

The Machine Learning of Time: Past & Future

Efstratios Gavves, University of Amsterdam, egavves@uva.nl

www.i-aida.org

 \sim

About Me

- Associate Professor at the University of Amsterdam
 - Director of QUVA and POP-AART Lab (we will be hiring!)
- Co-founder of Ellogon.Al
 - AI to personalize to immunotherapy in oncology
- ELLIS scholar

UNIVERSITY OF AMSTERDAM

E_LOGON.AI

NETHERI ANDS

The Golden Age of Learning Algorithms

[1] Ghodrati, Gavves, Snoek, Video Time: Encoders, Properties, Evaluation, BMVC, 2018 [2] Zhou, Andonian, Oliva, Torralba, Temporal Relational Reasoning in Videos, ECCV, 2018

Apple falling: videos reversed, shuffled or normal \Rightarrow no difference^{1,2}

Normal video: 83.1%

Reversed frames: 82.9%

State-of-the-art spatiotemporal models ignore time

[1] Ghodrati, Gavves, Snoek, Video Time: Encoders, Properties, Evaluation, BMVC, 2018 [2] Zhou, Andonian, Oliva, Torralba, Temporal Relational Reasoning in Videos, ECCV, 2018

Apple falling: videos reversed, shuffled or normal \Rightarrow no difference^{1,2}

Reversed frames: 82.9%

Urgent for forecasting

State-of-the-art spatiotemporal models ignore time

[1] Ghodrati, Gavves, Snoek, Video Time: Encoders, Properties, Evaluation, BMVC, 2018 [2] Zhou, Andonian, Oliva, Torralba, Temporal Relational Reasoning in Videos, ECCV, 2018

Apple falling: videos reversed, shuffled or normal \Rightarrow no difference^{1,2}

Reversed frames: 82.9%

Urgent for future planning

State-of-the-art spatiotemporal models ignore time

[1] Ghodrati, Gavves, Snoek, Video Time: Encoders, Properties, Evaluation, BMVC, 2018 [2] Zhou, Andonian, Oliva, Torralba, Temporal Relational Reasoning in Videos, ECCV, 2018

Apple falling: videos reversed, shuffled or normal \Rightarrow no difference^{1,2}

Reversed frames: 82.9%

Normal video: 83.1%

www.i-aida.org

Urgent for autonomous driving

Central Question

What is the role of time in visual recognition?

The Vision

Models that learn temporality in entangled spatiotemporal sequences

The Vision Models that learn temporality in entangled spatiotemporal sequences

<u>The Vision</u> Models that learn temporality in entangled spatiotemporal sequences

<u>The Vision</u> Models that learn temporality in entangled spatiotemporal sequences

Entangled spatiotemporal data

- Data in thousands of dimensions confounded space and time
- Example 1: Long & complex videos

Example 2: Migration patterns

Example 3: Particles through time

What's the challenge?

• Thousands of frames \rightarrow A lot of correlations and dynamics

Challenge #1: State-of-the-art discards time by aggregating with set operations

<u>Challenge #2:</u> Hard to annotate manually \rightarrow supervised learning is debatable

<u>Challenge #3:</u> A sequence is one of myriad possibilities \rightarrow generative modelling critical

<u>Challenge #4:</u> Lack of standardization ← data is huge, algorithms very complex

www.i-aida.org

ARTIFICIAL INTELLIGENCE

t 4 max 4

Addressing the challenges

Time Geometry

- Learn spatiotemporal geometric manifolds
- Aggregate over a geodesic time path on manifold

Time Supervision

- Replace manual annotation with time properties
- In particular, combine with time-sensitive models

Are frames correctly ordered?

Temporal

causality

Time Generation

- Models that imagine all possible futures
- Spatiotemporal generative/bayesian models

Time Evaluation

- Standardize data
- Evaluate on temporal properties

Temporal aggregati...

