Digital Pathology

On the intersect ion of Computer Vision and Data Science

Multimedia Laboratory The Edward S. Rogers Sr. Department of Electrical & Computer Engineering University of Toronto Toronto, ON M5S 3G4, Canada

> Kostas N. Plataniotis kostas@ece.utoronto.ca

http://www.dsp.utoronto.ca/projects/ADP/

Summer 2021 – AIDA Consortium

With input from Professor Mahdi S Hosseini

The Edward S. Rogers Sr. Department
 of Electrical & Computer Engineering
 UNIVERSITY OF TORONTO

Who Am I

Konstantinos N (Kostas) Plataniotis, Ph.D., P.Eng., FIEEE, FEIC, FCAE Professor and Bell Canada Chair in Multimedia Director, University of Toronto – Huawei Mobile AI Laboratory

The Edward S. Rogers Sr. ECE Department, University of Toronto

Principal Investigator Ontario Research Fund - Research Excellence Program

`Transforming pathology using artificial intelligence to improve patient outcome and hospital efficiency'

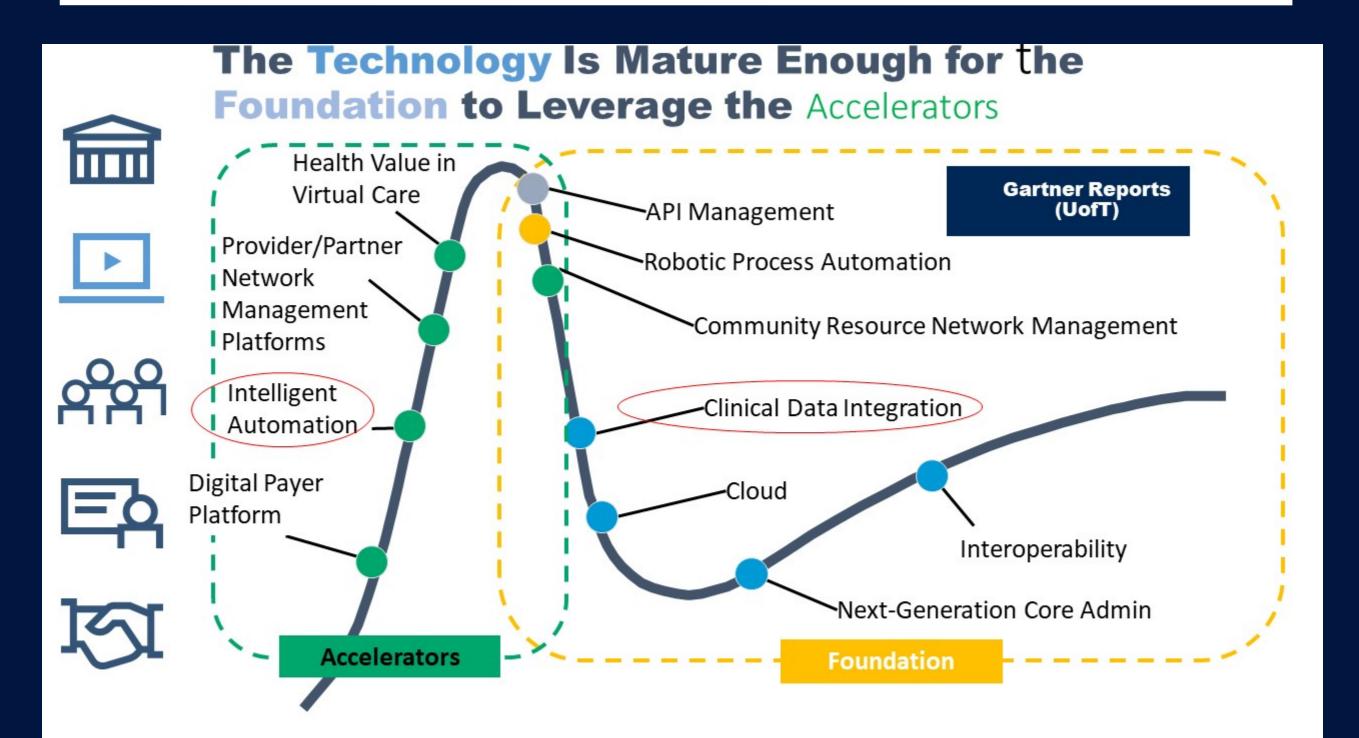
The Edward S. Rogers Sr. Department of Electrical & Computer Engineering NIVERSITY OF TORONTO

Learning Objectives

- What is digital pathology
- Vision and data science in digital pathology
- Current state of digital pathology systems
- Limitations of digital pathology
- Opportunities in digital pathology

The Edward S. Rogers Sr. Department
 of Electrical & Computer Engineering
 UNIVERSITY OF TORONTO

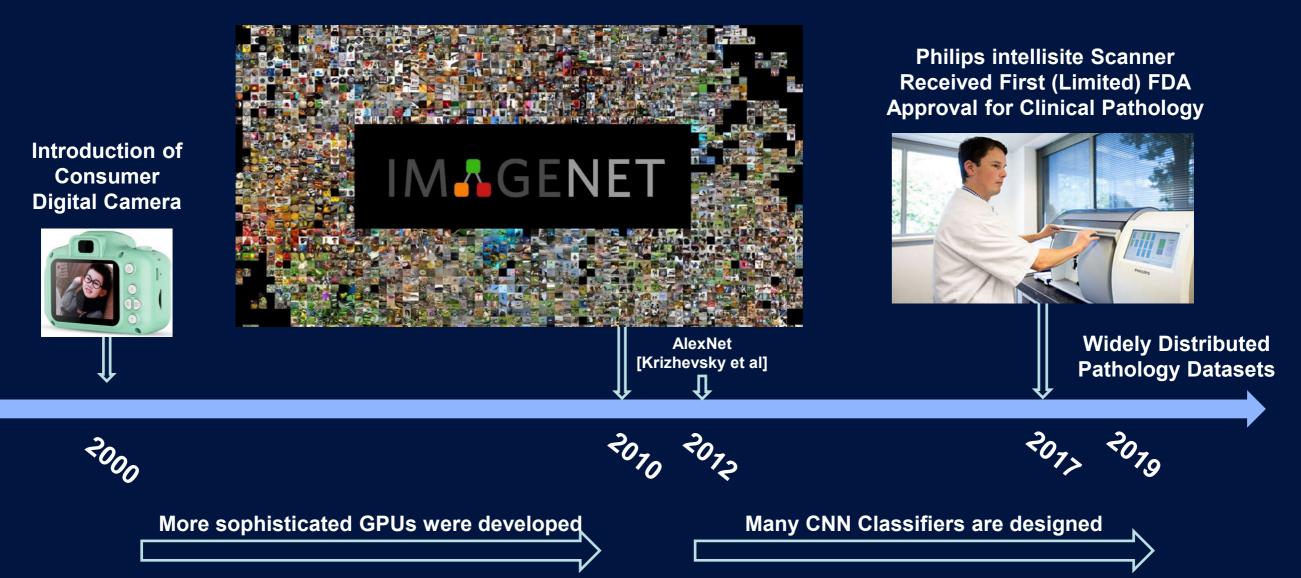
Digital Pathology as Health Innovation Enabler



The Edward S. Rogers Sr. Department
 of Electrical & Computer Engineering
 UNIVERSITY OF TORONTO

How Digital Pathology Compares to Computer Vision & Machine Learning?

• Machine Learning & Computer Vision is well matured compared to Digital Pathology in terms of data compilation

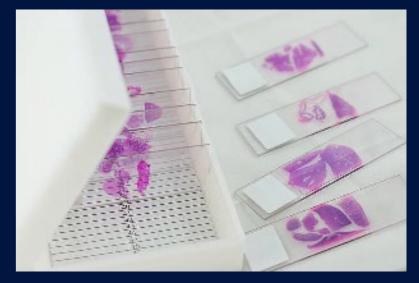


The Edward S. Rogers Sr. Department
 of Electrical & Computer Engineering
 UNIVERSITY OF TORONTO

Introduction to Clinical Pathology

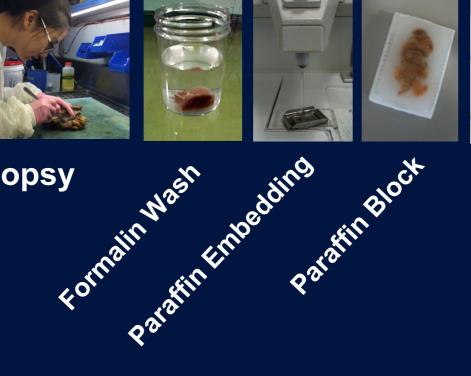
Tissue Preparation

- Overall process: \bullet
 - **1.** Embed tissue samples into paraffin wax
 - **2.** Section into small slices using a microtome
 - **3.** Stain tissue slices



Chemical Reagent

Staining

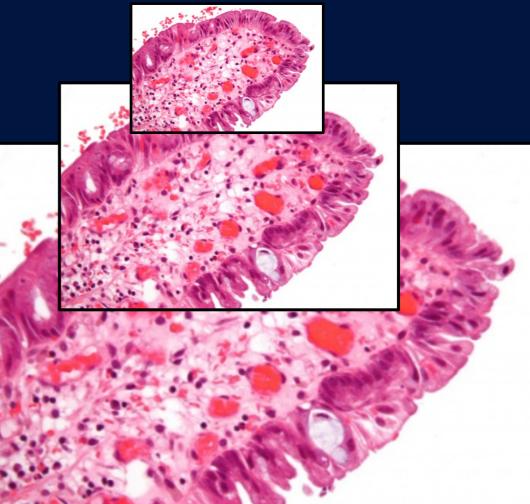


Glass Slide Mounting

The Edward S. Rogers Sr. Department of Electrical & Computer Engineering VERSITY OF TORONTO

Microscopic View

- Glass slide is mounted on an optical microscope
- Different lens magnification rates i.e. 10X, 20X, 40X, 60X



The Edward S. Rogers Sr. Department
 of Electrical & Computer Engineering
 UNIVERSITY OF TORONTO

Digital Pathology Where visual input quality matters in machine learning

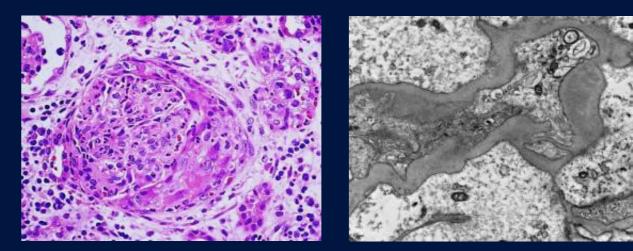
Digital Pathology - Definition

A dynamic, image-based environment that enables the acquisition, management and interpretation of pathology information generated from a digitized glass slide. Often used interchangeably with "Virtual Microscopy."

