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Learning is to be able to generalise

[Figure from Wikipedia]

From examples, what can a system
learn about the underlying
phenomenon?

Memorising the already seen data is
usually bad −→ overfitting

Generalisation is the ability to
’perform’ well on unseen data.
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Statistical Learning Theory is about high confidence

For a fixed algorithm, function class and sample size, generating random
samples −→ distribution of test errors

Focusing on the mean of the error distribution?

. can be misleading: learner only has one sample

Statistical Learning Theory: tail of the distribution

. finding bounds which hold with high probability

over random samples of size m

Compare to a statistical test – at 99% confidence level

. chances of the conclusion not being true are less than 1%

PAC: probably approximately correct [59]
Use a ‘confidence parameter’ δ: Pm[large error] 6 δ
δ is the probability of being misled by the training set

Hence high confidence: Pm[approximately correct] > 1 − δ
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Error distribution picture
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Mathematical formalization

Learning algorithm A : Zm → H

• Z = X× Y

X = set of inputs
Y = set of outputs (e.g.
labels)

• H = hypothesis class
= set of predictors

(e.g. classifiers)

Training set (aka sample): Sm = ((X1,Y1), . . . , (Xm,Ym))
a finite sequence of input-output examples.
Classical assumptions:

• A data-generating distribution P over Z.
• Learner doesn’t know P, only sees the training set.

• The training set examples are i.i.d. from P: Sm ∼ Pm

. these can be relaxed (mostly beyond the scope of this tutorial)
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What to achieve from the sample?

Use the available sample to:

1 learn a predictor

2 certify the predictor’s performance

Learning a predictor:

• algorithm driven by some learning principle

• informed by prior knowledge resulting in inductive bias

Certifying performance:

• what happens beyond the training set

• generalization bounds

Actually these two goals interact with each other!
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Risk (aka error) measures

A loss function `(h(X ),Y ) is used to measure the discrepancy between
a predicted output h(X ) and the true output Y .

Empirical risk: Rin(h) = 1
m

∑m
i=1 `(h(Xi),Yi)

(in-sample)

Theoretical risk: Rout(h) = E
[
`(h(X ),Y )

]
(out-of-sample)

Examples:

• `(h(X ),Y ) = 1[h(X ) 6= Y ] : 0-1 loss (classification)

• `(h(X ),Y ) = (Y − h(X ))2 : square loss (regression)

• `(h(X ),Y ) = (1 − Yh(X ))+ : hinge loss

• `(h(X ),Y ) = − log(h(X )) : log loss (density estimation)
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Generalization

If predictor h does well on the in-sample (X ,Y ) pairs...
...will it still do well on out-of-sample pairs?

Generalization gap: ∆(h) = Rout(h) − Rin(h)

Upper bounds: w.h.p. ∆(h) 6 ε(m, δ)

I Rout(h) 6 Rin(h) + ε(m, δ)

Lower bounds: w.h.p. ∆(h) > ε̃(m, δ)

Flavours:
distribution-free

algorithm-free

distribution-dependent

algorithm-dependent
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Before PAC-Bayes

Single hypothesis h (building block):

with probability > 1 − δ, Rout(h) 6 Rin(h) +
√

1
2m log

( 1
δ

)
.

Finite function class H (worst-case approach):

w.p. > 1 − δ, ∀h ∈ H, Rout(h) 6 Rin(h) +
√

1
2m log

(
|H|
δ

)
Structural risk minimisation: data-dependent hypotheses hi

associated with prior weight pi

w.p. > 1 − δ, ∀hi ∈ H, Rout(hi) 6 Rin(hi) +

√
1

2m log
(

1
piδ

)
Uncountably infinite function class: VC dimension, Rademacher
complexity...

These approaches are suited to analyse the performance of individual
functions, and take some account of correlations.
−→ Extension: PAC-Bayes allows to consider distributions over
hypotheses.
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The PAC-Bayes framework

Before data, fix a distribution P ∈ M1(H) . ‘prior’

Based on data, learn a distribution Q ∈ M1(H) . ‘posterior’
Predictions:

• draw h ∼ Q and predict with the chosen h.
• each prediction with a fresh random draw.