Temporal continuity

Temporal forecasting

Tempora localization

Types of spatiotemporal geometric learning

Random walks on space-time graphs

www.i-aida.org

[1] Li, Gavrilyuk, Gavves, Mihir, Snoek, VideoLSTM convolves, attends and flows for action recognition, CVIU 2018

VideoGraph: Recognizing Minutes-Long Human Activities in Videos

N. Hussein

E. Gavves

A. Smeulders

www.i-aida.org

Hussein, Gavves, Smeulders, VideoGraph: Recognizing Minutes-Long Human Activities in Videos, 2019

Temporal length is important with complex videos

www.i-aida.org

ARTIFICIAL INTELLIGENC

[1] Hussein, Gavves Smeulders, Timeception for Complex Action Recognition, 2019

How to stretch time further \rightarrow (Time) Graphs!

- Sublinear temporal representation
- Compositionality
- Interpretability

VideoGraph

Some results

Charades

Method	Modality	mAP (%)
Two-stream	RGB + Flow	18.6
Two-stream + LSTM	RGB + Flow	17.8
ActionVLAD	RGB + iDT	21.0
Temporal Fields	RGB + Flow	22.4
Temporal Relations	RGB	25.2
ResNet-152	RGB	22.8
ResNet-152 + Timeception	RGB	31.6
I3D	RGB	32.9
I3D + ActionVLAD	RGB	35.4
I3D + Timeception	RGB	37.2
I3D + VideoGraph	RGB	37.8

Code available

www.i-aida.org

Breakfast

Method		Breakfast Acc. (%)) Breakfast mAP (%)
ResNet-152		41.13	32.65	
ResNet-152 + ActionVLAD		55.49	47.12	
ResNet-152 + Timeception		57.75	48.47	
ResNet-152 + VideoGraph		59.12	49.38	
I3D		47.05	58.61	
I3D + ActionVLAD		60.20 65.48		
I3D + Timeception		61.82	61.82 67.07	
I3D + VideoGraph		63.14	69.45	2.6
(a) Making Cereals	(b) Preparing Coffee	(c) Frying Egggs	(d) Making Juice	(e) Preparing Milk
f) Making Pancake	(g) Making Salat ● cereal, ● pan,	(h) Making Sandwich ● eggs, ● sandwitch,	(i) Making Scrambled Egg • kettle, and • foodbox	(j) Preparing Tea

Categorical Normalizing Flows via Continuous Transformations

P. Lippe

E. Gavves

www.i-aida.org

Lippe, Gavves, Categorical Normalizing Flows via Continuous Transformations, ICLR 2021

From classifying to generating graphs

- What if we would like to create new, plausible graphs?
- Normalizing Flows is State-of-the-art in generative modelling

Step 1: Categorical Normalizing Flows

Learn encoder to represent categorical data in continuous space

- Must not lose information in the representation
- Must be smooth and have support for higher dimensions

Learn decoder s.t. continuous z contains what is in x exactly

Variational inference with factorized decoder

$$p(\boldsymbol{x}) \geq \mathbb{E}_{\boldsymbol{z} \sim q(\cdot | \boldsymbol{x})} \left[\frac{\prod_{i} p(x_{i} | \boldsymbol{z}_{i})}{q(\boldsymbol{z} | \boldsymbol{x})} p(\boldsymbol{z}) \right]$$

Step 2: Graph generation with CNF

www.i-aida.org

ARTIFICIAL INTELLIGENCE

Some results

Code available

Method	Validity	Uniqueness	Novelty	Reconstruction	Parallel	General
JT-VAE	100%	100%	100%	71%	×	×
$\operatorname{GraphAF}$	68%	99.10%	100%	100%	×	\checkmark
R-VAE	34.9%	100%	_	54.7%	\checkmark	\checkmark
$\operatorname{GraphNVP}$	42.60%	94.80%	100%	100%	\checkmark	\checkmark
GraphCNF	83.41%	99.99%	100%	100%	✓	\checkmark
	(± 2.88)	(± 0.01)	(± 0.00)	(± 0.00)		
+ Sub-graphs	96.35%	99.98%	99.98%	100%	\checkmark	\checkmark
	(± 2.21)	(± 0.01)	(± 0.02)	(± 0.00)		

Molecule generation with Zinc250k dataset (224k examples)

Rotation Equivariant Siamese Networks for Tracking

D. Gupta

D. Arya

E. Gavves

www.i-aida.org

Gupta, Arya, Gavves, Rotation Equivariant Siamese Networks for Tracking, ongoing

In-plane rotations in tracking

Drone, surveillance, ego-motion recordings, etc.