Digital Pathology Association (DPA)

Visual input in digital pathology

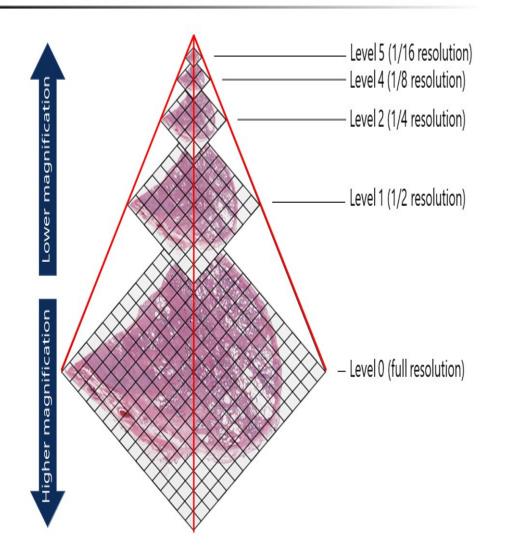
- Gross imaging
- Microscopic imaging
- Whole slide imaging (WSI)
- Electron microscopy
- Immunofluorescence



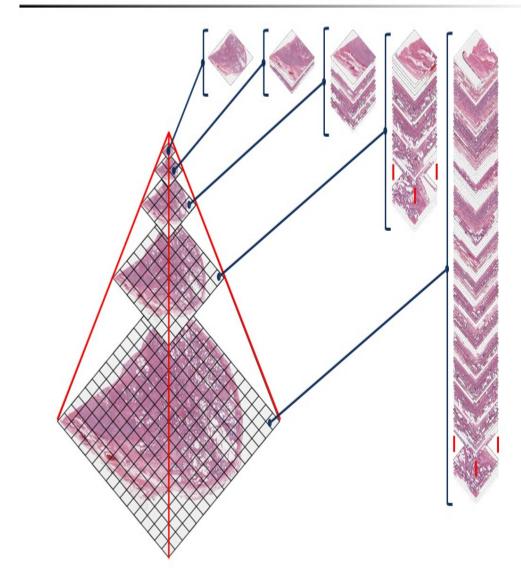
Whole Slide Imaging (WSI)

Whole Slide Imaging (WSI)

WSI: Pyramid Structure



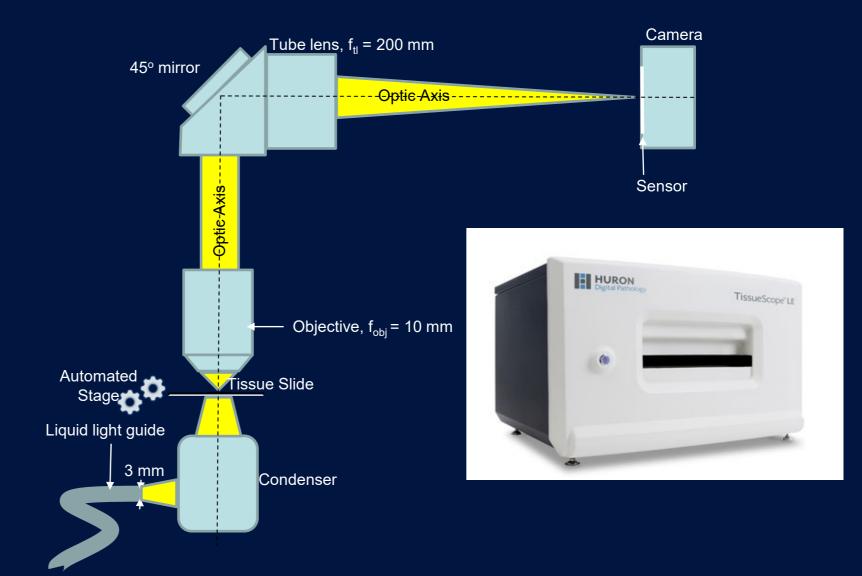
WSI: Tiling Structure



The Edward S. Rogers Sr. Department
 of Electrical & Computer Engineering
 UNIVERSITY OF TORONTO

TissueScope LE2.0 WSI Scanner

- Digital Microscopy
 - Light Condenser
 - Automated Stage
 - Objective Lens
 - Reflective Mirror
 - Tube Lens
 - Camera Sensor
- System magnification
 - f-TubeLens/f-Objective = 200mm/10mm=20



Courtesy of Huron

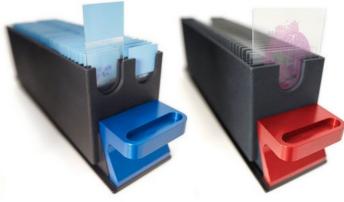
The Edward S. Rogers Sr. Department
 of Electrical & Computer Engineering
 UNIVERSITY OF TORONTO

High-Throughput Scanner

- High-volume scans e.g. 400 glass slides/200 double-wide
- Run overnight and make it ready for tomorrow for pathologists
- Semi-automated QC control

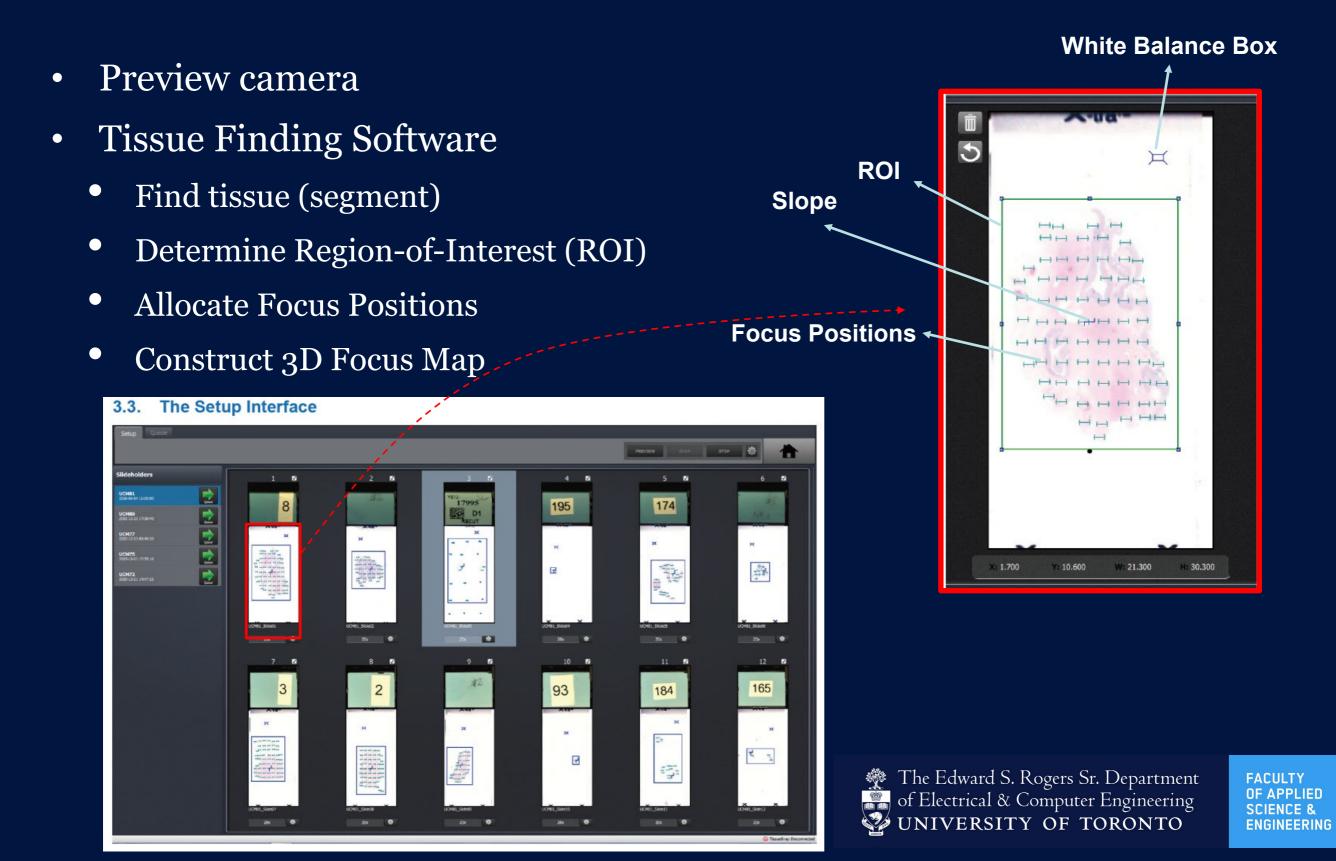
400 standard or 200 double-wide slides

TissueScope iQ features five slide cartridges, each holding 80 standard slides (400 total) or 40 double-wide slides (200 total). Standard or double-wide cartridges can be mixed and matched in the scanner for scanning flexibility.



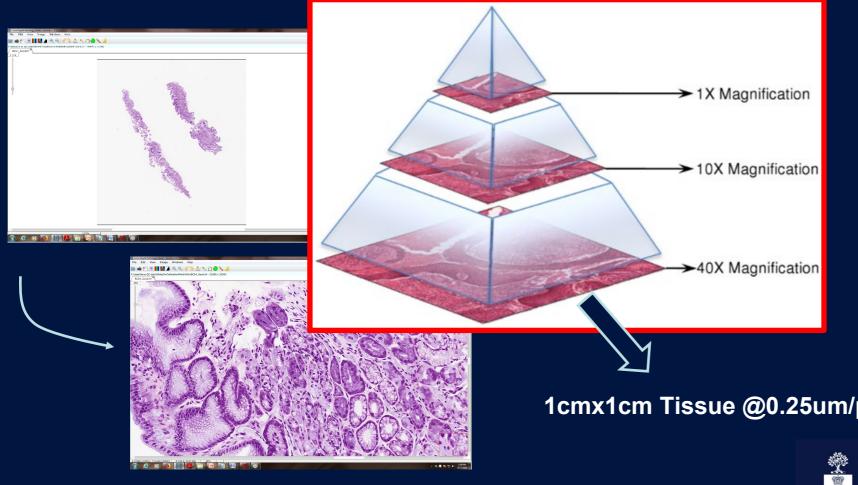
TissueScope iQ Intelligent Slide Scanner

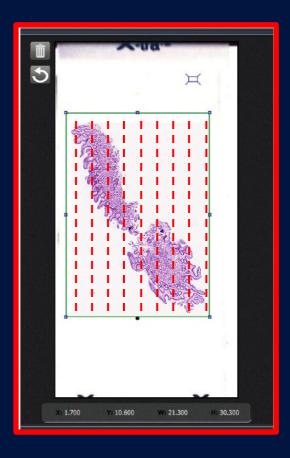
WSI Scanner Setup



WSI Scan in High-Resolution

- Scan ROI in multiple strips
- Stitch them back together to construct WSI
- Construct Pyramid on large scale TIFF image
- Pyramid emulates virtual microscopy





1cmx1cm Tissue @0.25um/pixel = 4.8GB (Uncompressed)