The risk measures Rin(h) and Rout(h) are extended by averaging:

Rin(Q) ≡
∫
H Rin(h) dQ(h) Rout(Q) ≡

∫
H Rout(h) dQ(h)

KL(Q‖P) = E
h∼Q

ln Q(h)
P(h) is the Kullback-Leibler divergence.
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PAC-Bayes aka Generalised Bayes

”Prior”: exploration mechanism of H
”Posterior” is the twisted prior after confronting with data
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PAC-Bayes bounds vs. Bayesian learning

Prior

• PAC-Bayes: bounds hold for any distribution
• Bayes: prior choice impacts inference

Posterior

• PAC-Bayes: bounds hold for any distribution
• Bayes: posterior uniquely defined by prior and statistical model

Data distribution

• PAC-Bayes: bounds hold for any distribution
• Bayes: randomness lies in the noise model generating the output
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A General PAC-Bayesian Theorem
∆-function: “distance” between Rin(Q) and Rout(Q)

Convex function ∆ : [0, 1]× [0, 1]→ R.

General theorem (Bégin et al. [7, 8], Germain [21])

For any distribution D on X× Y, for any set H of voters, for any distribution
P on H, for any δ∈(0, 1], and for any ∆-function, we have, with probability at
least 1−δ over the choice of S ∼ Dm,

∀Q on H : ∆
(

Rin(Q),Rout(Q)
)
6

1
m

[
KL(Q‖P) + ln

I∆(m)

δ

]
,

where

I∆(m) = sup
r∈[0,1]

[
m∑

k=0

(m
k

)
r k(1−r)m−k︸ ︷︷ ︸
Bin
(

k ;m,r
) em∆( k

m , r)

]
.

13 42



A General PAC-Bayesian Theorem
∆-function: “distance” between Rin(Q) and Rout(Q)

Convex function ∆ : [0, 1]× [0, 1]→ R.
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Proof of the general theorem
General theorem

Pr
S∼Dm

(
∀Q on H : ∆

(
Rin(Q),Rout(Q)

)
≤≤≤ 1

m

[
KL(Q‖P) + ln

I∆(m)

δ

])
> 1−δ .

Proof ideas.

Change of Measure Inequality
For any P and Q on H, and for any measurable function φ : H→ R, we have

− ln
(

E
h∼P

eφ(h)
)

= − ln E
h∼Q

(
P(h)
Q(h)

eφ(h)

)
6 E

h∼Q
ln

(
Q(h)
P(h)

)
− E

h∼Q
φ(h)

= KL(Q‖P) − E
h∼Q
φ(h).

Markov’s inequality

for a random variable X satisfying X > 0

Pr (X > a)≤≤≤ E X
a ⇐⇒ Pr

(
X 6 E X

δ

)
≥≥≥ 1−δ .
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Proof of the general theorem

Probability of observing k misclassifications among m examples
Given a voter h, consider a binomial variable of m trials with success Rout(h):

Pr
S∼Dm

(
Rin(h)= k

m

)
=

(
m
k

)(
Rout(h)

)k(
1 − Rout(h)

)m−k
= Bin

(
k ;m,Rout(h)

)
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PrS∼Dm

(
∀Q on H : ∆

(
Rin(Q),Rout(Q)

)
≤≤≤ 1

m

[
KL(Q‖P) + ln

I∆(m)

δ

])
> 1−δ .

