive models

Are frames correctly ordered?

Time Generation Time Evaluation Temporal
= Models that imagine all possible futures = Standardize data | aggregati...
= Spatiotemporal generative/bayesian models " Evaluate on temporal properties Temporal

continuity

Temporal Temporal
causality forecasting
Temporal
Z t localization
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Types of spatiotemporal geometric learning

Random walks on space-time graphs
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®swing @ flip @ flares @ handstands twist © balance
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Space-time manifolds
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[1] Li, Gavrilyuk, Gavves, Mihir, Snoek, VideoLSTM convolves, attends and flows for action recognition, CVIU 2018



VideoGraph: Recognizing Minutes-Long Human Activities in Videos

N. Hussein E. Gavves A. Smeulders

www.i-aida.org Hussein, Gavves, Smeulders, VideoGraph: Recognizing Minutes-Long Human Activities in Videos, 2019



Temporal length Is important with complex videos
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How to stretch time further — (Time) Graphs!

= Sublinear temporal representation
= Compositionality
* Interpretabllity
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VideoGraph
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Some results

Charades

Method Modality mAP (%)
Two-stream RGB + Flow  18.6
Two-stream + LSTM RGB + Flow 17.8
ActionVLAD RGB +iDT  21.0
Temporal Fields RGB + Flow 224
Temporal Relations RGB 25.2
ResNet-152 RGB 22.8
ResNet-152 + Timeception RGB 31.6
13D RGB 329
I3D + ActionVLAD RGB 354
I3D + Timeception RGB 37.2
I3D + VideoGraph RGB 37.8

[ Code available J
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Breakfast
Method Breakfast Acc. (%)  Breakfast mAP (%)
ResNet-152 41.13 32.65
ResNet-152 + ActionVLAD 55.49 47.12
ResNet-152 + Timeception 57.75 48.47
ResNet-152 + VideoGraph 59.12 49.38
13D 47.05 58.61
I3D + ActionVLAD 60.20 65.48
I3D + Timeception 61.82 67.07
I3D + VideoGraph 63.14 69.45
@
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Categorical Normalizing Flows via Continuous Transformations

P. Lippe E. Gavves

www.i-aida.org Lippe, Gavves, Categorical Normalizing Flows via Continuous Transformations, ICLR 2021



From classifying to generating graphs

= What if we would like to create new, plausible graphs?
= Normalizing Flows is State-of-the-art in generative modelling

f1 Zo) fz(zz 1 fit1 Zz
(@) (@) - Gy () - () =
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Figure credit: Weng, Lilian. “Flow-based + Universality

Deep Generative Models”, 2018. + ExaCt llke“hood estimate

+ Efficient density evaluation and (parallel) sampling
> AIDA o Does not work on categorical data seamlessly
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https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html
https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

Step 1: Categorical Normalizing Flows

= Learn encoder to represent categorical data in continuous space

= Must not lose information in the representation
= Must be smooth and have support for higher dimensions

’ Mixture model ’ Linear flows Variational encoding
. N N
o(o12) = [ o(zilutes, o) M d(ele) = [[atzite) D o=
‘ 1=1 ’ =1 ’

= Learn decoder s.t. continuous z contains what is in x exactly
= Variational inference with factorized decoder

p(x) > E.og(|a) [H;Z()Z;')Zi)p(z)}
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Step 2: Graph generation with CNF

CNF - Node type representation

(discrete =»continuous) Prior distributior
1 // \\\ 1 1 1
(" RGN ) — \\\ = \\\
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Coupling layers f;
CNF - Edge attribute representation DDD ':D :'> DEHH :> Y, :> DEEH
(discrete -»continuous) O // C0d / OO
O . J O . J O
o _ Coupling layers f5 Adding virtual edge Coupling layers f3
+ Permutation-invariant representation
+ Efficient three-step approach (CNF)
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Some results [ Code available }

Molecule generation with Zinc250k dataset (224k examples)