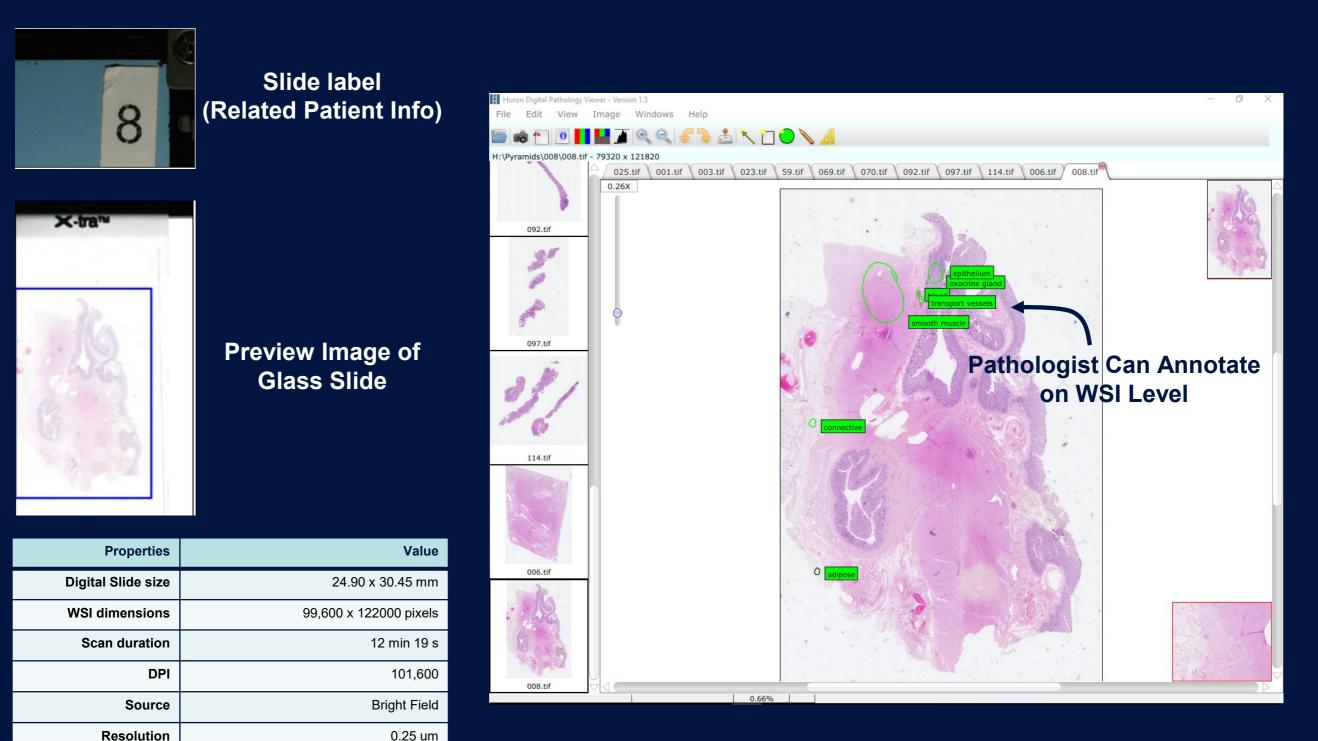
The Edward S. Rogers Sr. Department
 of Electrical & Computer Engineering
 UNIVERSITY OF TORONTO

WSI relevant Meta Data

39,050,676,108 bytes

24 bit RGB

256 x 256 pixels



The Edward S. Rogers Sr. Department
 of Electrical & Computer Engineering
 UNIVERSITY OF TORONTO

FACULTY OF APPLIED SCIENCE & ENGINEERING

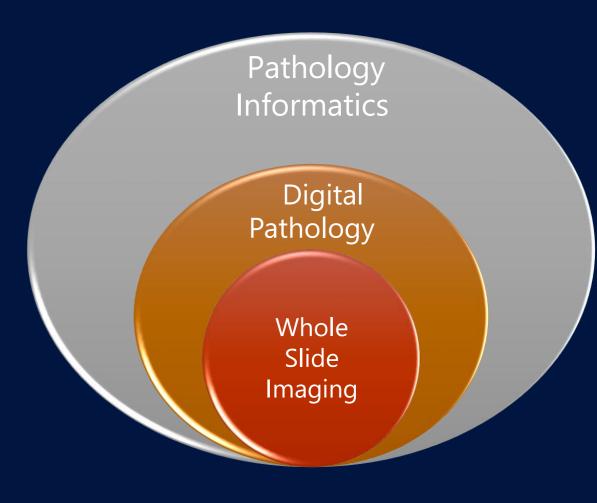
File size

Image format

Tile dimension

Digital Pathology vs. Pathology Informatics

- Whole Slide Imaging (WSI) is a subset of Digital Pathology (DP), which is a subset of Pathology Informatics (PI)
 - For some, $PI \cong DP$
 - For many, $DP \leftrightarrow WSI$
 - For all, ML&CV opportunities in WSI driven DP



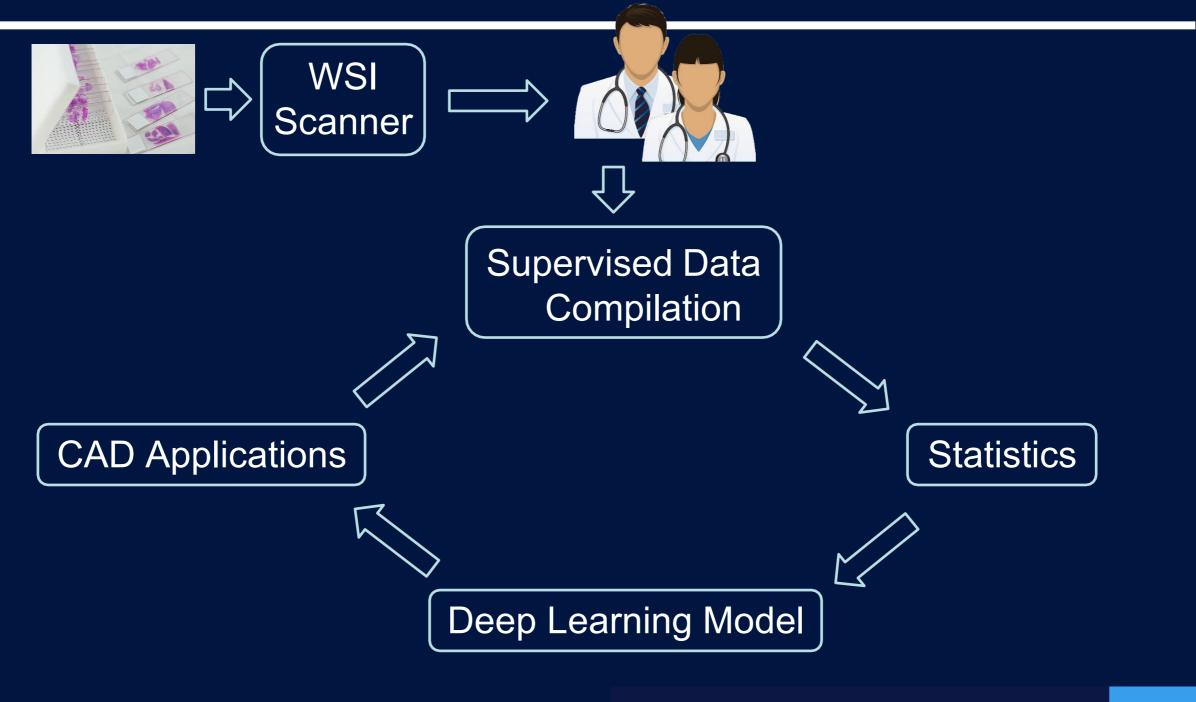
The Edward S. Rogers Sr. Department
 of Electrical & Computer Engineering
 UNIVERSITY OF TORONTO

Digital Pathology

New Emerging Field in ML

Digital Pathology

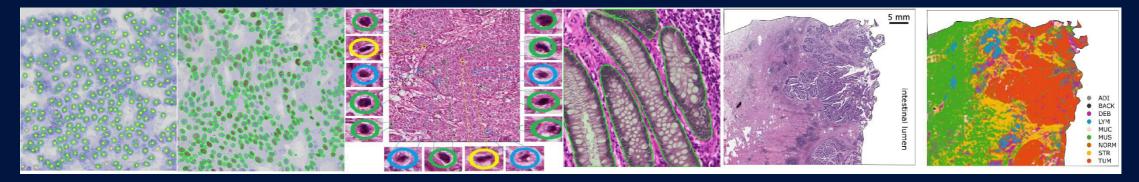
Data Science & Analytics



The Edward S. Rogers Sr. Department
 of Electrical & Computer Engineering
 UNIVERSITY OF TORONTO

Digital -> Computational Pathology

- Developing Computer-Aided Diagnosis (CAD) for Assisting Clinical Pathology
 - **Detection**: cells, nuclei, mitotic
 - **Segmentation**: glands, mitosis/non-mitosis
 - Classification (Diagnosis): cancer grading
 - **Regression (Prognosis)**: metastasis probability



 Detection and Segmentation are well developed for quantitative analysis (recently approved by FDA for Clinical Applications)

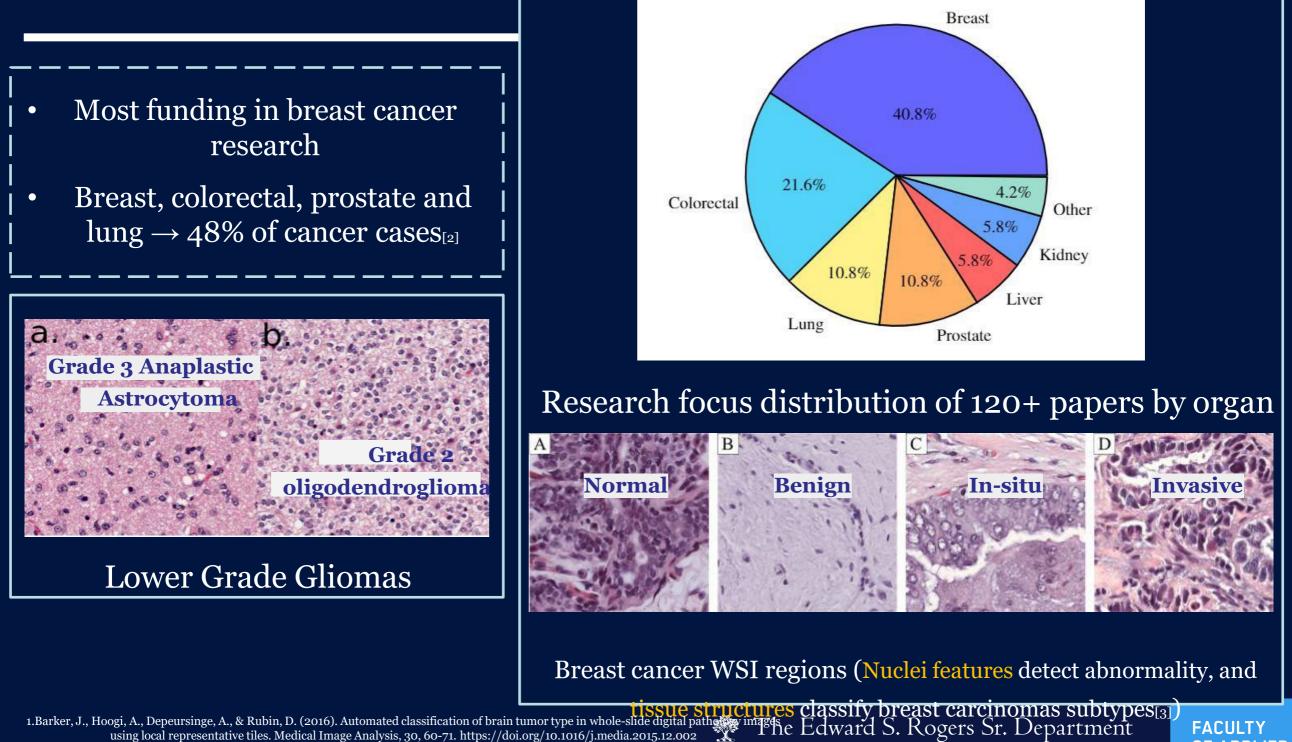
The Edward S. Rogers Sr. Department
 of Electrical & Computer Engineering
 UNIVERSITY OF TORONTO