Proof.

m · ∆
(

E
h∼Q

Rin(h), E
h∼Q

Rout(h)
)

Jensen’s Inequality 6 E
h∼Q

m · ∆
(

Rin(h),Rout(h)
)

Change of measure 6 KL(Q‖P) + ln E
h∼P

em∆
(

Rin(h),Rout(h)
)

Markov’s Inequality ≤≤≤ 1−δ KL(Q‖P) + ln
1
δ

E
S ′∼Dm

E
h∼P

em·∆(Rin(h),Rout(h))

Expectation swap = KL(Q‖P) + ln
1
δ

E
h∼P

E
S ′∼Dm

em·∆(Rin(h),Rout(h))

Binomial law = KL(Q‖P) + ln
1
δ

E
h∼P

m∑
k=0

Bin
(
k ;m,Rout(h)

)
em·∆( k

m ,Rout(h))

Supremum over risk 6 KL(Q‖P) + ln
1
δ

sup
r∈[0,1]

[
m∑

k=0

Bin
(
k ;m, r

)
em∆( k

m , r)

]

= KL(Q‖P) + ln
1
δ
I∆(m) .
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General theorem

Pr
S∼Dm

(
∀Q on H : ∆

(
Rin(Q),Rout(Q)

)
≤≤≤ 1

m

[
KL(Q‖P) + ln

I∆(m)

δ

])
> 1−δ .

Corollary
[...] with probability at least 1−δ over the choice of S ∼ Dm, for all Q on H :

(a) kl
(

Rin(Q),Rout(Q)
)
≤≤≤ 1

m

[
KL(Q‖P) + ln 2

√
m
δ

]
, Langford and Seeger [31]

(b) Rout(Q) ≤≤≤ Rin(Q)) +

√
1

2m

[
KL(Q‖P) + ln 2

√
m
δ

]
, McAllester [40, 43]

(c) Rout(Q) ≤≤≤ 1
1−e−c

(
c · Rin(Q) + 1

m

[
KL(Q‖P) + ln 1

δ

])
, Catoni [11]

(d) Rout(Q) ≤≤≤ Rin(Q) + 1
λ

[
KL(Q‖P) + ln 1

δ
+ f (λ,m)

]
. Alquier et al. [4]

kl(q, p) def
= q ln q

p + (1 − q) ln 1−q
1−p

> 2(q − p)2 ,

∆c(q, p)
def
= − ln[1 − (1 − e−c) · p] − c · q ,

∆λ(q, p)
def
= λ

m (p − q) .

17 42



General theorem

Pr
S∼Dm

(
∀Q on H : ∆

(
Rin(Q),Rout(Q)

)
≤≤≤ 1

m

[
KL(Q‖P) + ln

I∆(m)

δ

])
> 1−δ .

Corollary
[...] with probability at least 1−δ over the choice of S ∼ Dm, for all Q on H :

(a) kl
(

Rin(Q),Rout(Q)
)
≤≤≤ 1

m

[
KL(Q‖P) + ln 2

√
m
δ

]
, Langford and Seeger [31]

(b) Rout(Q) ≤≤≤ Rin(Q)) +

√
1

2m

[
KL(Q‖P) + ln 2

√
m
δ

]
, McAllester [40, 43]

(c) Rout(Q) ≤≤≤ 1
1−e−c

(
c · Rin(Q) + 1

m

[
KL(Q‖P) + ln 1

δ

])
, Catoni [11]

(d) Rout(Q) ≤≤≤ Rin(Q) + 1
λ

[
KL(Q‖P) + ln 1

δ
+ f (λ,m)

]
. Alquier et al. [4]

kl(q, p) def
= q ln q

p + (1 − q) ln 1−q
1−p > 2(q − p)2 ,

∆c(q, p)
def
= − ln[1 − (1 − e−c) · p] − c · q ,

∆λ(q, p)
def
= λ

m (p − q) .

17 42



General theorem

Pr
S∼Dm

(
∀Q on H : ∆

(
Rin(Q),Rout(Q)

)
≤≤≤ 1

m

[
KL(Q‖P) + ln

I∆(m)

δ

])
> 1−δ .

