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Multimodal Al Technologies

Virtual Humans
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Multimodal Communicative Behaviors

e
W

4 Verbal

= Lexicon
= Words

= Syntax
= Part-of-speech
= Dependencies

= Pragmatics
» Discourse acts

Vocal

* Prosody
= |ntonation
= Voice quality

= Vocal expressions

\ = Laughter, moans

Visual A

= Gestures
» Head gestures
= Eye gestures
= Arm gestures

= Body language
» Body posture
= Proxemics

= Eye contact
» Head gaze
= Eye gaze

= Facial expressions
= FACS action units

= Smile, frowning j




Multimodal Al

Visual Verbal

Vocal

We saw the vyellow dog
- =

[Disorders \

= Depression
= Distress
= Autism

Social
= Leadership
= Empathy
= Engagement

Emotion

= Sentiment
» Persuasion

\ = Frustration /




Core Challenges in Multimodal Al

Representation

Alignment

Fusion

[ ]
[ ]
| Translation |
[ J
[ J

Co-learning



https://arxiv.org/abs/1705.09406
https://cmu-multicomp-lab.github.io/mmml-course/fall2020/

Real-World Multimodal Al Applications

Healthcare L eadership and Online Learning
Decision Support  Team Collaborations and Education



Challenges for Real-World Multimodal Al

Core Challenges Real-World Challenges
[Representation] [ Robustness ]
[ Alignment ] I [ Thrustworthy ]

[ Translation ] [ Variability ]




Definition: Learning how to represent and summarize multimodal data in away
that exploits the complementarity and redundancy.

Verbal

We saw the yellow dog

Visual

Joint Representation
(Multimodal Space)




Multimodal Joint Representation: Previous Approaches

Verbal h,
We saw the yellow dog

Visual h, Ao
~ ‘ 000 - 000

Bimodal Deep Belief Network
[Ngiam et al., ICML 2011]

Multimodal Deep Boltzmann Machine
[Srivastava and Salahutdinov, NIPS 2012]




Multimodal Joint Representation : Previous Approaches

Multimodal
Encoder Auto-Encoder Decoder
Verbal h,
We saw the yellow dog e 00
Visual h




Multimodal Joint Representation: Previous Approaches

Representation learned
with direct supervision

Verbal

We saw the yellow dog

Visual

labels
(e.g., sentiment)

Multimodal sentiment analysis
[Zadeh et al., 2016]




Cross-Modal Interactions

Unimodal Bimodal Trimodal
Verbal
We saw the yellow dog :)
T e
Visual




Representation using Tensor Fusion Network

Unimodal Bimodal
Verbal
We saw the yellow dog
. — )
Visual labels

(e.g., sentiment)

= e 7] -1 P

[Zadeh, Jones and Morency, EMNLP 2017]



Cross-Modal Interactions

Unimodal Bimodal Trimodal

Verbal

We saw the yellow dog

Visual

[Zadeh, Jones and Morency, EMNLP 2017]



Improving Efficiency of Multimodal Representations

Tensor Fusion Network: Explicitly models

unimodal, bimodal and trimodal Interactions
[Zadeh, Jones and Morency, EMNLP 2017]

Efficient Low-rank Multimodal Fusion

Low-rank factors

Canonical
| . | Polyadic
W W ! z Decomposition

[Liu, Shen, Bharadwaj, Liang, Zadeh and Morency, ACL 2018]
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Representation + Robustness

One option:

° e l
Missing data! Variational Auto-Encoder

-

Verbal

We saw the yerw oht)

Vlsual

\
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_____________N\

Variational Auto-Decoder [zadeh et al., 2019]

Missing data!

’___________‘

Verbal

We saw the yerw oht)

-

Vlsual

— ~— [N 7,

Iteratlvely optimize )

for both z,,, and 0



Variational Auto-Decoder [zadeh et al., 2019]

Representation space Z

A
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starting point
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Variational Auto-Decoder [zadeh et al., 2019]

Robust to different missing patterns?

90% Variational Auto-Encoder Variational Auto-Decoder

P |

e

¥ |

10%

Training missing rate
Training missing rate

Test missing rate Test missing rate
10% 90%

Y i

MisGAN

GAIN




Core Challenge 2: Alignment

Definition: Identify the direct relations between (sub)elements from two
or more different modalities.

Modality 1 Modality 2

5§
PIE'
o | o
o 1o



Grounding: Linking Language and the Perceived World




Grounding: Linking Language and the Perceived World

Spatial Grounding:



Grounding: Linking Language and the Perceived World

Spatial Grounding: Object entities

How can we thrust
that all grounding
elements are
properly modeled?