State-Of-The-Art (SOTA)

Report Survey from 150+ Papers

The Edward S. Rogers Sr. Department
 of Electrical & Computer Engineering
 UNIVERSITY OF TORONTO

Centered around Organs

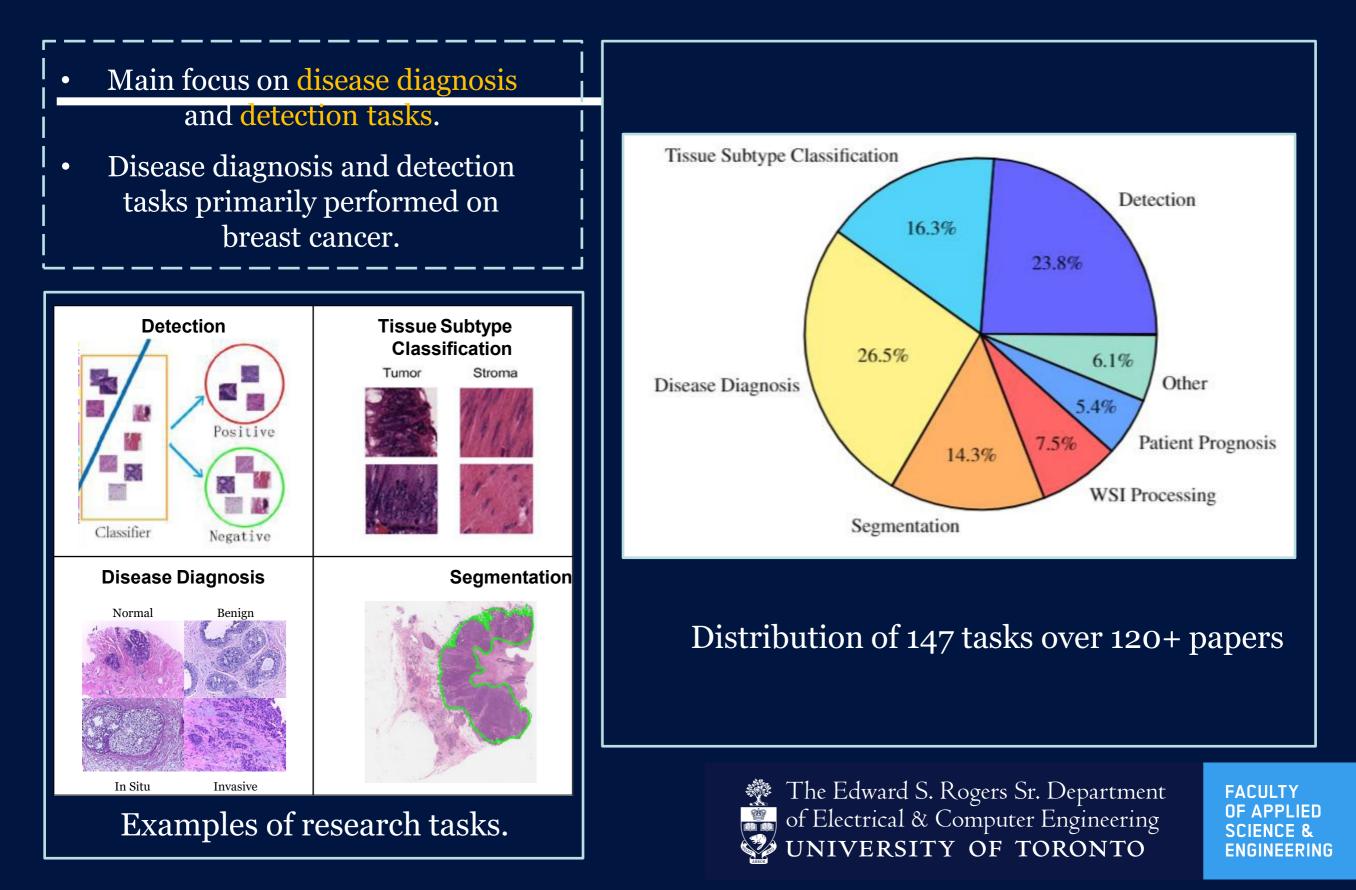


2. Canadian Cancer Society. (2020). Canadian Cancer Statistics 2018 [Ebook]. Retrieved 8 June 2020, from http://cancer Statistics-2018-EN.

3.Araújo, T., Aresta, G., Castro, E., Rouco, J., Aguiar, P., & Eloy, C. et al. (2017). Classification of breast cancer histology images using Neural Networks. PLOS ONE, 12(6), e0177544. https://doi.org/10.1371/journal.pone.0177544

Construction of the Edward S. Rogers Sr. Department Construction of Electrical & Computer Engineering Construction of the termination of termination of the termination of t

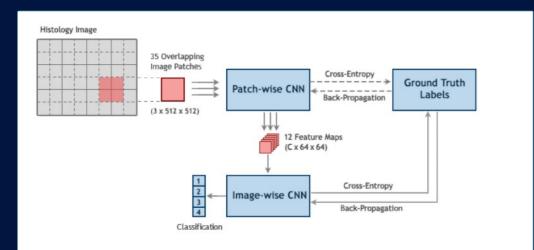
Considering a multitude of tasks



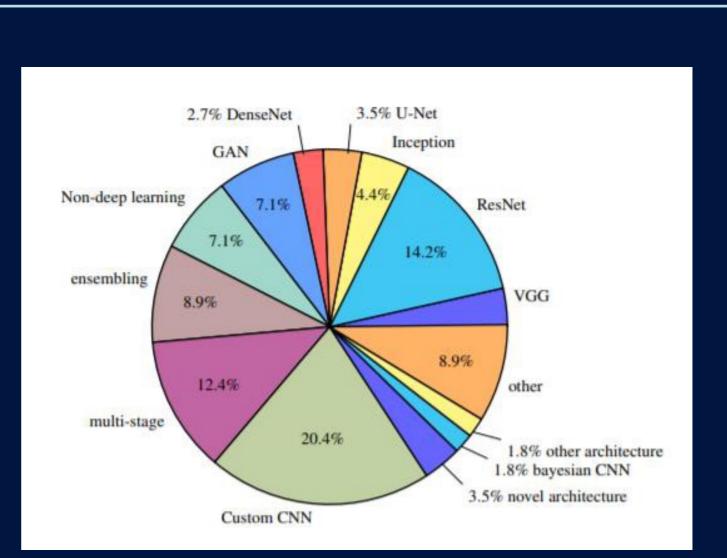
Considering a multitude of models

• Most common: CNNs

• Popular approaches: Custom CNN, ResNet & Multi-Stage CNN



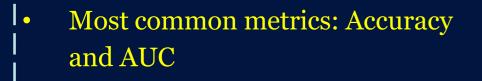
A Multi-Stage CNN model_[1]



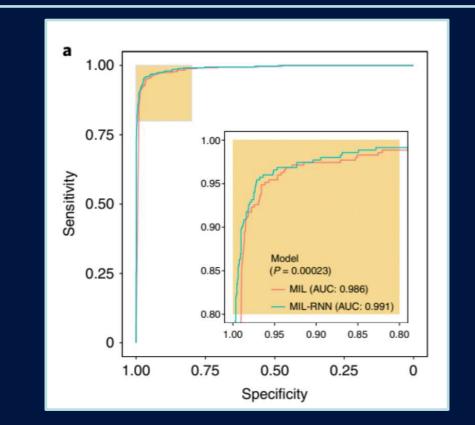
Distribution of models over 120+ papers

1. Nazeri, K., Aminpour, A., Ebrahimi, M.: Two-stage convolutional neural network for breast cancer histology image classification (2018). DOI 10.1007/978-3-319-93000-8 81

Multitude of Performance Metrics



WSI processing and patient prognosis often use other metrics



Weakly-supervised model performance on 25k WSIs of prostate biopsies [1]

Accuracy 33.94% AUC 21.82% 1.82% Jaccard index 2.42% Cohen's Kappa 13.94% 2.42% Precision 6.67% 3.03% p-value 13.94% F1-measure Dice score Other

Distribution of performance metrics across 120+ papers.

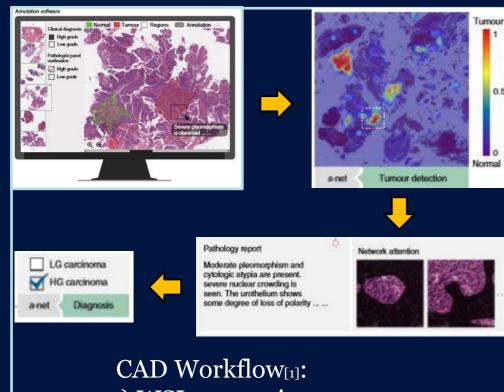
FACULTY OF APPLIED **SCIENCE &** ENGINEERING

Nature Medicine, vol. 25, no. 8, pp. 1301-1309, 2019. Available: 10.1038/s41591-019-0508-1.

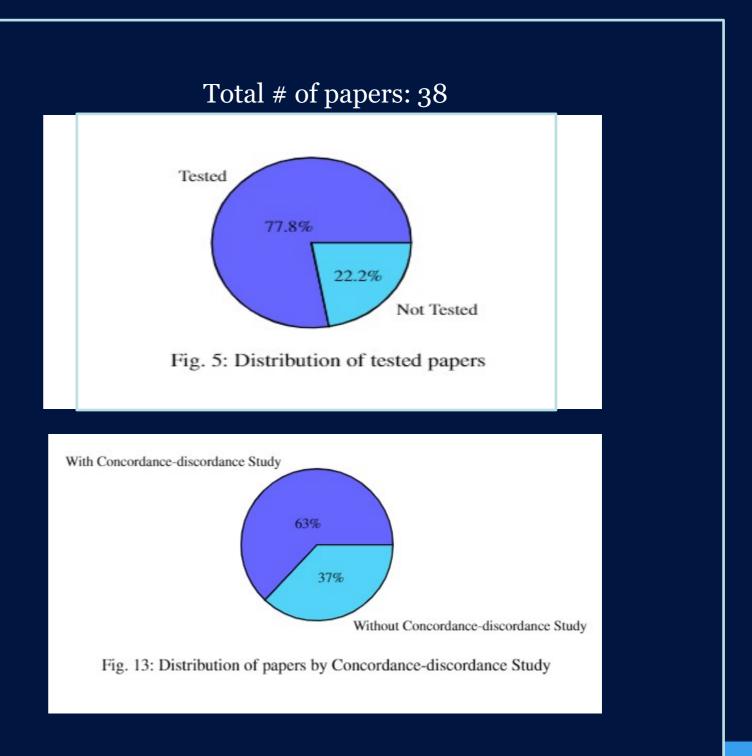
What is usually missing? **Clinical Validation**

Three parts of clinical validation:

- Testing in clinical settings
- Proposed clinical application ۲
- Concordance/discordance studies •



1) WSI annotation 2) Automatic tumor detection 3) Automatic ROI description 4) Slide level diagnosis