Corollary
[...] with probability at least 1−δ over the choice of S ∼ Dm, for all Q on H :

(a) kl
(

Rin(Q),Rout(Q)
)
≤≤≤ 1

m

[
KL(Q‖P) + ln 2

√
m
δ

]
, Langford and Seeger [31]

(b) Rout(Q) ≤≤≤ Rin(Q)) +

√
1

2m

[
KL(Q‖P) + ln 2

√
m
δ

]
, McAllester [40, 43]

(c) Rout(Q) ≤≤≤ 1
1−e−c

(
c · Rin(Q) + 1

m

[
KL(Q‖P) + ln 1

δ

])
, Catoni [11]

(d) Rout(Q) ≤≤≤ Rin(Q) + 1
λ

[
KL(Q‖P) + ln 1

δ
+ f (λ,m)

]
. Alquier et al. [4]

kl(q, p) def
= q ln q

p + (1 − q) ln 1−q
1−p > 2(q − p)2 ,

∆c(q, p)
def
= − ln[1 − (1 − e−c) · p] − c · q ,

∆λ(q, p)
def
= λ

m (p − q) .

17 42



General theorem

Pr
S∼Dm

(
∀Q on H : ∆

(
Rin(Q),Rout(Q)

)
≤≤≤ 1

m

[
KL(Q‖P) + ln

I∆(m)

δ

])
> 1−δ .

Corollary
[...] with probability at least 1−δ over the choice of S ∼ Dm, for all Q on H :

(a) kl
(

Rin(Q),Rout(Q)
)
≤≤≤ 1

m

[
KL(Q‖P) + ln 2

√
m
δ

]
, Langford and Seeger [31]

(b) Rout(Q) ≤≤≤ Rin(Q)) +

√
1

2m

[
KL(Q‖P) + ln 2

√
m
δ

]
, McAllester [40, 43]

(c) Rout(Q) ≤≤≤ 1
1−e−c

(
c · Rin(Q) + 1

m

[
KL(Q‖P) + ln 1

δ

])
, Catoni [11]

(d) Rout(Q) ≤≤≤ Rin(Q) + 1
λ

[
KL(Q‖P) + ln 1

δ
+ f (λ,m)

]
. Alquier et al. [4]

kl(q, p) def
= q ln q

p + (1 − q) ln 1−q
1−p > 2(q − p)2 ,

∆c(q, p)
def
= − ln[1 − (1 − e−c) · p] − c · q ,

∆λ(q, p)
def
= λ

m (p − q) .

17 42



Proof of the Langford/Seeger bound

Follows immediately from General Theorem by choosing ∆(q, p) = kl(q, p).

Indeed, in that case we have

E
S∼Dm

E
h∼P

em∆(RS(h),R(h)) = E
h∼P

E
S∼Dm

(
RS(h)
R(h)

)mRS(h)( 1−RS(h)
1−R(h)

)m(1−RS(h))

= E
h∼P

∑m
k=0 Pr

S∼Dm(RS(h)= k
m )
( k

m
R(h)

)k(
1− k

m
1−R(h)

)m−k

=
∑m

k=0 (m
k )(k/m)k (1−k/m)m−k , (1)

6 2
√

m .
�

Note that, in Line (1) of the proof, Pr
S∼Dm

(
RS(h) = k

m

)
is replaced by the probability

mass function of the binomial.

This is only true if the examples of S are drawn iid. (i.e., S ∼ Dm)

So this result is no longer valid in the non iid case, even if General Theorem is.
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Linear classifiers

We will choose the prior and posterior distributions to be Gaussians
with unit variance.

The prior P will be centered at the origin with unit variance

The specification of the centre for the posterior Q(w,µ) will be by a
unit vector mw and a scale factor µ.
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PAC-Bayes Bound for SVM (1/2)

P

0

W

Prior P is Gaussian N(0, 1)
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PAC-Bayes Bound for SVM (1/2)

P

0

w

W

Q

µ

Prior P is Gaussian N(0, 1)

Posterior is in the direction w

at distance µ from the origin

Posterior Q is Gaussian
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PAC-Bayes Bound for SVM (2/2)

Linear classifiers performance may be bounded by

KL(Q̂S(w,µ)‖ QD(w,µ) ) 6
KL(P‖Q(w,µ)) + ln m+1

δ

m

QD(w,µ) true performance of the stochastic classifier

SVM is deterministic classifier that exactly corresponds to
sgn

(
Ec∼Q(mw ,µ)[c(x)]

)
as centre of the Gaussian gives the same

classification as halfspace with more weight.