Solution: Interpretability



GroundNet: Using Linguistic Syntax to Guide Grounding
[Cirik et al., AAAI 2018]

t | o=

on top of on the left of || the bed

target support support



GroundNet: Using Linguistic Syntax to Guide Grounding
[Cirik et al., AAAI 2018]

Proposed approach:
Module Networks

Intersect &

4

e

on top of on the left of || the bed

target support support



GroundNet: Using Linguistic Syntax to Guide Grounding
[Cirik et al., AAAI 2018]
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GroundNet: Using Linguistic Syntax to Guide Grounding
[Cirik et al., AAAI 2018]

m Target Object m Supporrting Objects
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Refer360: Language-to-Action Dataset

Multi-step instruction:
@ to the entrance of the lounge area.
@ On your right there will be a bar

@ On top of the counter, you will see a box
me

Dataset:
17,135 annotated instances
e 2,000 panaromic 360 degrees scenes
* 43.8 average number of words per instructions
https://github.com/volkancirik/refer360



https://github.com/volkancirik/refer360
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Visually contextualizing

Multimodal Transformer

Visual
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time

Alignment
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Alignment

Multimodal Transformer Representation
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Alignment

Multimodal Transformer [tsaiet al., ACL 2019] Representation

2
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Model Cross-Modal Interactions with Transformers?

Unimodal Bimodal Trimodal
Verbal
We saw the yellow dog :)
—

Visual




XM-Net: Cross-Modal Transformer Network [zadeh et al., 2020]

Cross-modally contextualized sequence X

Trimodal [L,V,2

Bimodal [L,A

Unimodal [

o s em en en e e e e e e e e e e e e e e e—
N e e e e e e e e e e e e e e e Em o = -

Input sequence x



XM-Net: Cross-Modal Transformer Network zadeh et al., 2020}

Results on CMU-MOSI Dataset

(multimodal sentiment analysis)

92
87

82
77
72
67
62
57

XM-Net Human

Binary Sentiment Accuracy

36



Multimodal Al — Core Challenges (Survey: TPAMI 2019]
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Multimodal Translation: Speech-to-Gestures

Translation

{kua' ] ) e e e [
Biam™ TN N> NI BliesY UNE Rigs Y UKL Rige Vv U

Prediction

[Verbal }
‘I like...” | | |
“I like this presentation very much”




Nonverbal Signatures: Idiosyncrasy and Variability

Ad

Multimodal Gesture Spzce
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Multimodal Gesture Space

* What does this space represent?

* How do we use this gesture space to
generate stylized gestures?

* How do we learn this gesture space?




Multimodal Gesture Space

lec_cosmic

_» oliver

corden

ytch_prof

noah

maher

lec_evol



Stylized Co-speech gesture generation [Ahuia et al., 2020]

E

Speaker A




Stylized Co-speech gesture generation [Ahuia et al., 2020]

m.m\

Speaker A




Stylized Co-speech gesture generation [Ahuia et al., 2020]

S mmmml
5 et

f

Speaker A

AL
"

s \II .

[ ]
[ ]
* Speaker A

o
3y '_1‘ = ...

\ Speaker 7 NI




How do we learn the gesture space?




Pose Decoder: Conditional MixGAN

Generator
1
Real

Adaptive

. Generator :
Sum

IGenerated

Generator
N




Original Animation Generated Animation
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Multimodal Al — Core Challenges
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Challenges for Real-World Multimodal Al

Core Challenges Real-World Challenges

[Representation] [ Robustness ]

| Alignment | + | Variability |

[ Fusion ] [ Thrustworthy ]

[ Translation ] airness

[ Co-learning ] rivacy




Thrustworthy

Deep Gambler: Learning to Abstain eyrips, 2019]

Output labels
EIEEERSIN) © —> “I would prefer to abstain”

D00 000N Analogy: Horse race gambling

(portfolio theory)
Balance between:

h— — h .
I z 1 betting for one of the
00 - 00 — 00 - 00 labels when confident
Text Image Audio 2 ) Reserving one's winnings
X Y Z 5 g

(abstaining) when not confident



Challenges for Real-World Multimodal Al

Core Challenges Real-World Challenges

[Representation] [ Robustness ]

| Alignment | + | Variability |

[ Fusion ] [ Thrustworthy ]

[ Translation ] [ Fairness ]

[ Co-learning ] rivacy




Fairness

Toward Debiasing Sentence Representations

“The boy is coding.” OR “The girl is coding.”

“The boys at the playground.”
OR
“The girls at the playground.”

RESEARCH QUESTION: How to debias
multimodal representations?



Challenges for Real-World Multimodal Al

Core Challenges Real-World Challenges

[Representation] [ Robustness ]

| Alignment | + | Variability |

[ Fusion ] [ Thrustworthy ]

[ Translation ] [ Fairness ]

[ Co-learning ] [ Privacy ]




rivacy

without privacy-preserving

Mental health markers

(e.g., mood) Each color
T represents a
MT z — different user
TENY ™) User data is

clustered

00 - -00

|

f

Mobile data

* Keystrokes
* Active apps
 GPSinformation

with privacy-preserving

Using Selective-
Additive Learning
to hide identifiable
information




Towards Real-World Multimodal Al

Core Challenges Real-World Challenges

[Representation] [ Robustness ]

| Alignment | + | Variability |

[ Fusion ] [ Thrustworthy ]

[ Translation ] [ Fairness ]

[ Co-learning ] [ Privacy ]