[1] Zhang, Z., Chen, P., McGough, M., Xing, F., Wang, C., & Bui, M. et al. (2019). Pathologist-level interpretable who see of Electrical & Computer Engineering cancer diagnosis with deep learning. Nature Machine Intelligence, 1(5), 236-245. https://doi.org/10.1038/s42256-019-0252-1

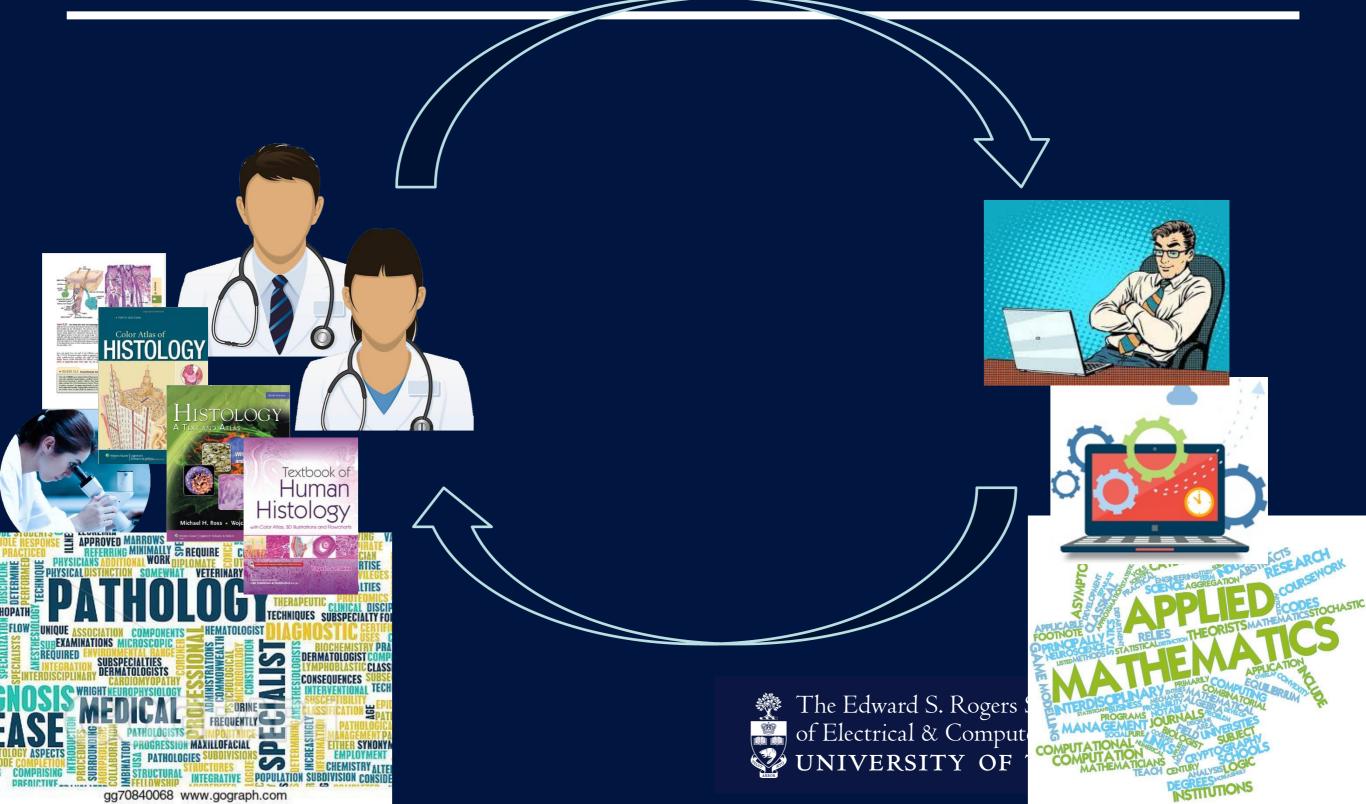
I ne Edward S. Rogers Sr. Department NIVERSITY OF TORONTO

What is the biggest problem ? The elusive DC3

Data Collection-Compilation- Curation

The Edward S. Rogers Sr. Department
 of Electrical & Computer Engineering
 UNIVERSITY OF TORONTO

What is the Efficient Data Compilation in Digital Pathology?



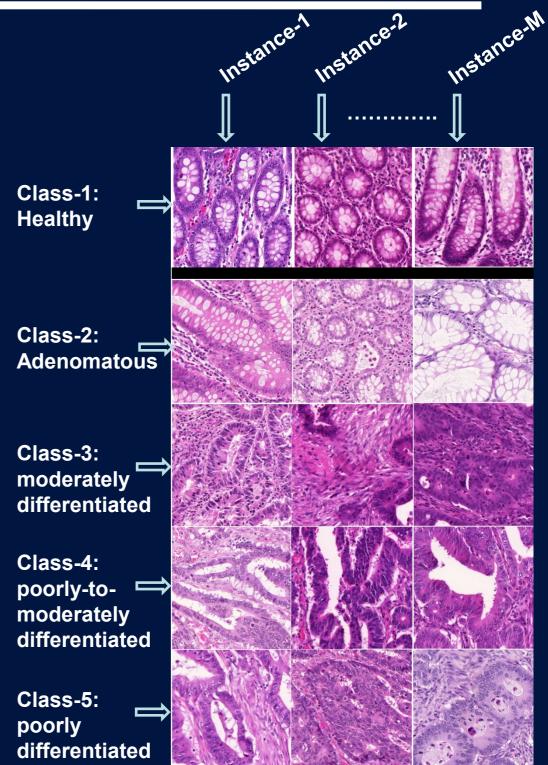
No Imagenet in Digital Pathology

• ImageNet covers 1000 object classes across 1M images

of Electrical & Computer Engineering UNIVERSITY OF TORONTO OF APPLIED SCIENCE & ENGINEERING

How Digital Pathology Datasets Compare to ImageNet?

- There are limited number of classes to train
- Classes are mixtures of healthy and diseased instances
- Compared to Healthy tissues, the number of disease categories (classes) are much higher
- Each disease category varies extensively in terms of representation complexity
- There is No Consensus on how computational pathology database should look like for CAD and ML developments that can generalize for pathology field (similar to what ImageNet did for computer vision)



The Edward S. Rogers Sr. Department
 of Electrical & Computer Engineering
 UNIVERSITY OF TORONTO

Example: Breast Cancer

2

ککہ

Normal Range

HRAS

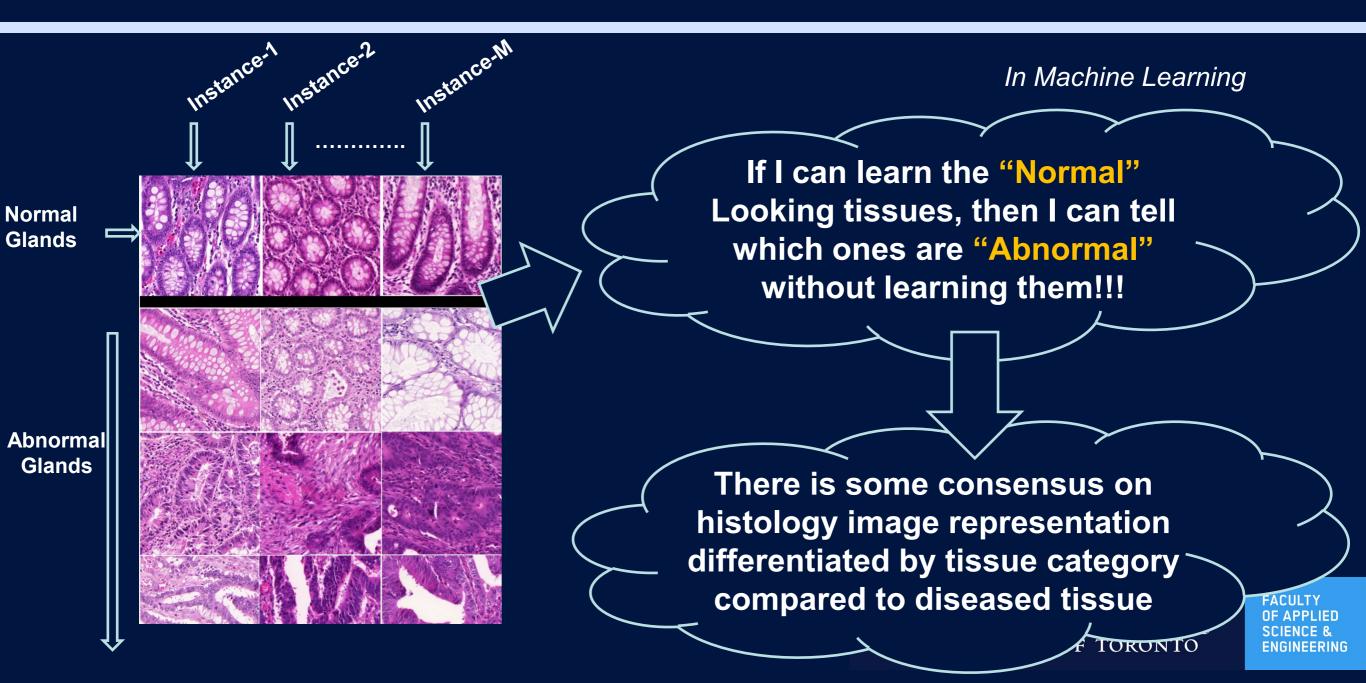
Develop DL Model

Abnormal Range

The Edward S. Rogers Sr. Department of Electrical & Computer Engineering UNIVERSITY OF TORONTO

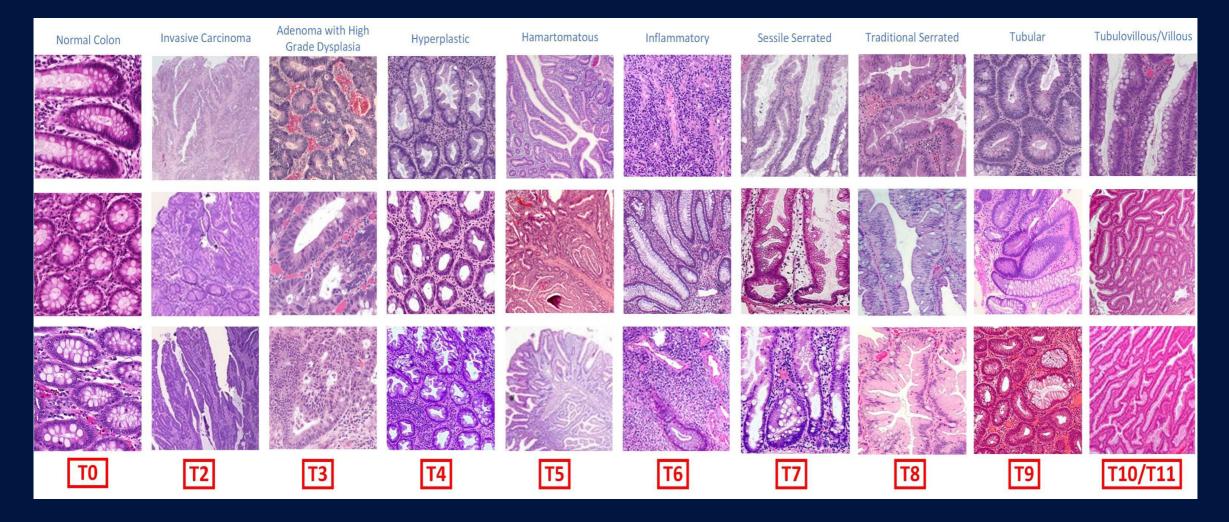
Why Histology Matters?