Hence its error bounded by 2QD(mw ,µ), since as observed above
if x misclassified at least half of c ∼ Q err.
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PAC-Bayes Bound for SVM (2/2)

Linear classifiers performance may be bounded by

KL( Q̂S(w,µ) ‖QD(w,µ)) 6
KL(P‖Q(w,µ)) + ln m+1

δ

m

Q̂S(w,µ) stochastic measure of the training error

Q̂S(w,µ) = Em[F̃ (µγ(x, y))]

γ(x, y) = (ywTφ(x))/(‖φ(x)‖‖w‖)
F̃ (t) = 1 − 1√

2π

∫t
−∞ e−x2/2dx
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PAC-Bayes Bound for SVM (2/2)

Linear classifiers performance may be bounded by

KL(Q̂S(w,µ)‖QD(w,µ)) 6
KL(P‖Q(w,µ)) + ln m+1

δ

m

Prior P ≡ Gaussian centered on the origin

Posterior Q ≡ Gaussian along w at a distance µ from the origin

KL(P‖Q) = µ2/2
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PAC-Bayes Bound for SVM (2/2)

Linear classifiers performance may be bounded by

KL(Q̂S(w,µ)‖QD(w,µ)) 6

KL(P‖Q(w,µ)) + ln m+1

δ

m

δ is the confidence

The bound holds with probability 1 − δ over the random i.i.d.
selection of the training data.

27 42



PAC-Bayes Bound for SVM (2/2)

Linear classifiers performance may be bounded by

KL(Q̂S(w,µ)‖QD(w,µ)) 6

KL(P‖Q(w,µ)) + ln m+1

δ

m

δ is the confidence

The bound holds with probability 1 − δ over the random i.i.d.
selection of the training data.

27 42



PAC-Bayes Bound for SVM (2/2)

Linear classifiers performance may be bounded by

KL(Q̂S(w,µ)‖QD(w,µ)) 6

KL(P‖Q(w,µ)) + ln m+1

δ

m

δ is the confidence

The bound holds with probability 1 − δ over the random i.i.d.
selection of the training data.

27 42



Form of the SVM bound

Note that bound holds for all posterior distributions so that we can
choose µ to optimise the bound

If we define the inverse of the KL by

KL−1(q,A) = max{p : KL(q‖p) 6 A}

then have with probability at least 1 − δ

Pr (〈w,φ(x)〉 6= y) 6 2min
µ

KL−1

(
Em[F̃ (µγ(x, y))],

µ2/2 + ln m+1
δ

m

)
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Gives SVM Optimisation

Primal form:

minw,ξi

[1
2‖w‖

2 + C
∑m

i=1 ξi
]

s.t. yiwTφ(xi) > 1 − ξi i = 1, . . . ,m

ξi > 0 i = 1, . . . ,m

Dual form:

maxα

[∑m
i=1 αi −

1
2

∑m
i,j=1 αiαjyiyjκ(xi , xj)

]
s.t. 0 6 αi 6 C i = 1, . . . ,m

where κ(xi , xj) = 〈φ(xi),φ(xj)〉 and 〈w,φ(x)〉 =
∑m

i=1 αiyiκ(xi , x).
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Slack variable conversion

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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Model Selection with the new bound: setup

Comparison of 10-fold Xvalidation, PAC-Bayes Bound and the Prior
PAC-Bayes Bound

UCI datasets
Select C and σ that lead to minimum Classification Error (CE)

For 10-F XV select the pair that minimize the validation error
For PAC-Bayes Bound and Prior PAC-Bayes Bound select the pair
that minimize the bound
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Results