Method Validity Uniqueness Novelty Reconstruction Parallel General
JT-VAE 100% 100% 100% 1% X X
GraphAF 68% 99.10% 100% 100% X v
R-VAE 34.9% 100% — 54.7% v v
GraphNVP 42.60% 94.80% 100% 100% v v
GraphCNF 83.41% 99.99% 100% 100% v v
(+2.88) (£0.01) (40.00) (£0.00)
+ Sub-graphs  96.35% 99.98% 99.98% 100% v v
(£2.21) (£0.01) (40.02) (£0.00)
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Rotation Equivariant Siamese Networks for Tracking

D. Arya E. Gavves

Www.i-aida.org Gupta, Arya, Gavves, Rotation Equivariant Siamese Networks for Tracking, ongoing



In-plane rotations in tracking

= Drone, surveillance, ego-motion recordings, etc.
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SoTA: Siamese Trackers [1, 2]

 Tracking as matching the target query to per frame instances
 Sensitive to rotations <« Convolutions are sensitive to rotations
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[1] Tao, Gavves, Smeulders, Siamese Instance Search for Tracking, CVPR 2016
[2] Bertinetto et al., Fully-Convolutional Siamese Networks for Object Tracking, ECCV16 2017



Rotation equivariance in CNNs

Rotation Equivariant Net
Regular CNN (H-Net; Worrall et al, CVPR 2017)
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Learning steerable filters (— sec.3.1) Rotation equivariant layers (— sec. 3.2)

Real

learned £
- = | complex filter
cients w,

Circular harmonics
basis {¥q}q

orientation-dependent
feature maps

' Input layer | | Group convolution layers |
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ko po¥ (z) ZZZ wike ;1 (z)
povik(z) = e jk(T) j=1k=0
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Rotation Equivariant Siamese Trackers

Rotation Rotation Rotation
equivariant equivariant equivariant
convolutions  feature maps cross correlations
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Some results

24
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, RE-SiamFC

[ Code soon available ]

Model Type  Succ Pr
- 0315 0.523
‘ R4 0360 0.629
SiamFC [1] RS 0423 0.676
- 0288 0.473
‘ R4 0348 0.622
SiamFCv2 RS 0425 0.678
R16 0423 0.688

SiamFCv2 aug 0317 0.541
SiamRPN++ [19] - 0461 0.634
SiamRPN++ R4 0485 0.679
DiMP18 [7] - 0429  0.643
DiMP50 [7] - 0.447  0.668
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Time Supervision



(Some) properties of time

Temporal ¢ Temporal
Asymmetry | & Causality
Temporal Temporal
Continuity Redundancy

> AIDA

nnnnnnnnnnnnnnnnnnnn WWW I _al d a O r
DOCTORAL ACADEMY . .



Arrow of time: LSTM vs C3D
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Revisiting recurrent neural networks

* Recurrent Nets are highly sensitive dynamical systems [1]
« Even with highly discriminative symbolic (one-hot vector) inputs
 Gradients very sensitive to initialization - Poor learning! — No generalization

* Visual features are Py \ %k
Fq '

* much noisier, less discriminative, much more redundant Ry,

A.Tf

* Learning LSTM on videos Is orders of magnitude harder

« Chaotic regime — no useful gradients — no learning
« Forward/Backward/Shuffling of frames — LSTM performs the same on arrow of time

P — www.i-aida.org [1] Pascanu and Bengio, On the difficulty of training recurrent neural networks, 2013



Time-aligned neural networks [1]

* Idea: Why not flip the ConvNet to align the layers with time steps?
 No vanishing/exploding gradients, no problems with noise/redundancy

| Fc-ReLU-Dropout |
7
| fc ]

>
AOI'DMA Www.i-aida.org [1] Ghodrati, Gavves, Snoek, Video Time: Encoders, Properties, Evaluation, BMVC, 2018
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Time Evaluation



Engage-Generalize-Scale

= Current validation paradigm in video is hard to sustain

= Models for (n-dimensional + time) signals, e.g. scientific recordings
= Particles through time, climate, astronomy, ecosystems, biology

= Possible great advantage: scientific knowledge as groundtruth




Videos

Conclusion

Image-centric models

= Time largely ignored in model building and validation Images
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CO”CIUS'O” Spatiotemporal-centric models

Videos
= Time largely ignored in model building and validation

Static » Temporal Images

= Geometry, geneartive & time supervision will be the key

= Hopefully, impact on any field with spatiotemporal complex data
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