 Pathology residences study histology (the normal structure) to better understand a pathological (abnormal) change and the consequences of that change.
 In Pathology Medicine



Tolstoy on Happy/Unhappy Families

All happy families are alike; each unhappy family is unhappy in its own way



How is it really effecting ML development?

Existing Limitations of Current DC3 approaches

- Here is the ultimate question: Is there any way to compile a database to generalize for more conditions?
- **Downside:** It will probably take for ever... to compile more organ types and diseases for the purpose of generalization!

A radical new approach:

Atlas of Digital Pathology (ADP)

ADP Database–Leave No Tissue Behind

Identified all Histological Tissue Types (HTTs) in Hierarchical Taxonomy

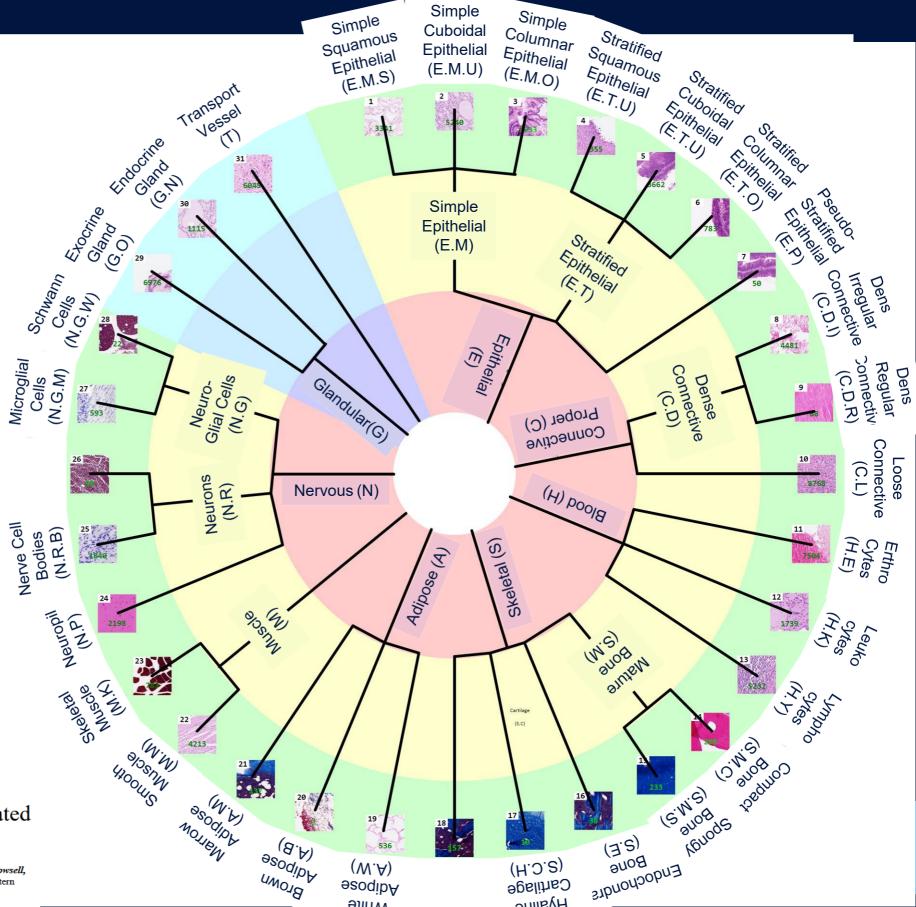
Multiple Organs
Selections are primarily
from Healthy tissue range

Level1: 36 HTTs Level2: 23 HTTs Level1: 9 HTTs Multi-Label per patch

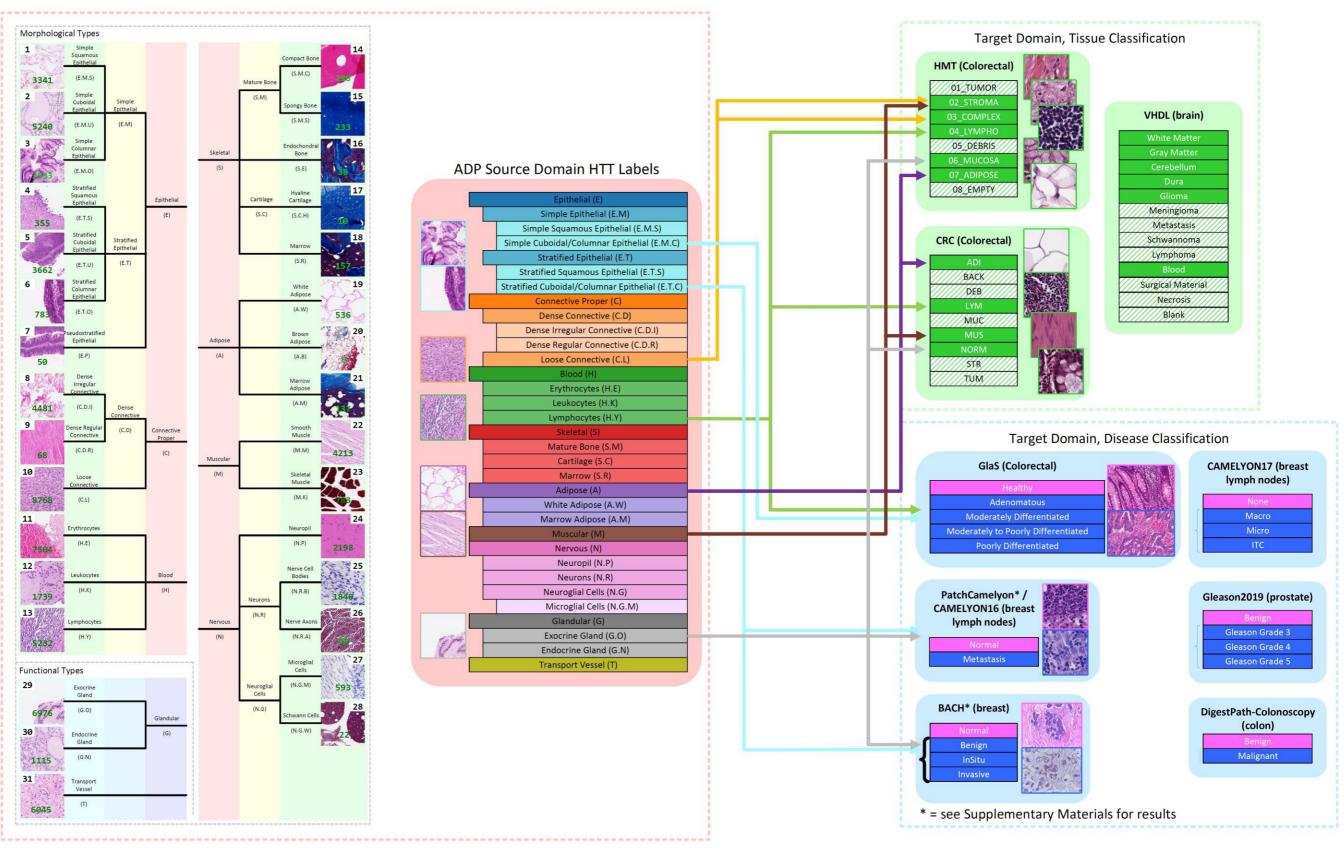
CVPR 2019 open access These CVPR 2019 papers are the Open Access versions, provided by the Computer Vision Foundation. Except for the watermark, they are identical to the accepted versions; the final published version of the proceedings is available on IEEE Xplore. Atlas of Digital Pathology: A Generalized

Hierarchical Histological Tissue Type-Annotated Database for Deep Learning

Mahdi S. Hosseini, Lyndon Chan, Gabriel Tse, Michael Tang, Jun Deng, Sajad Norouzi, Corwyn Rowsell, Konstantinos N. Plataniotis, Savvas Damaskinos; The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 11747-11756



ADP is Union of Multiple Datasets in Digital Pathology



ADP GUI for Patch Labeling

->

1/95

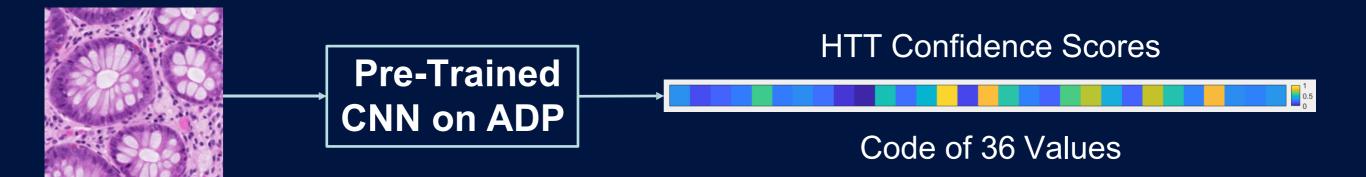
 \rightarrow

The Edward S. Rogers Sr. Department of Electrical & Computer Engineering UNIVERSITY OF TORONTO	St. Michael's Inspired Care.		HURON Digital Patholog
UNIVERSITT OF TORONTO	Inspiring Science.		Digital l'atholog
e Workspace	HTT Labels		
ropbox\UofT Dropbox Data\Journal Publications\Atlas of Digital	Open New Epithelial	Skeletal	Nervous
nloov Projects/integrated-gui/natches/ROL 56	Simple Squamous Epithelial	Compact Bone	Neuropil
cards means after section (card)	Simple Cuboidal Epithelial	Spongy Bone	Nerve Cell Bodies
Normal liver, HPS stain	Simple Columnar Epithelial	Endochondral Bone	Nerve Axons
	Stratified Squamous Epithelia		Microglial Cells
			Schwann Cells
patch_i_10186_j_12223.tif	Stratified Cuboidal Epithelial	Marrow	
	Stratified Columnar Epithelial		
and the second second second	Pseudostratified Epithelial		
Same and the strange that the state	Connective Proper	Adipose	Glandular
The second s	Dense Irregular Connective	White Adipose	
The second s	Dense Regular Connective	Brown Adipose	Exocrine Gland
A STATE CONTRACTOR AND A STATE OF A		Marrow Adipose	
	Blood	Muscular	Transport Vanaal
A CHANGE STATE TO STATE	Erythrocytes	Smooth Muscle	Transport Vessel
The second second second		Skeletal Muscle	I Indisport Vessel
A BAR ST AND	Lukocytes		
	Pathologist Comments (Optional)		