SoTA: Siamese Trackers [1, 2]

- Tracking as matching the target query to per frame instances
- Sensitive to rotations ← Convolutions are sensitive to rotations

www.i-aida.org

[1] Tao, Gavves, Smeulders, Siamese Instance Search for Tracking, CVPR 2016[2] Bertinetto et al., Fully-Convolutional Siamese Networks for Object Tracking, ECCV16 2017

Rotation equivariance in CNNs

Regular CNN

Rotation Equivariant Net (H-Net; Worrall et al, CVPR 2017)

$$\psi_{jk}(r,\phi)= au_j(r)e^{\mathrm{i}k\phi}$$
 $p_ heta\psi_{jk}(x)=e^{-\mathrm{i}k heta}\psi_{jk}(x)$

$$-\rho_{\theta}\Psi(x) = \sum_{j=1}^{J} \sum_{k=0}^{K} w_{jk} e^{-ik\theta} \psi_{jk}(x)$$

Rotation Equivariant Siamese Trackers

Some results

Code soon available

Ground-truth, SiamFC, RE-SiamFC

www.i-aida.org

Туре 0.315 0.523 _ 0.360 0.629 R4 SiamFC [1] **R8** 0.423 0.676 0.288 0.473 -0.348 R4 0.622 SiamFCv2 R8 0.425 0.678 R16 0.423 0.688 SiamFCv2 0.317 0.541 aug 0.461 0.634 SiamRPN++ [18] -0.485 0.679 SiamRPN++ R4 DiMP18 [2] 0.429 0.643 -DiMP50 [2] 0.447 0.668 -

Succ

Pr

(Some) properties of time

Temporal Asymmetry

Temporal Causality

Temporal Continuity

Nate Robinson - 5 ft 9 in

www.i-aida.org

Temporal Redundancy

Arrow of time: LSTM vs C3D

Revisiting recurrent neural networks

- Recurrent Nets are highly sensitive dynamical systems [1]
 - Even with highly discriminative symbolic (one-hot vector) inputs
 - Gradients very sensitive to initialization \rightarrow Poor learning! \rightarrow No generalization
- Visual features are
 - much noisier, less discriminative, much more redundant

- Learning LSTM on videos is orders of magnitude harder
 - Chaotic regime \rightarrow no useful gradients \rightarrow no learning
 - Forward/Backward/Shuffling of frames \rightarrow LSTM performs the same on arrow of time

Time-aligned neural networks [1]

www.i-aida.org

- Idea: Why not flip the ConvNet to align the layers with time steps?
- No vanishing/exploding gradients, no problems with noise/redundancy

Conclusion: Poor temporal modelling could be due to hard -- and thus unsuccessful- optimization

Engage-Generalize-Scale

- Current validation paradigm in video is hard to sustain
- Models for (n-dimensional + time) signals, e.g. scientific recordings
 - Particles through time, climate, astronomy, ecosystems, biology
- Possible great advantage: scientific knowledge as groundtruth

Conclusion

Time largely ignored in model building and validation

Conclusion

Time largely ignored in model building and validation

Static \rightarrow Temporal

- Geometry, geneartive & time supervision will be the key
- Hopefully, impact on any field with spatiotemporal complex data

The International AI Doctoral Academy (AIDA) is a joint initiative of the European R&D Projects: Al4media, VISION and HumanE-AI Net

These projects have received funding from the European Union's Horizon 2020 research and innovation programme under the following Grant agreements: No 951911 (Al4media), No. 952070 (VISION) and No. 952026 (HumanE-Al Net)