Classifier
SVM ηPrior SVM

Problem 2FCV 10FCV PAC PrPAC PrPAC τ-PrPAC

digits Bound – – 0.175 0.107 0.050 0.047
TE 0.007 0.007 0.007 0.014 0.010 0.009

waveform Bound – – 0.203 0.185 0.178 0.176
TE 0.090 0.086 0.084 0.088 0.087 0.086

pima Bound – – 0.424 0.420 0.428 0.416
TE 0.244 0.245 0.229 0.229 0.233 0.233

ringnorm Bound – – 0.203 0.110 0.053 0.050
TE 0.016 0.016 0.018 0.018 0.016 0.016

spam Bound – – 0.254 0.198 0.186 0.178
TE 0.066 0.063 0.067 0.077 0.070 0.072

Average TE 0.0846 0.0834 0.081 0.0852 0.0832 0.0832
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Take home messages

Bounds are remarkably tight: for final column average factor
between bound and TE is under 3.

Model selection from the bounds is as good as 10FCV: in fact all but
one of the PAC-Bayes model selections give better averages for TE.
The better bounds do not appear to give better model selection -
best model selection is from the simplest bound.

A. Ambroladze, E. Parrado-Hernández, and J. Shawe-Taylor. Tighter
PAC-Bayes bounds. In Advances in Neural Information Processing
Systems 18, (2006) Pages 9-16.

P. Germain, A. Lacasse, F. Laviolette and M. Marchand.
PAC-Bayesian learning of linear classifiers, in Proceedings of the
26nd International Conference on Machine Learning (ICML’09,
Montréal, Canada.). ACM Press (2009), 382, Pages 453-460.
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Montréal, Canada.). ACM Press (2009), 382, Pages 453-460.

33 42



Take home messages

Bounds are remarkably tight: for final column average factor
between bound and TE is under 3.

Model selection from the bounds is as good as 10FCV: in fact all but
one of the PAC-Bayes model selections give better averages for TE.
The better bounds do not appear to give better model selection -
best model selection is from the simplest bound.

A. Ambroladze, E. Parrado-Hernández, and J. Shawe-Taylor. Tighter
PAC-Bayes bounds. In Advances in Neural Information Processing
Systems 18, (2006) Pages 9-16.

P. Germain, A. Lacasse, F. Laviolette and M. Marchand.
PAC-Bayesian learning of linear classifiers, in Proceedings of the
26nd International Conference on Machine Learning (ICML’09,
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A flexible framework

Since 1997, PAC-Bayes has been successfully used in many machine
learning settings (this list is by no means exhaustive).

Statistical learning theory Audibert and Bousquet [6], Catoni [9, 10], Guedj
[25], Guedj and Pujol [27], Maurer [39], McAllester
[41, 42, 44, 45], Mhammedi et al. [46], Seeger [51, 52], Shawe-Taylor
and Williamson [56], Thiemann et al. [58]

SVMs & linear classifiers Germain et al. [19], Langford and Shawe-Taylor
[32], McAllester [44]

Supervised learning algorithms reinterpreted as bound minimizers
Ambroladze et al. [5], Germain et al. [22], Shawe-Taylor and Hardoon
[57]

High-dimensional regression Alquier and Biau [1], Alquier and Lounici
[2], Guedj and Robbiano [24], Guedj and Alquier [26], Li et al. [35]

Classification Catoni [9, 10], Lacasse et al. [30], Langford and Shawe-Taylor
[32], Parrado-Hernández et al. [49]
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A flexible framework

Transductive learning, domain adaptation Bégin et al. [7], Derbeko et al.
[12], Germain et al. [20], Nozawa et al. [48]

Non-iid or heavy-tailed data Alquier and Guedj [3], Holland [29], Lever et al.
[34], Seldin et al. [54, 55]

Density estimation Higgs and Shawe-Taylor [28], Seldin and Tishby [53]

Reinforcement learning Fard and Pineau [16], Fard et al. [17], Ghavamzadeh
et al. [23], Seldin et al. [54, 55]

Sequential learning Gerchinovitz [18], Li et al. [36]

Algorithmic stability, differential privacy Dziugaite and Roy [13, 14], London
[37], London et al. [38], Rivasplata et al. [50]

Deep neural networks Dziugaite and Roy [15], Letarte et al. [33], Neyshabur
et al. [47], Zhou et al. [60]

. . .
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