Save

ADP is Comprehensive Supervised Database for CNN Training

Step-1: Train CNN on ADP database Step2: Predict multiple HTTs on Novel patch

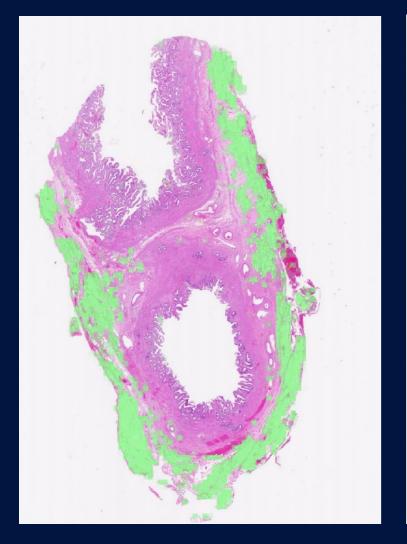


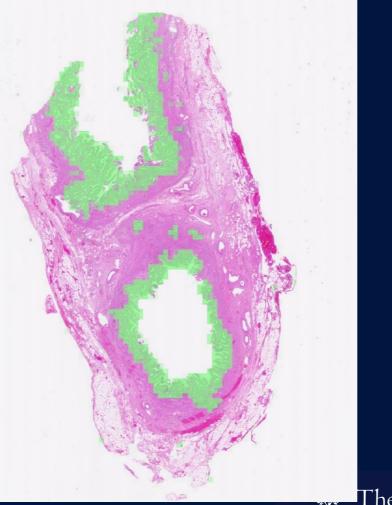
The Edward S. Rogers Sr. Department
 of Electrical & Computer Engineering
 UNIVERSITY OF TORONTO

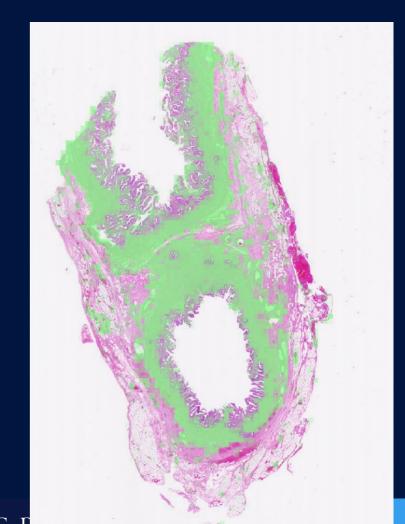
Digital Pathology-1: Visual Aiding

Visual Aid heatmaps can guide through educational pathology

White Adipose Tissues Exocrine Gland Tissues Smooth Muscle Tissues





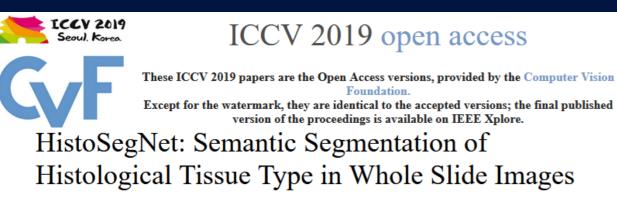


The Edward S. Rogers of Department of Electrical & Computer Engineering UNIVERSITY OF TORONTO

OF APPLIED SCIENCE & ENGINEERING

Digital Pathology 2: Pixel-Level Classification

Developing Weakly-Supervised Semantic Segmentation on ADP to infer Pixel-Level class from Patch-Level

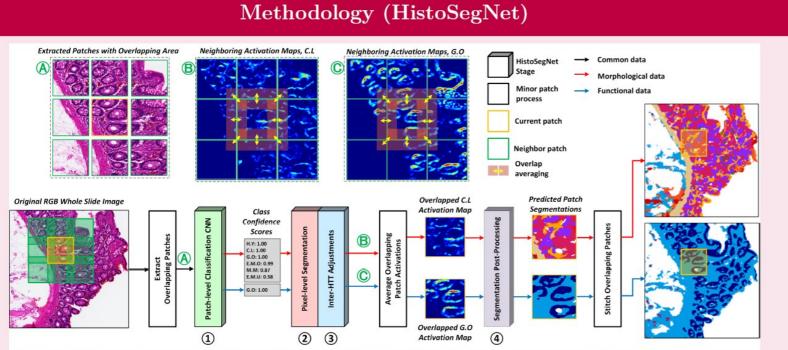


Lyndon Chan, Mahdi S. Hosseini, Corwyn Rowsell, Konstantinos N. Plataniotis, Savvas Damaskinos; The IEEE International Conference on Computer Vision (ICCV), 2019, pp. 10662-10671

International Journal of Computer Vision (2020)

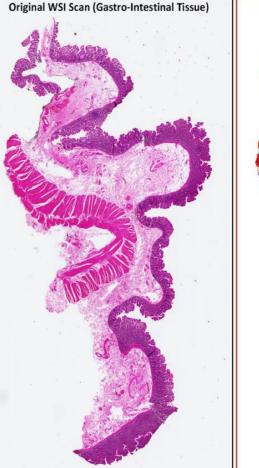
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains

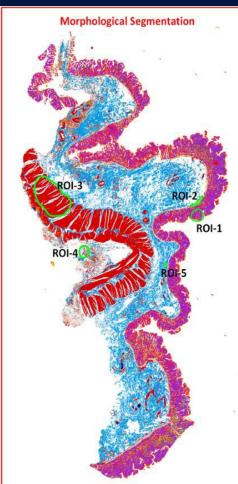
Lyndon Chan · Mahdi S. Hosseini · Konstantinos N. Plataniotis



Patch-level Classification CNN: predict patch HTTs with CNN pre-trained on ADP
Pixel-level Segmentation: Grad-CAM applied on CNN to give score-scaled class activation maps
Inter-HTT Adjustments: generate *background/other* maps, subtract maps from each other
Segmentation Post-Processing: apply dense CRF to improve segmentation

Code: https://github.com/lyndonchan/hsn_v1

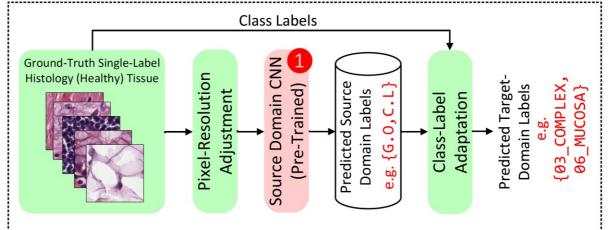




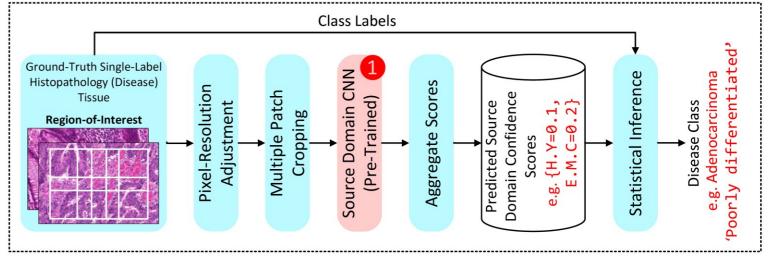
Digital Pathology-3: Cancer Diagnosis

G	This ECCV 2018 paper, provided here by the Computer Vision Foundation, is the author-created version. The content of this paper is identical to the content of the officially published ECCV 2018 LNCS version of the paper as available on SpringerLink: https://link.springer.com/conference/eccv		
000 O	n Transferability of Histological Tissue Labels	000	
001	in Computational Pathology	001	
002		002	
003		003	
004	Anonymous ECCV submission	004	
005		005	
006	Paper ID 6765	006	
007		007	

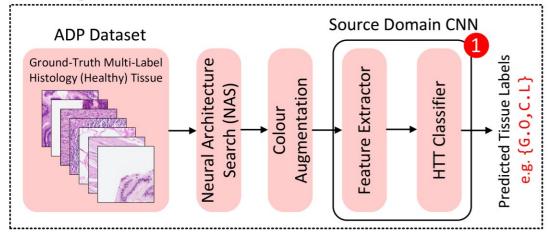
Histological (Healthy) Tissue Classification on a Target Domain



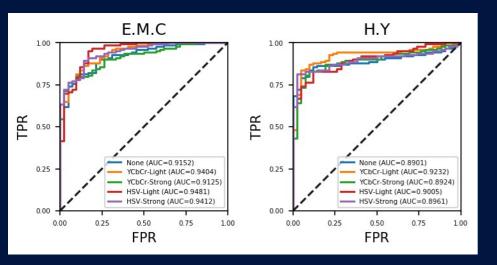
Histopathological (Disease) Tissue Classification on a Target Domain



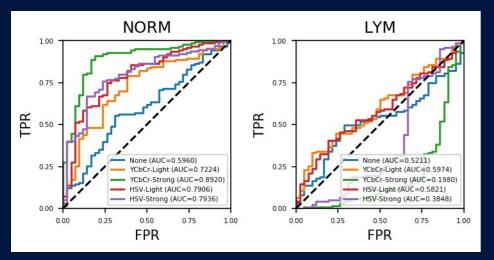
Training on ADP Source Domain

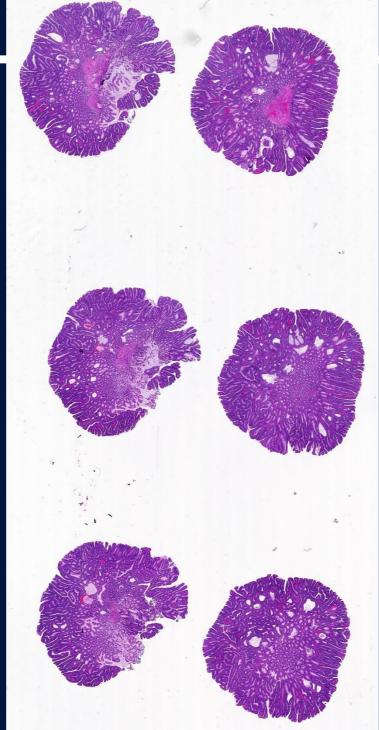


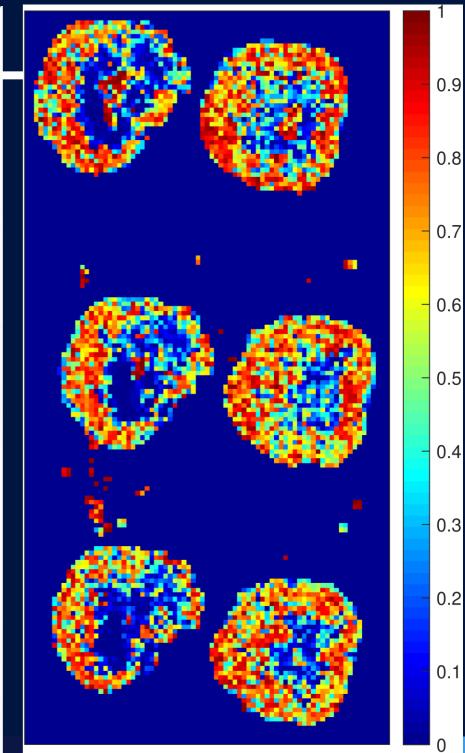
Example Application-3: Colon Polyps



Transferring from Other Data



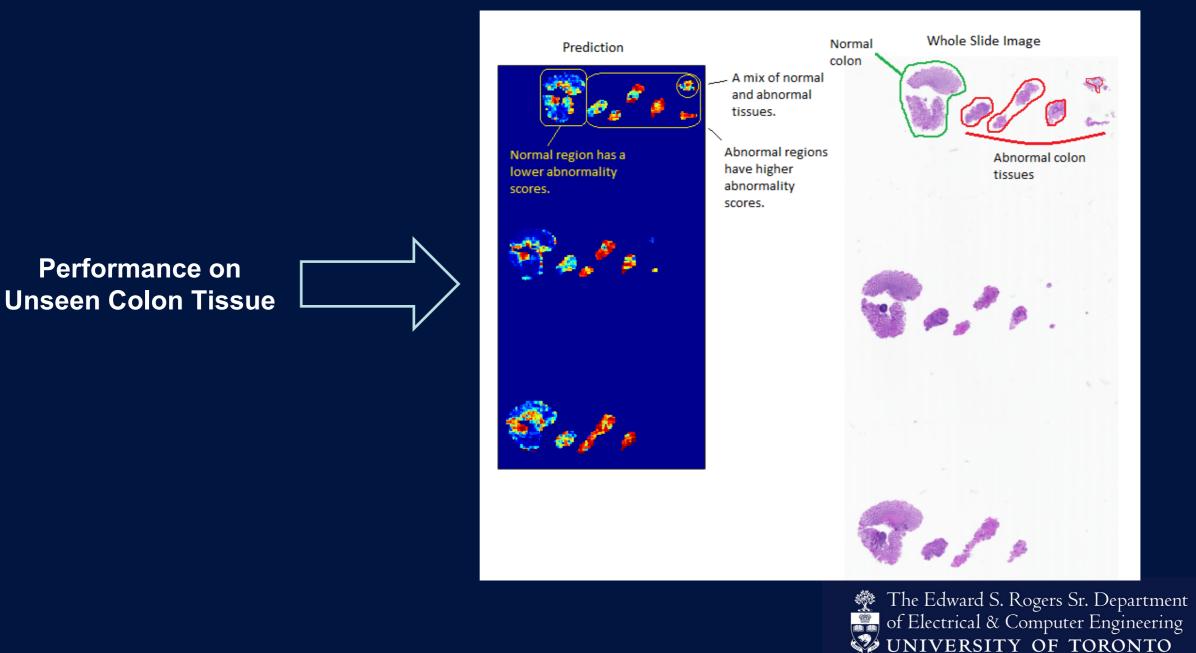




The Edward S. Rogers Sr. Department
 of Electrical & Computer Engineering
 UNIVERSITY OF TORONTO

Example Application-4: Abnormality Detection

- The confidence level of CNN prediction associates with healthiness of tissue, because CNN is trained on ADP (histological tissues)
- Low confidence correlates with abnormalities e.g. disease/cancer



Digital Pathology Clinical Integration

The Edward S. Rogers Sr. Department
 of Electrical & Computer Engineering
 UNIVERSITY OF TORONTO

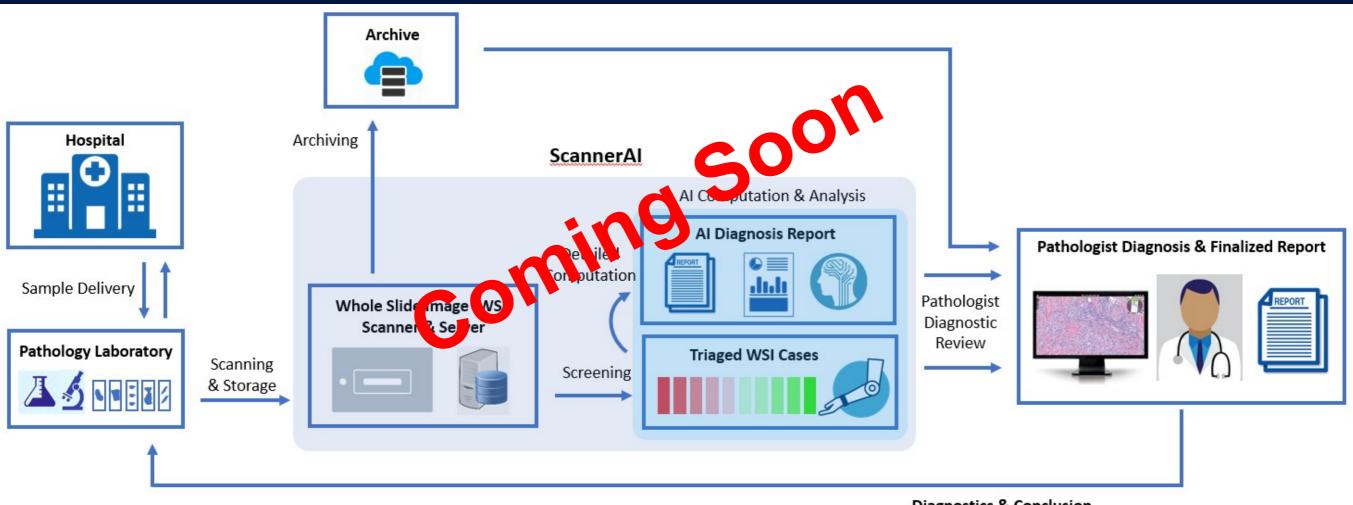
Digital Pathology Clinical Integration

Source: Alex Motoc, Unsplash.com

© 2020 Gartner, Inc. and/or its affiliates. All rights reserved. Gartner is a registered trademark of Gartner, Inc. and its affiliates.

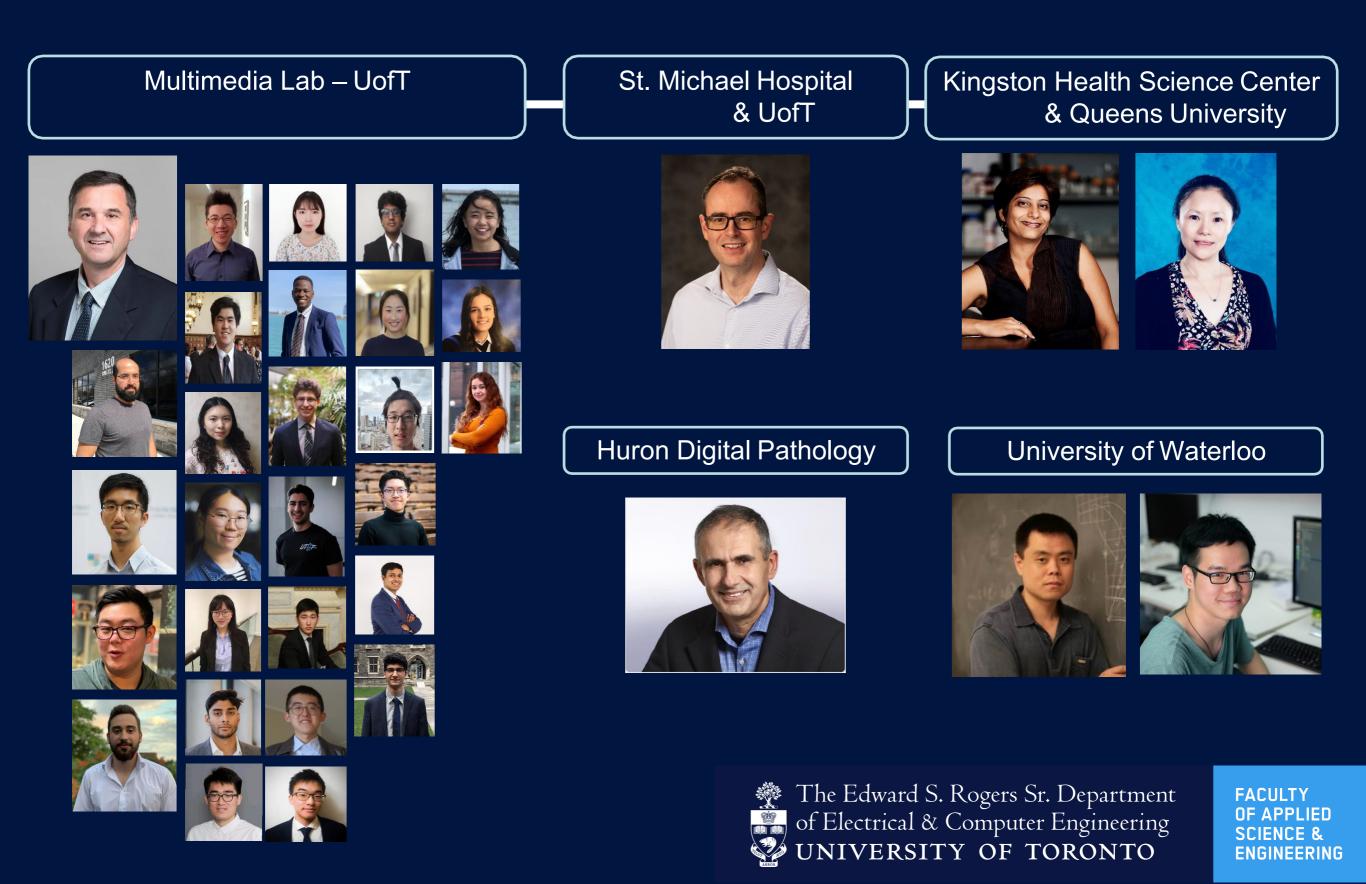
The Edward S. Rogers Sr. Department
 of Electrical & Computer Engineering
 UNIVERSITY OF TORONTO

Digital Pathology Clinical Integration



Diagnostics & Conclusion

The ATLAS team



Reading Material (Optional)

- 1. <u>A comprehensive analysis of weakly-supervised semantic segmentation in different image domains</u>, Lyndon Chan, Mahdi S Hosseini, Konstantinos N Plataniotis, International Journal of Computer Vision, also available: <u>https://arxiv.org/pdf/1912.11186.pdf</u>.
- 2. <u>On Transferability of Histological Tissue Labels in Computational Pathology</u>, Mahdi S Hosseini, Lyndon Chan, Weimin Huang, Yichen Wang, Danial Hasan, Corwyn Rowsell, Savvas Damaskinos, Konstantinos N Plataniotis, European Conference on Computer Vision, 2020, <u>https://link.springer.com/chapter/10.1007/978-3-030-58526-6_27</u>.
- 3. HistoSegNet: Semantic Segmentation of Histological Tissue Type in Whole Slide Images, Savvas Damaskinos Lyndon Chan, Mahdi S. Hosseini, Corwyn Rowsell, Konstantinos N. Plataniotis, The IEEE International Conference on Computer Vision (ICCV), 2019, <u>http://openaccess.thecvf.com/content_ICCV_2019/html/Chan_HistoSegNet_Semantic_Segmentation_of_Histological_Tissue_Type_in_Whole_Slide_ICCV_2019_paper.htm.</u>
- 4. Atlas of Digital Pathology: A Generalized Hierarchical Histological Tissue Type-Annotated Database for Deep Learning, Savvas Damaskinos Mahdi S Hosseini, Lyndon Chan, Gabriel Tse, Michael Tang, Jun Deng, Sajad Norouzi, Corwyn Rowsell, Konstantinos N Plataniotis, CVPR 2019,, <u>https://openaccess.thecvf.com/content_CVPR_2019/html/Hosseini_Atlas_of_Digital_Pathology_A_Generali</u> <u>zed_Hierarchical_Histological_Tissue_Type-Annotated_CVPR_2019_paper.html</u>

Additional Information:

• K.N. Plataniotis Google Scholar: <u>https://scholar.google.com/citations?user=W-4N_2gAAAAJ&hl=en</u>

The Edward S. Rogers Sr. Department
 of Electrical & Computer Engineering
 UNIVERSITY OF TORONTO

Thank You!

Q&A

www.dsp.utoronto.ca

http://www.dsp.utoronto.ca/projects/ADP/

kostas@ece.utoronto.ca

The Edward S. Rogers Sr. Department
 of Electrical & Computer Engineering
 UNIVERSITY OF TORONTO